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Reflexions on	the	Veneziano Model

• It	is	important	to	have	concrete	and	
interesting	formulas.	

• Even	if	they	are	“wrong”	for	the	phenomenon	
they	were	initially	devised	for.	

• Maybe	string	theory	will	be	useful	for	
something	else	than	what	we	imagine	now!



AdS2 ,	SYK	and	wormholes



Introduction
• Quantum	mechanical	systems	with	a	finite	but	large	number,	N,	of	degrees	

of	freedom	(qubits).		

• They	have	a	1/N	expansion	and	are	strongly	coupled.	

• Develop	an	approximate	scale	invariant	behavior	at	relatively	low	
energies.	

• We	will	focus	on	universal	features.	

• We	find	these	universal	features	in	two	systems:	

• SYK	model	=		relatively	simple	solvable	model.	

• Near	extremal	black	holes	=	relatively	simple	gravitational	system.	



The	first	system



Sachdev,	Ye,	Kitaev model	(SYK)
Sachdev Ye	Kitaev
Georges,	Parcollet

N	Majorana fermions	 { i, j} = �ij

Random	couplings,	gaussian distribution.

To	leading	order	à treat	Jijkl as	an	additional	“field”	.	(There	are	similar	models	with
no	disorder:	tensor	models			Gurau,	Witten,	Klebanov et	al… )	

J	=	dimensionful coupling.		We	will	be	interested	in	the	strong	coupling	region

H =
X

i1,··· ,i4

Ji1i2i3i4 i1 i2 i3 i4

1 ⌧ �J, ⌧J ⌧ N

hJ2
i1i2i3i4i = J2/N3



Spectrum

(specific	J’s	drawn	from	the	
gaussian ensemble)

D.	Stanford

dimH = 2
N
2

Exponentially	large	number	of	states	contributes	to	the	low	energy	region	we	consider



Large	N	effective	action

Integrate	out	the	fermions	and	the	couplings	to	obtain	an	effective	action	for
the	singlets,	the	fermion	bilinears.	
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Integrate	out	fermions

Outline	of	the	derivation



Large	N	effective	action

It	is	non-local	in	time.	The	bilocal terms	come	from	the	integral	over	the	couplings.	

This	effective	action	is	correct	to	leading	orders,		where	we	can	ignore	the	replicas,

Similar	actions	were	obtained	for	usual	O(N)	vector	models.	

Equations	of	motion	from	this	action	are	relatively	simple	integral	equations	that	can	be	
solved	numerically.	

At	low	energies	the	solution	is	simple

o(1/N q)
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It	is	scale	invariant!



Scale	vs	conformal	invariance
• Usually	scale	invariance	à conformal	invariance.	
• In	one	dimensions:	conformal	invariance	=	full	

reparametrization symmetry.	
• Is	a	symmetry	of	the	low	energy	action		

If	G	is	a	solution,	and	we	are	given	an	arbitrary	function	f(τ),
we	can	generate	another	solution:	

Gc �! Gc,f (⌧, ⌧
0) = [f 0(⌧)f 0(⌧ 0)]�Gc(f(⌧), f(⌧

0))

Emergent	reparametrization symmetry
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Example:		Go	from	zero	the		temperature	to	a		finite	temperature	solution						

Gf =

"
⇡

� sin ⇡⌧
�

#2�
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Zero	modes	of	the	action

G �! Gf (⌧, ⌧
0) = [f 0(⌧)f 0(⌧ 0)]�G(f(⌧), f(⌧ 0))

Recall	the	conformal	symmetry	in	the	IR

All	these	solutions	have	the	same	action	in	the	strict	IR	limit.	

G(⌧, ⌧ 0) / 1

(⌧ � ⌧ 0)2�

Goldstone	bosons		à no	action	for	f à would	give	a	divergence	if	we	do	the	path	integral
over	f.	

Solution:		remember	that	the	symmetry	is	also	slightly	broken.	



