
DE LA RECHERCHE À L'INDUSTRIE

Sketching the pion's valence-quark Generalized Parton Distribution

www.cea.fr

Light Cone 2015 | Hervé MOUTARDE

Sept. 24th, 2015

Motivations 3D imaging of nucleon's partonic content but also...

Sketching the pion GPD

Correlation of the longitudinal momentum and the transverse position of a parton in the nucleon.

Theoretical framework

Definition

Double Distributions

GPD modeling

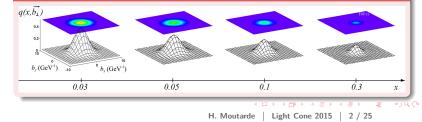
Diagrams

Preserving symmetries

Algebraic model

Results

Chocks Form factor Pion PDF


Extension

Overlap representation 2-body system

Conclusions

- Insights on:
 - **Spin** structure.
 - **Energy-momentum** structure.
- Probabilistic interpretation of Fourier transform of $GPD(x, \xi = 0, t)$ in transverse plane.

Transverse plane density (Goloskokov and Kroll model)

Overview.

Development of a new GPD model in the Dyson-Schwinger and Bethe-Salpeter framework.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

 Important topic for several past, existing and future experiments: H1, ZEUS, HERMES, CLAS, CLAS12, JLab Hall A, COMPASS, EIC, ...

- GPD modeling / parameterizing is an essential ingredient for the interpretation of experimental data.
- Recent applications of the Dyson-Schwinger and Bethe-Salpeter framework to hadron structure studies.

Overview.

Development of a new GPD model in the Dyson-Schwinger and Bethe-Salpeter framework.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

- Important topic for several past, existing and future experiments: H1, ZEUS, HERMES, CLAS, CLAS12, JLab Hall A, COMPASS, EIC, ...
- GPD modeling / parameterizing is an essential ingredient for the interpretation of experimental data.
- Recent applications of the Dyson-Schwinger and Bethe-Salpeter framework to hadron structure studies.
- Here develop **pion GPD model** for simplicity.
- No planned experiment on pion GPDs but existing proposal of DVCS on a virtual pion.

Amrath et al., Eur. Phys. J. C58, 179 (2008)

Overview.

Development of a new GPD model in the Dyson-Schwinger and Bethe-Salpeter framework.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks Form factor Pion PDF

Extension

Overlap representation 2-body system

Conclusions

- Important topic for several past, existing and future experiments: H1, ZEUS, HERMES, CLAS, CLAS12, JLab Hall A, COMPASS, EIC, ...
- GPD modeling / parameterizing is an essential ingredient for the interpretation of experimental data.
- Recent applications of the Dyson-Schwinger and Bethe-Salpeter framework to hadron structure studies.
- GPDs: Theoretical Framework
- ② GPDs in the Dyson-Schwinger and Bethe-Salpeter Approach
 - Results: Theoretical Constraints and Phenomenology
- 4

Extension: Implementing Positivity and Polynomiality

H. Moutarde | Light Cone 2015 | 3 / 25

GPDs: Theoretical Framework

▲□▶ ▲@▶ ▲글▶ ▲글▶ 글

Pion Generalized Parton Distribution. Definition and symmetry relations.

Sketching the pion GPD

 $\frac{1}{2}\int \frac{\mathrm{d}z^{-}}{2\pi}$

with t =

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Chocks Form factor Pion PDF

Extension

Overlap representation 2-body system

Conclusions

$$H_{\pi}^{q}(x,\xi,t) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+}q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}}$$
with $t = \Delta^{2}$ and $\xi = -\Delta^{+}/(2P^{+})$.

References

Müller *et al.*, Fortschr. Phys. **42**, 101 (1994)
Ji, Phys. Rev. Lett. **78**, 610 (1997)
Radyushkin, Phys. Lett. **B380**, 417 (1996)

From isospin symmetry, all the information about pion GPD is encoded in $H^{u}_{\pi^+}$ and $H^{d}_{\pi^+}$. Further constraint from charge conjugation: $H^{u}_{\pi^{+}}(x,\xi,t) = -H^{d}_{\pi^{+}}(-x,\xi,t).$

> H. Moutarde | Light Cone 2015 | 5 / 25

Properties. Generalization of form factors and Parton Distribution Functions.

