Recent results from the SND detector

Aleksandr Korol

Budker Institute of Nuclear Physics, Novosibirsk (on behalf of the SND collaboration)

27.10.2016

Advances in Dark Matter and Particle Physics Messina, Italy

SND detector

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counter, 4 – NaI(Tl) crystals, 5 – phototriodes, 6 – iron muon absorber, 7–9 – muon detector, 10 – focusing solenoids.

Calorimeter: $0.95\times4\pi$, 13.4X0, $\delta E/E=0.042/\sqrt[3]{E(GeV)}$, $\delta \varphi=1.5^{\circ}$. Tracking system: $0.94\times4\pi$, $\delta \varphi=0.45^{\circ}$, $\delta \theta=0.8^{\circ}$

SND collected data at VEPP-2M (1996-2000) and at VEPP-2000 (2010-2013)

VEPP-2000 e⁺e⁻ collider

VEPP-2000 parameters:

- c.m. energy 0.3-2.0 GeV
- circumference 24.4 m
- round beam optics
- luminosity at 2 GeV:

 1×10^{32} cm⁻² sec⁻¹ (project)

2×10³¹ cm⁻² sec⁻¹ (achieved)

During 2010-2013 the luminosity was limited by shortage of positrons.

Upgrade of the VEPP-2000 complex:

- Electrons and positrons are transported from the VEPP-5 injection complex through 250 m beamline.
- Experiments at upgraded VEPP-2000 are expected to begin by the end of 2016.

SND data

VEPP-2M			
	Below o	Arround o	Above ϕ
IL, pb-1	9.1	13.2	8.8
√s, GeV	0.36 - 0.97	0.98 - 1.06	1.06 - 1.38
VEPP-2000			
IL, pb-1	15.4	6.9	47.0
√s, GeV	0.30 - 0.97	0.98 - 1.05	1.05 - 2.00

About 15 hadronic processes are currently under analysis.

Here we report the four new measurements and one update.

Precision measurements

$$e^+e^- \rightarrow \pi^\circ \gamma$$
 (VEPP-2M data)
 $e^+e^- \rightarrow K^+K^-$
 $e^+e^- \rightarrow \omega \rightarrow \pi^\circ \pi^\circ \gamma$ (update)

First measurements

$$e^+e^-
ightarrow \pi^+\pi^-\pi^\circ\eta$$
 $e^+e^-
ightarrow \omega\pi^\circ\eta$

Process $e^+e^- \rightarrow \pi^\circ \gamma$ (VEPP-2M data)

- Third largest cross section (after 2π and 3π) below 1 GeV
- Measurement of the $\pi^{\circ} \gamma^{*} \gamma$ transition form factor
- Measurement of the radiative decays $V \rightarrow \pi^{\circ} \gamma$, $V = \rho, \omega, \phi, ...$
- There is a tension between the **KLOE** measurement of the ratio

 $\Gamma(\omega \to \pi^{\circ} \gamma)/\Gamma(\omega \to \pi^{\dagger} \pi^{-} \pi^{\circ})$ and other measurements of ω -meson parameters:

KLOE have studied the $e^+e^-\rightarrow\omega\pi^\circ$ process near the ϕ -meson resonance in two decay modes $\omega\rightarrow\pi^+\pi^-\pi^\circ$ and $\omega\rightarrow\pi^\circ\gamma$.

The ω -meson parameters obtained through KLOE studies have a large shifts from the previously measurements, especially for $\omega \rightarrow \pi^{\circ} \gamma$ decay.

F. Ambrosino, et. al.,

Phys. Lett. B 665 (2008) 223-228

$e^+e^- \rightarrow \pi^\circ \gamma$: analysis features

The process $e^+e^- \rightarrow \gamma\gamma$ is used for normalization.

Common selection criteria for 2y and 3y final states:

trigger, no charged tracks, total energy deposition and momentum, muon system veto.

Final selection is based on 4C kinematic fit:

$$\chi^{2}_{3y} < 30, 36^{\circ} < \theta_{y} < 144^{\circ}, 80 < M_{rec} < 190 \text{ MeV},$$

here \mathbf{M}_{rec} is the mass recoiling against largest energy photon.

The number of signal events is determined from the fit of π° in M_{rec} spectrum:

ADMPP 2016, Messina, Italy

$e^+e^- \rightarrow \pi^{\circ}\gamma$: cross section

The most precise measurement of the $e^+e^-\rightarrow\pi^\circ\gamma$ cross section. Systematic uncertainty at the ω peak is 1.4%:

- luminosity **1.2%**
- selection criteria **0.6%**

M.N. Achasov, et. al., Phys. Rev. D 93 092001 (2016)

Results on radiative decays

Using PDG value for $\mathbf{B}(\omega \to \pi^+\pi^-\pi^\circ) \times \mathbf{B}(\omega \to e^+e^-)$ we have obtained $\Gamma(\omega \to \pi^\circ \gamma)/\Gamma(\omega \to \pi^+\pi^-\pi^\circ) = 0.0992 \pm 0.0023$,

which is higher than the KLOE value 0.0897 ± 0.0016 by 3.4σ .

$$B(\rho \to \pi^0 \gamma) = (4.20 \pm 0.47 \pm 0.22) \times 10^{-4}$$

It is by 1.8 σ lower than the current PDG value $(6.0\pm0.8)\times10^{-4}$, but agrees with the branching fraction for the charged mode $B(\rho^{\pm}\to\pi^{\pm}\gamma)=(4.5\pm0.5)\times10^{-4}$.

$$B(\phi \to \pi^0 \gamma) B(\phi \to e^+ e^-) = (3.92^{+0.71}_{-0.40} \pm 0.51) \times 10^{-7}$$

The model uncertainties of the previous measurements ($\sim 8\%$) were underestimated. For ϕ_{ϕ} fixed at the value $(163\pm7)^{\circ}$ obtained in the VMD fit to $e^+e^-\rightarrow\pi^+\pi^-\pi^{\circ}$ data

$$B(\phi \to \pi^0 \gamma) B(\phi \to e^+ e^-) = (4.04 \pm 0.09 \pm 0.19) \times 10^{-7}$$

Process $e^+e^- \rightarrow K^+K^-$

Preliminary events selection:

- trigger
- 2 back-to-back central tracks in DC
 Normalization with e⁺e⁻ → e⁺e⁻
 Information from Cherenkov aerogel counters:
- Kaons do not produce Cherenkov signal in the counter, while electron, muon and pions do.
- The kaon ID (one particle) requirement suppresses background from e⁺e⁻ → e⁺e⁻ by a factor of 300.

Finally collinear background substracted fitting E_{tot}/\sqrt{s}

K'K': cross section

SND measurement agrees with the BABAR data and has comparable or better accuracy.

The green and yellow bands represent the BABAR and SND systematic uncertainties.

arXiv:1608.08757 [hep-ex]

Updated $e^+e^- \rightarrow \omega \pi^\circ \rightarrow \pi^\circ \pi^\circ \gamma$

Analysis is very close to described earlier:

Phys. Rev. D 88, 054013 (2013).

The radiative correction calculation has been fixed.

Additional data are taken into account:

• 25 pb⁻¹ \rightarrow 37 pb⁻¹

arXiv:1610.00235 [hep-ex]

Exclusive vs inclusive measurements

Below 2 GeV the total hadronic cross section is calculated as a sum of exclusive cross sections.

Currenly the exclusive and inclusive data below **2 GeV** are in reasonable agreement.

In the energy region 1.5-2.0 GeV exclusive data are incomplete. There are no experimental data on the final states $\pi^+\pi^-\pi^0\eta$, $\pi^+\pi^-\eta\eta$, $\pi^+\pi^-\pi^0\pi^0\pi^0$, $\pi^+\pi^-\pi^0\pi^0\eta$, ...

Process $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$

Spectrum contributions:

- (1) sum of $\omega \eta$, $\phi \eta$ and structureless $\pi^{\dagger} \pi^{\bar{}} \pi^{\circ} \eta$ (blue);
- (2) sum of $\omega \eta$, $\phi \eta$, structureless $\pi^+\pi^-\pi^\circ \eta$ and $a_0(980)\rho$ (red);
- (3) sum of $\phi \eta$ and $a_0(980)\rho$ contributions.

e⁺e⁻ → π⁺π⁻π^oη: mass spectrum

Above 1.8 GeV the dominant mechanism of this reaction is $a_0(980)\rho$.

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$: cross section

 $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta)$, nb

- First measurement of this process.
- The intermediate states are $\omega \eta$, $\phi \eta$, structureless $\pi^{\dagger} \pi^{\bar{}} \pi^{\bar{}} \eta$ and $a_{0}(980)\rho$.
- The known ωη and φη contributions explain about 50-60% of the cross section below 1.8 GeV.
- Above 1.8 GeV the dominant reaction mechanism is $a_0(980)\rho$.

• The process $e^+e^- \rightarrow \omega \eta$ has been measured separately.

• There is a significant difference between **SND** result and the previous **BABAR** measurement.

arXiv:1607.00371 [hep-ex]

E (GeV)

Process $e^+e^- \rightarrow \omega \pi^\circ \eta$

The $\eta\pi^{\circ}$ mass spectrum for selected $\omega\pi^{\circ}\eta$ events is well described by the model of the $a_{\circ}(980)\omega$ intermediate state.

Events of the $e^+e^-\to \pi^\circ \pi^\circ \eta \gamma \to 7\gamma$ process are selected. The dominant intermediate state is $\omega \pi^\circ \eta$. No noticeable $\eta^* \gamma$ signal observed.

$e^+e^- \rightarrow \omega \pi^\circ \eta$: cross section

- First measurement of the $e^+e^- \rightarrow \omega \pi^\circ \eta$ cross section.
- The cross section energy dependence is described by a single-resonance model.
- The resonance mass and width are consistent with those for $\rho(1700)$

better than non-resonant at 1.2σ

Phys. Rev. D 94, 032010 (2016)

The cross section is about 2.5 nb. 5% of the total hadronic cross section in the energy region 1.8 - 2.0 GeV.

Conclusions

- During 2010 2013 the SND detector accumulated ~70 pb⁻¹ of integrated luminosity at the VEPP-2000 electron-positron collider in the c.m. energy range 0.3 2 GeV.
- Data analysis on hadron production is in progress. The obtained results have comparable or better accuracy than previous measurements ($\pi^{\circ}\gamma$, $K^{\dagger}K^{\dagger}$, $\omega\pi^{\circ}$).
- For some processes the cross sections have been measured for the first time $(\pi^{\dagger}\pi^{\bar{}}\pi^{\circ}\eta, \omega\pi^{\circ}\eta)$.
- After VEPP-2000 upgrade the data taking runs will be continued with a goal of ~1 fb⁻¹ of integrated luminosity.