Schwarzian action	

S = �N↵s

J

Z
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Numerical	coefficient	whose	determination	requires	knowing	the	
first	deviation	of	the	propagator	from	the	IR	conformal	solution.	
Can	be	computed	numerically.	

Keep	the	leading	term	that	breaks	the	symmetry	and	has	the	right	properties

This	action	governs	several	interesting	aspects	of	the	low	energy	dynamics.	

It	is		coupled	to	another	sector	which	(at	this	order)	is	exactly	conformal:		the	non-zero	modes
of	the	effective	action.		They	are	organized	in	SL(2)	representations.	



The	second	system



Near	extremal	black	holes

Charge	black	holes.	

M � Q

M ⇠ Q

Low	energies,	near	horizon

AdS2 ⇥ S2

ds2 =
�dt2 + dz2

z2
Scale	invariant



Nearly	AdS2 gravity
Euclidean	black	hole

Region	inside	the	red	line



Infinite	number
of	other
configurations	

Locally	the	same



Nearly	AdS2
Keep	the	leading	effects	that	perturb	away	from	
AdS2	 Teitelboim Jackiw

Almheiri Polchinski

Ground	state	entropy

Comes		from	the	area	of	the	additional	dimensions,	if	we	are	getting	this	from	4	d	
gravity	for	a	near	extremal black	hole.		
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Schwarzian action	from	Nearly	AdS2 gravity
No	bulk	propagating	modes,	only	a	boundary	mode
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Relation	between	the	two
• Same	general	class.	

• Analogy:	like	talking	about	the	3d	Ising model	and	
the	2nd order	superfluid	critical	point.

• Both	are	conformal	invariant.

• Both	have	a	stress	tensor

• But		other	operators	are	different.	



SYK
model

Emergent	reparametrization symmetry
which	is	spontaneously	and	explicitly	broken

S = �C

Z
du{f(u), u} Schwarzian action

- Low	temperature	entropy
- Chaos	exponent
- Wormhole	traversability
(location	of	horizon)

Nearly	AdS2	
gravityLow	energies

Conformal	invariant	part	+	reparametrizations QFT	on	AdS2	+	boundary	dynamics

Not	the	same
same

Kitaev
JM,	Stanford
Zhang,	Suh

Boundary	gravitons

Near	extremal
black	holes



Kruskal Schwarzschild	AdS2
wormhole

Euclidean	black	hole

| i =
X

n

e��En/2|ĒniL ⇥ |EniRThermofield double:

Entangled	states



Bulk	fields	propagate	
on	a	rigid	AdS2	space.	

Boundaries	also	
move	in	a	rigid	
AdS2 space,	following	
local	dynamical	laws.

Schwarzian action	describes	this	motion.		

Dynamics

~	Mach	principle



Gravitational	dynamics

AdS2

(HfL ⇥Hbulk ⇥HfR)/SL(2, R)

fL fR



Emission	of	a	bulk	excitation

The	boundary	trajectory	gets	
a	“kick”	determined	by	local	
energy	momentum	conservation.	

New	position	of	the	horizon

Dynamics



New	trajectory	diverges	
exponentially	from	the	previous	one

e�t = e2⇡Tt

This	motion	can	be	detected	by	
OTOC	and	is	directly	related	
to	the	chaos	exponent.	

Quantum	chaos	=	simple	motion	
of	a	particle	in	AdS2 ,	it	is	geometric.	

In	both	the	SYK	model	and	gravity,	
it	results	from	the	motion	of	an	essentially	
classical	variable	!			~	motion	in	hyperbolic
space.	



Quantum	chaos	from	classical	chaos

• The	growth	of	out	of	time	order	correlators	is	related	to	the	motion	
of	a	classical	system.	

• The	one	described	by	the	Schwarzian action.	
• Or	the	motion	of	the	boundary	particle.	
• Roughly	like	motion	in	hyperbolic	space	:	chaos	from	a	geometric	

origin	à structure	of	SL(2).	Automatically	maximal.	

• The	structure	of	the	bulk	is	fixed	and	rigid.	The	boundary	particle	
motion	governs	how	this	IR	Hilbert	space		is	embedded	in	the	full	
exact	Hilbert	space.	The	same	happens	in	SYK.	The	structure	of	the	
conformal	solution	is	fixed	and	rigid,	but	the	Schwarzian degreee of	
freedom	governs	its	precise	embedding.	

• Like	ants	walking	on	a	rotating	sphere,	but	SU(2)	à SL(2)	
• Similar	to	hydrodynamics,	where	the	fluid	is	locally	the	same	but	

could	be	moving	differently	relative	to	the	ambient	space.	
Conservation	of	energy.



Entanglement	and	teleportation



No	signals	from	one	side	to	the	other

Kicks	are	always	“outwards”	à
no	signal	from	one	boundary	to
the	other.	

Consistent	with	entanglement.	

| i =
X

n

e��En/2|ĒniL ⇥ |EniR



Interaction	between	the	two	boundaries

eig�L(tL)�R(tR)

Insert	this	in	the	path	
integral

eigh�L(tL)�R(tR)i

approximate

Force	between	the	two
boundaries.	
(Can	be	attractive	for	the	
right	sign	of	g	).	
kicks	the	trajectories	inwards

Gao	Jafferis Wall



Interaction	makes	the	wormhole	traversable

New	position	of	the	horizon We	can	now	send	a	signal	
from	the	left	to	the	right.	

The	wormhole	has	been	
rendered	traversable.	

No	contradiction	because
we	had	a	non-local	interaction
between	the	two	boundaries.

The	point	is	not	that	it	
we	can	send	signals.	
It	is	how	signals	get	sent	and	
what	they	feel	!



Quantum	teleportation	though	the	wormhole

eig�L(tL)�R(tR)

Measure									

Act	on	the	right	with	

From	the	point	of	view	of	the
right	we	get	the	same,
whether	we	measure	or	not.		

�L �! �L

eig�L�R(tR)



One	other	variant	of	the	same	basic	
idea

JM	and	Xiaoliang Qi



Eternal	traversable	wormholes

H = HSYK
L +HSYK

R + µ
X

i

 i
L 

i
R

It	looks	like	a	relevant	deformation.	

It	flows	to	a	gapped	system.	

JM	&	Qi



AdS2			- Global	coordinates

ds2 =
�dT 2 + d�2

(sin�)2

T

�

- SL(2,R)	isometries

- Two	boundaries	

- Causally	connected

- Particle	dynamics	à oscillatory	behavior	à
gapped	spectrum

- Global	coordinates



AdS2	 gravity	+	

Interaction

S =
N↵S
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du{fL(u), u}+ {fR(u), u}+Nµ

Z
du


f 0
L(u)f

0
R(u)

|fL(u)� fR(u)|2

��

+	Global	SL(2,R)	gauge	symmetry	à set	total	SL(2,R)	charge	to	zero.	

f(u) = tan(T (u)/2)

AdS2

fL fR



Consequences	of	the	symmetries

• Spectrum	=	Part	determined	by	the	SL(2)	
symmetry		+	part	coming	from	the	boundary	
degree	of	freedom.	

E = w0

"
m
p
2(1��) +

X

i

(ni +�i)

#
, m, ni = Integers

Not	determined	by	the
symmetries,	depends	on	μ

SL(2)	representations.	Bulk	fields	or	conformal	
sector	of	the	SYK	model.	

Motion	of	the	boundary	particles,	
of	the	Schwarzian action.	



It	is	a	bit	like	the	Zeeman	effect	in	atomic	physics	where	an	atom	with	
non-zero	spin,	j,		is	put	in	a	magnetic	field.	The	spectrum	is	determined	by	
the	weakly	broken	rotational	symmetry	and	it	gives	rise	to	2j+1	equally	spaced	
levels.	

It	is	the	analog	of	the	operator		à state	mapping	of	higher	dimensional	CFTs.	



Finite	temperature		SYK	case

Free	energy		vs.	Temperature Entropy	vs	Energy

Canonical	ensemble Microcanonical ensemble



Finite	temperature		gravity

disconnected

connected

connected	+	matter

topology	
change



Making	the	TFD	
• Create	two	SYK	systems.	
• Couple	term.	
• Couple	them	further	to	a	heat	sink	and	let	them	cool	down	

to	find	its	ground	state.
• At	t=0,	turn	off	the	left-right	coupling.	

• à Get	a	state	that	is	close	to	the	TFD.

T=0,	we	turn	off	the	coupling

µ 6= 0

µ = 0

µ = 0

µ 6= 0

TFD

Ground	state	of	
coupled	sytem



Conclusions
• The	SYK	is	a		nice	solvable	model.	
• It	has	many	features	in	common	with	near	
extremal	black	holes.	

• In	both	cases	we	have	a	low	energy	almost	
conformal	symmetry		

• It	is	maximally	chaotic.	
• Chaos	is	described	by	a	simple	classical	variable	
(scramblon).

• Connection	to	wormholes.	
• Traversability and	teleportation.	



One	application:
New	Wormhole	Solutions		



Alexey	Milekhin Fedor Popov

Based	on	work	in	progress	with:	



Drawing	by	John	Wheeler,	1966

Charge	without	charge.	 Spatial	geometry.	Traversable	wormhole	



There	are	no	science	fiction	wormholes!

• No	wormhole	allows	you	to	travel	faster	than	
the	speed	of	light	in	the	ambient	space.	

• Forbidden	by:	
• I)	The	Achronal Average	Null	Energy	Condition

• II)	Einstein	equations.	

Z
dx

�
T�� � 0

Friedman	Schleich,	Witt,		Galloway,	Woolgar
Gao	Wald

Achronal =	fastest	line

Not	yet	proven	in	a	general	
spacetime,		but	believed	to
hold	in	QFT



Longer	wormholes
• What	if	it	takes	longer	to	go	through	the	
wormhole	?

• Not	possible	in	classical	physics	due	to	the	
Null	Energy	Condition.	

• àWe	need	quantum	effects	to	find	a	
solution.	Casimir-like	energy.	

• Can	we	do	it	in	a	controllable	way	?

Topological	censorship:	Friedman	Schleich,
Witt,	 Galloway,	Woolgar



E / � 1

L

Negative	Casimir	energy

Quantum	effect

T++ < 0

The	null	energy	condition	does	not	hold	for	null	lines	that	are	not	the	fastest

time

Circle	

Eg.	Two	spacetime dimensions

Negative	energy	from	quantum	mechanics



Some	necessary	elements

• We	need	something	looking	like	a	circle	to	
have	negative	Casimir	energy.	

• Large	number	of	bulk	fields	to	enhance	the	
size	of	quantum	effects.	

• We	will	show	how	to	assemble	these	elements	
in	a	few	steps.	



The	theory

S =

Z
d

4
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Einstein		+		U(1)	gauge	field		+	massless	charged	fermion		

Could	be	the	Standard	Model	at	very	small	distances,	smaller	than	the	
electroweak	scale	where	the	fermions	are	effectively	massless	and	the	U(1)	would	be
hypercharge.		SU(3)	x	SU(2)	x	U(1).	



The	first	solution

β	is	the	‘’length”	of	the	throat.		Redshift	factor
between	the	top	and	the	bottom	

horizon

Extremal,	or	near	extremal,	magnetically	charged	black	hole,	magnetic	charge	Q.

AdS2 ⇥ S2

Q � 1

M = Q+Q3T 2 = Q+
Q3

�2

Very	small

rs ⇠ Q



Motion	of	charged	fermions

• Magnetic	field	on	the	sphere.	
• There	is	a	Landau	level	with	precisely	zero	energy.	
• Orbital	and	magnetic	dipole	energies	precisely	
cancel.	

• Degeneracy	Q	=	flux	of	the	magnetic	field	on	the	
sphere

• We	effectively	get	Q	massless	two	dimensional	
fermions	along	the	time	and	radial	direction.	

• We	can	think	of	each	of	them	as	following	a	
magnetic	field	line.	





AdS2

ds2 =
�dt2 + d�2

sin2 �

Two	black	holes	connected	in	various	ways.	All	equally	valid	solutions	in	the	exact	
extremal	limit	(infinite	length	throat).	
They	acquire	non-zero	energy	when	the	throat	has	finite	length	

M = Q+Q3T 2 = Q+
Q3

�2

ds2 = �(r2 � 1)dt2 +
dr2

(r2 � 1)



Connect	a	pair	black	holes		

connect	



Connect	a	pair	black	holes		

Positive	magnetic	
charge

Negative	magnetic
charge

Nearly	AdS2 x	S2 wormhole	of	finite	length	
Not	a	solution	yet.
Not	a	black	hole.	



Fermion	trajectories

Positive	magnetic	
charge

Negative	magnetic
charge

Charged	fermion	moves	along	this	closed	circle.	



Casimir	energy

E / � Q

L+ L
out

⇠ �Q

L

Assume:		“Length	of	the	throat”		is		larger	than	the	distance.	

Casimir	energy	is	of	the	order	of		

L
out

L



Finding	the	solution

Balance	the	classical	curvature	+	gauge	field	energy		vs	the	Casimir	energy.	

Now	the	throat	is	stabilized.		Negative	binding	energy.		

This	is	not	yet	a	solution:	The	two	objects	attract	and	would	fall	on	to	each	other

E = Q+
Q3

L2
� Q

L
,

@E

@L
= 0 �! L ⇠ Q2 , Emin �Q ⇠ � 1

Q
⇠ � 1

rs



Adding	rotation

d	
rs ⇠ Q



Some	necessary	inequalities

L ⇠ Q2

d ⌧ L �! d ⌧ Q2

From	stabilized		throat	solution

Black	holes	close	enough	to	that	Casmir	energy
computation	was	correct.		

Black	holes	far	enough	so	that	
they	rotate	slowly	compared	to	the
energy	gap.	

Unruh-like	temperature	less	than	energy	gap	
Kepler	
rotation	frequency

They		are	compatible	 Q
5
3 ⌧ d ⌧ Q2

r
Q

d3
= ⌦ ⌧ 1

L
⇠ 1

Q2
�! Q

5
3 ⌧ d

Other	effects	we	could	think	off	are	also	small	:	
can	allow	small	eccentricity,	add	electromagnetic	and	
gravitational	radiation,	etc.	



Final	solution

Looks	like	two	near	extremal	black	holes	if	you	do	not	get	to	the	middle	of	wormhole	
But	there	is	no	horizon	!.		Zero	entropy	solution.	
It	has	a	small	binding	energy.	



1 ⌧ Q ⌧ 108

It	could	exist	if	nature	is	described	by	the	Standard	Model	at	short	
distances	and	d	is	smaller	
than	the	electroweak	scale,	

If	the	standard	model	is	not	valid	à it	is	possible	that		similar	ingredients	
are	present	in	the	true	theory.	

That	it	can exist,	does	not	mean	that	it	is	easily	produced	by	some	natural	or	artificial	
process.	



They	are	connected	through	a	wormhole!	

Much	smaller	than	the	ones	LIGO	or	the	LHC	can	detect!

Pair	of	entangled black	holes.



Conclusions
• We	displayed	a	solution	of	an	Einstein	Maxwell	
theory	with	charged	fermions.	

• It	is	a	traversable	wormhole	in	four	dimensions	
and	with	no	exotic	matter.	

• It	balances	classical	and	quantum	effects.	
• It	has	a	non-trivial	spacetime topology,	which	is	
forbidden	in	the	classical	theory.	

• It	does	not violate	causality.	
• It	has	no	horizon	and	no	entropy.	
• Can	be	viewed	as	two	entangled	black	holes.	



Thank you, Gabriele, 
for your wonderful gift !





Precise	formula	for	the	2pt	function

Amount	of	information	we	can	send	is	roughly			g	

C = he�igV �R(t)e
igV �L(�t)i , V = g�L(0)�R(0)
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