Sketching the pion GPD

PDF forward limit

$$H^q(x,0,0) = q(x)$$

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor

Pion PDF

Extension

Overlap representation 2-body system

•		< ₹ >	≣ જ)વ
H. Moutarde	Light Cone 2015	6 /	25

Generalization of form factors and Parton Distribution Functions.

PDF forward limit

Form factor sum rule

$$\int_{-1}^{+1} dx \, H^q(x,\xi,t) = F_1^q(t)$$

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

 < □ > < ⊡ > < ⊡ > < Ξ > < Ξ > < Ξ < </td>
 >

 H. Moutarde
 Light Cone 2015
 | 6 / 25

CEA

Saclay

Generalization of form factors and Parton Distribution Functions.

Sketching the pion GPD

- PDF forward limit
- Form factor sum rule
- Polynomiality

Introduction Theoretical framework

```
Definition
```

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

 $\int_{-1}^{+1} dx \, x^n H^q(x,\xi,t) = \text{polynomial in } \xi$

< □ ▷ < □ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ Ξ < ♡ H. Moutarde | Light Cone 2015 | 6 / 25

Generalization of form factors and Parton Distribution Functions.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

PDF forward limit

- Form factor sum rule
- Polynomiality
- Positivity

$$H^{q}(x,\xi,t) \leq \sqrt{q\left(rac{x+\xi}{1+\xi}
ight)q\left(rac{x-\xi}{1-\xi}
ight)}$$

 < □ > < ⊡ > < Ξ > < Ξ > < Ξ > Ξ

 H. Moutarde
 Light Cone 2015
 6 / 25

Generalization of form factors and Parton Distribution Functions.

Sketching the pion GPD

- Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor

Pion PDF

Extension

Overlap representation 2-body system

- PDF forward limit
- Form factor sum rule
- Polynomiality
- Positivity
- H^q is an **even function** of ξ from time-reversal invariance.

Generalization of form factors and Parton Distribution Functions.

Sketching the pion GPD

- PDF forward limit
- Form factor sum rule
- Polynomiality
- Positivity
- H^q is an **even function** of ξ from time-reversal invariance.
- H^q is **real** from hermiticity and time-reversal invariance.

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Chocks

Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

4 D K 4 B K 4 B K 4 H. Moutarde Light Cone 2015 6/25

Generalization of form factors and Parton Distribution Functions.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

PDF forward limit

- Form factor sum rule
- Polynomiality
- Positivity
- H^q is an **even function** of ξ from time-reversal invariance.
- *H^q* is **real** from hermiticity and time-reversal invariance.

• H^q has support $x \in [-1, +1]$.

Generalization of form factors and Parton Distribution Functions.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor Pion PDF

Extension

Overlap representation 2-body system

Conclusions

PDF forward limit

- Form factor sum rule
- Polynomiality
- Positivity
- H^q is an **even function** of ξ from time-reversal invariance.
- *H^q* is **real** from hermiticity and time-reversal invariance.
 - H^q has support $x \in [-1, +1]$.
 - Soft pion theorem (pion target)

$$H^{q}(x,\xi=1,t=0) = \frac{1}{2}\phi_{\pi}^{q}\left(\frac{1+x}{2}\right)$$

 4 □ ▷ 4 ⊡ ▷ 4 Ξ ▷ 4 Ξ ▷ Ξ
 4

 H. Moutarde
 Light Cone 2015
 6 / 25

Generalization of form factors and Parton Distribution Functions.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks Form factor Pion PDF

Extension

Overlap representation 2-body system

Conclusions

- PDF forward limit
- Form factor sum rule
- Polynomiality
- Positivity
- H^q is an **even function** of ξ from time-reversal invariance.
- *H^q* is **real** from hermiticity and time-reversal invariance.
- H^q has support $x \in [-1, +1]$.
- **Soft pion theorem** (pion target)

Numerous theoretical constraints on GPDs.

- There is no known GPD parameterization relying only on first principles.
- Modeling becomes a key issue.

Double Distributions. Natural solution of the polynomiality problem.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

- A function satisfying a polynomiality property is the Radon transform of another function.
- Representation of GPD in terms of **Double Distributions**:

$$H^{q}(x,\xi,t) = \int_{\Omega} \mathrm{d}\beta \mathrm{d}\alpha \,\delta(x-\beta-\alpha\xi) \big(F^{q}(\beta,\alpha,t) + \xi G^{q}(\beta,\alpha,t)\big)$$

Müller *et al.*, Fortschr. Phys. **42**, 101 (1994) Radyushkin, Phys. Rev. **D59**, 014030 (1999) Radysuhkin, Phys. Lett. **B449**, 81 (1999)

- Support property: $x \in [-1, +1]$.
- Discrete symmetries: F^q is α -even and G^q is α -odd.

 < □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ >

 H. Moutarde
 | Light Cone 2015
 | 7 / 25

Double Distributions. Identifying Double Distributions from GPD Mellin moments.

Sketching the pion GPD

Introduction

 Define Double Distributions F^q and G^q as matrix elements of twist-2 quark operators:

Theoretical framework Definition Double Distributions
$$\left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0) \gamma^{\{\mu} i \stackrel{\leftrightarrow}{\mathbf{D}}{}^{\mu_1} \dots i \stackrel{\leftrightarrow}{\mathbf{D}}{}^{\mu_m\}} q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \sum_{k=0}^m \binom{m}{k}$$

GPD modeling Diagrams $\left[F_{mk}^q(t) 2P^{\{\mu} - G_{mk}^q(t) \Delta^{\{\mu\}} \right] P^{\mu_1} \dots P^{\mu_{m-k}} \left(-\frac{\Delta}{2} \right)^{\mu_{m-k+1}} \dots \left(-\frac{\Delta}{2} \right)^{\mu_m}$

Results

- Checks Form factor
- Pion PDF

Extension

Overlap representation 2-body system

Conclusions

with

$$\begin{split} F^{q}_{mk} &= \int_{\Omega} \mathrm{d}\beta \mathrm{d}\alpha \, \alpha^{k} \beta^{m-k} F^{q}(\beta, \alpha) \\ G^{q}_{mk} &= \int_{\Omega} \mathrm{d}\beta \mathrm{d}\alpha \, \alpha^{k} \beta^{m-k} G^{q}(\beta, \alpha) \end{split}$$

< □ > < ⑦ > < ≥ > < ≥ > ≥
 H. Moutarde | Light Cone 2015 | 8 / 25

GPDs in the Dyson-Schwinger and Bethe-Salpeter Approach

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

DE LA RECHERCHE À L'INDUST

GPDs in the rainbow ladder approximation. Evaluation of triangle diagrams.

Sketching the pion GPD

$$\langle x^m \rangle^q = \frac{1}{2(P^+)^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^+ (i\overleftrightarrow{D}^+)^m q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Introduction

Theoretical framework

- Definition
- Double Distributions

GPD modeling

Diagrams

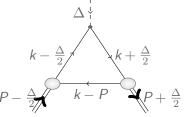
Preserving symmetries

Algebraic model

Results

Checks

Form factor


Pion PDF

Extension

Overlap representation

2-body system

DE LA RECHERCHE À L'INDUST

GPDs in the rainbow ladder approximation. Evaluation of triangle diagrams.

Sketching the pion GPD

$$\langle x^{m} \rangle^{q} = \frac{1}{2(P^{+})^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^{+} (i\overleftrightarrow{D}^{+})^{m} q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

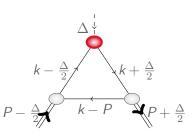
Diagrams

Preserving symmetries

Algebraic model

Results

Checks


Form factor

Pion PDF

Extension

Overlap representation

2-body system

- Compute **Mellin moments** of the pion GPD *H*.
- Triangle diagram approx.

OF LA RECARRENT À L'INDUSTR

GPDs in the rainbow ladder approximation. Evaluation of triangle diagrams.

Sketching the pion GPD

$$\langle x^m \rangle^q = \frac{1}{2(P^+)^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^+ (i\overleftrightarrow{D}^+)^m q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Introduction

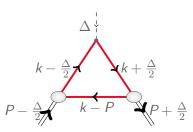
Theoretical framework

- Definition
- Double Distributions

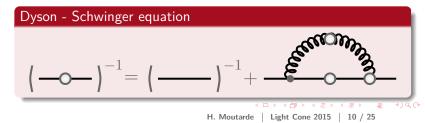
GPD modeling

Diagrams

Preserving symmetries


Algebraic model

Results


Checks Form factor Pion PDF

Extension

Overlap representation 2-body system

- Compute **Mellin moments** of the pion GPD *H*.
- Triangle diagram approx.
- Resum infinitely many contributions.

OF LA RECARCAE À L'INDUSTI

GPDs in the rainbow ladder approximation. Evaluation of triangle diagrams.

Sketching the pion GPD

$$\langle x^m \rangle^q = \frac{1}{2(P^+)^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^+ (i\overleftrightarrow{D}^+)^m q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Introduction

Theoretical framework

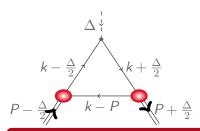
- Definition
- Double Distributions

GPD modeling

Diagrams

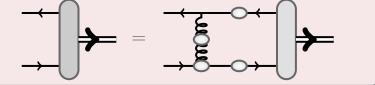
Preserving symmetries

Algebraic model


Results

Checks Form factor Pion PDF

Extension


Overlap representation 2-body system

Conclusions

- Compute **Mellin moments** of the pion GPD *H*.
- Triangle diagram approx.
- Resum infinitely many contributions.

Bethe - Salpeter equation

H. Moutarde | Light Cone 2015 | 10 / 25

OF LA RECARRENT À L'INDUSTR

GPDs in the rainbow ladder approximation. Evaluation of triangle diagrams.

Sketching the pion GPD

$$\langle x^m \rangle^q = \frac{1}{2(P^+)^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^+ (i\overleftrightarrow{D}^+)^m q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Introduction

Theoretical framework

- Definition
- Double Distributions

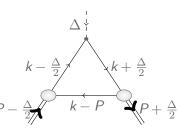
GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results


Checks

Form factor Pion PDF

Extension

Overlap representation 2-body system

Conclusions

- Compute **Mellin moments** of the pion GPD *H*.
- Triangle diagram approx.
- Resum infinitely many contributions.
- **Nonperturbative** modeling.

• Most GPD properties **satisfied by construction**.

 < □ > < □ > < □ > < ≥ > < ≥ > < ≥ > ≥

 H. Moutarde
 Light Cone 2015
 10 / 25

OF LA RECARCAE À L'INDUSTI

GPDs in the rainbow ladder approximation. Evaluation of triangle diagrams.

Sketching the pion GPD

$$\langle x^m \rangle^q = \frac{1}{2(P^+)^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^+ (i\overleftrightarrow{D}^+)^m q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Introduction

Theoretical framework

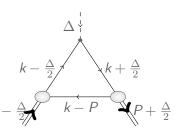
- Definition
- Double Distributions

GPD modeling

Diagrams

- Preserving symmetries
- Algebraic model

Results


Checks

Form factor Pion PDF

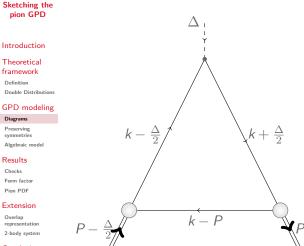
Extension

Overlap representation 2-body system

Conclusions

- Compute **Mellin moments** of the pion GPD *H*.
- Triangle diagram approx.
- Resum infinitely many contributions.
- Nonperturbative modeling.

A (10) × (10) × (10)

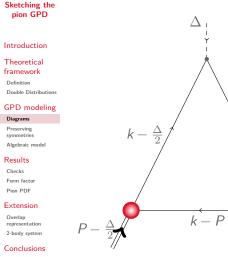

- Most GPD properties satisfied by construction.
- Also compute crossed triangle diagram.

Mezrag *et al.*, arXiv:1406.7425 [hep-ph] and Phys. Lett. **B741**, 190 (2015)

H. Moutarde | Light Cone 2015 | 10 / 25

GPDs in the rainbow ladder approximation. Physical content.

Conclusions


< □ ▷ < □ ▷ < □ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ < Ξ ○
 H. Moutarde | Light Cone 2015 | 11 / 25

 $\frac{\Delta}{2}$

GPDs in the rainbow ladder approximation. Physical content.

 Bethe-Salpeter vertex.

< □ > < ⊕ > < ≣ > < ≣ > Ξ

 H. