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the general idea: modify GR in the 
infrared using non-local terms 

•  motivation: explaining DE 
   IR modification    mass term? 

•  (local) massive gravity: Fierz-Pauli, dRGT, bigravity 
–  significant progresses (ghost-free), still open issues 
                                                                   see talk by Hassan 

•  our approach: mass term as coefficient of non-local 
terms 



some sources of inspiration: 

•                                                               is equivalent to 

    duality between locality and gauge-invariance for massive 
theories 

•  degravitation 

we can introduce a mass parameter without breaking the  
gauge-invariance of the theory 

(Dvali 2006) 
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       different possible implementations of the idea 

•    

   however, instabilities in the cosmological evolution 

•    

    nice cosmological properties (wDE=-1.04).  

•  last twist 

Gµ⌫ �m2(⇤�1Gµ⌫)
T = 8⇡GTµ⌫

(M. Jaccard,MM, 
E. Mitsou 2013) 

(S.Foffa,MM, 
E. Mitsou 2013) 

Gµ⌫ �m2(gµ⌫⇤�1R)T = 8⇡GTµ⌫ (MM 2013) 

SNL =
1

16⇡G

Z
d

4
x

p
�g


R�m

2
R

1

⇤2
R

�
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•  Conceptual aspects       
–   effective classical theory vs fundamental nonlocal theories 
–   absence of ghosts 
–   degrees of freedom  
–   no vDVZ discontinuity 

•  Cosmological consequences 
–  background evolution. Prediction for wDE 

–  cosmological perturbations and comparison with data 

MM 2013; 
S. Foffa, MM and E. Mitsou 2013  

A. Kehagias and MM, 2014 

Y. Dirian, S. Foffa, N. Khosravi, M. Kunz, MM 1403.6068 

MM 2013; MM and M.Mancarella 2014 



Non-local QFT or classical effective equations? 

•  we have           directly in the EoM (rather than in the solution). 
This EoM cannot come from the variation of a Lagrangian. E.g.   

•  we can repalce                       after the variation, as a formal trick 
to get the EoM from a Lagrangian.  

    However, any connection to the QFT described by this 
Lagrangian is lost. 
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    EoMs involving         emerge from a classical or a 
quantum averaging of a more fundamental (local) QFT 

•   classically, when separating long and short wavelength and 
integrating out the short wave-length  
    (e.g cosmological perturbation theory, or GWs) 

•   in QFT, when computing the effective action that includes the 
effect of radiative corrections. This  provides effective non-
local field eqs for 

•   the in-in matrix elements  satisfy non-local and retarded 
equations            

⇤�1
ret

h0|�̂|0i, h0|ĝµ⌫ |0i

Jordan 1986, Calzetta-Hu 1987 



Our general question: which effective nonlocal 
theories give a meaningful cosmology? 

•   top-down approach: find the correct fundamental theory (massive gravity, 
bimetric theory,...?) 

•   bottom-up: find first the correct effective 
    theory 

•  e.g Standard Model vs Fermi theory 
–  start from the fundamental YM theory 
–  or understand which terms correctly  
   describe weak interaction at low energies 

e.g. ( ̄ )2, ( ̄�5 )2, ( ̄�µ )2,
. . . [ ̄�µ(1� �5) ]2,



•  So, we interpret our non-local eqs as a classical, effective 
equation, derived from a more fundamental local theory by a 
classical or quantum averaging  

•  any problem of quantum vacuum stability can only be 
addressed in this fundamental theory 

•  the theory 
    could be the truncation of the correct effective theory  

•  the theory 
    could be an example of resummation 

•  our general question: which effective nonlocal theories give a 
meaningful cosmology? 
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Absence of vDVZ discontinuity and of  
a strong coupling regime 

•  write the eqs of motion of the non-local theory in spherical 
symmetry: U(r), S(r), plus 

•  for mr <<1: low-mass expansion 

•  for r>>rS: Newtonian limit  (perturbation over Minowski) 

•  match the solutions for rS<< r << m-1 (this fixes all coefficients) 

A. Kehagias and MM 2014 

ds2 = �A(r)dt2 +B(r)dr2 + r2(d✓2 + sin2 ✓ d�2)



•  result: for r>>rs 

     the limit                is smooth ! 

By comparison,  in massive gravity the same computation gives 
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Cosmological consequences 

•   define 

•  in FRW we have 3 variables:  H(t), U(t),  W(t)=H^2(t)S(t).   
    define x=ln a(t), h(x)=H(x)/H0  
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•  there is an effective DE term, with 

•  define wDE from 

•   the model has the same number of parameters as ΛCDM, with   
ΩΛ ↔ γ. 

⇢0 = 3H2
0/(8⇡G)⇢DE(x) = ⇢0�Y (x)



•  results:  

•  Fixing γ = 0.0089.. (m=0.28 H0) we reproduce  ΩDE=0.68 
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•  having fixed γ we get a pure prediction for the EOS: 

            on the phantom side ! 

 general consequence of  

 together with ρ>0 and  dρ/dt>0 
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Cosmological perturbations 

•  well-behaved? 

•  consistent with structure formation? 
–  Deser-Woodard nonlocal model ruled out at the 8σ level by 

the comparison with structure formation 
                                                        Dodelson and Park 1310.4329               

•  Bayesian model comparison with  ΛCDM 

Y. Dirian, S. Foffa, N. Khosravi, M. Kunz, MM 
                                                            1403.6068 



•  the perturbations are well-behaved and differ from 
ΛCDM at a few percent level 

 = [1 + µ(a; k)] GR

 � � = [1 + ⌃(a; k)]( � �)GR
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•  deviations at z=0.5 of order 4% 

•  consistent with data: CFHTLenS gives ΔΨ/Ψ=0.05±0.25 
                                                                   (Simpson et al 1212.3339) 
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•  linear power spectrum 

0.001 0.01 0.1 1 10
1.04

1.045

1.05

1.055

1.06

1.065

1.07

k @h êMpcD

PHkL
êP L
HkL

0.001 0.01 0.1 1 10
10-4

0.01

1

100

104

k @h êMpcD

PHkL
@HM

pc
êhL3
D

Matter

DE

DE clusters but  its linear  
power spectrum is small 
compared to that of matter 

matter power spectrum   
compared to ΛCDM 



Comparison with ΛCDM 
•  A caveat: this is not wCDM! 

•  for the model 

    the perturbations have been recently computed and compared 
them to CMB, BAO, SNIa and growth rate data 

–   If h0>0.70 the data strongly support this nonlocal model over 
ΛCDM 

–   If 0.67<h0<0.70 the two models are statistically comparable 

    (however, CMB studied using the shift parameter, rather than a full 
Boltzmann code) 

Gµ⌫ �m2(gµ⌫⇤�1R)T = 8⇡GTµ⌫ (MM 2013) 

Nesseris and Tsujikawa 1402.4613   



•  for the model 

    we find that 

•  structure formation: statistically  equivalent to  ΛCDM with 
present data  

•  SNIa: fit to the JLA data gives equivalent χ2 

•  CMB: full Boltzmann code analysis under way 
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Conclusions 
•  we have an interesting IR modification of GR 
•  and  testable predictions 

–   w(0)=-1.14      + a full prediction for w(z) 
•  DES           Δw=0.03 (stage IV+Planck Δw=0.01) 
•  EUCLID    Δw=0.01 

–      
•  Forecast for EUCLID, Δµ=0.01 

–   Σ(z):   lensing deviations at a few % 
–     

µ(a) = µsas ! µs = 0.09, s = 2

� = 0.53



Thank you! 



Degrees of freedom 

•  define 
•   the eqs. 
     do not describe radiative  d.o.f ! 

    The homogeneous solution is fixed by the definition of i.e. by 
the def of the non-local theory. 

    It is not a free Klein-Gordon field ! 
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•  linearize the eqs of motion. Scalar sector: 

            Φ and Ψ remain non-radiative! 
In contrast, in massive gravity with FP mass term 
and with generic mass there is a                in the action (ghost)    

   U and S are non-radiative despite the KG operator. 
          No radiative d.o.f. in the scalar sector ! 
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•  beyond the scalar sector: linearizing the eq of motion 

    the corresponding matter-matter interaction is 
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•  no vDVZ discontinuity! 

•  For m=O(H0), solar system test easily passed. Corrections are 
    O(m2/k2) =10-30 for k=(1 a.u)-1. 

•  massless graviton + extra contribution to  

    these are the contribution of U and S and do not correspond to a 
radiative dof. In a quantum treatment there are no creation/
annihilation operators associated to them 



A fake ghost in massless GR 
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•  the contribution of s is not canceled by the helicity-0 
component of hµν

TT  ! 
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•  the origin of the problem is that s is a non-local function of hµν : 

•  example: 

    it looks as if we have generated a dynamical dof!  
    However,  the solution of the homogeneous eq are spurious! 
     the same happens for s:   s is non-radiative, and we must discard 

the solutions of the homogeneous eq 

•  at the quantum level, no annihilation/creation operators 
associated to it; s cannot be put on the external lines (otherwise, 
the vacuum in GR would decay!) 
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•  the same happens in our non-local theory. The extra term in 

     is just a mass term for s ! However, it remains a non-radiative 
field, as in GR, and we must discard the plane-wave solutions of 

     again, no propagating dof associated to s, and no issue of 
quantum vacuum decay !  
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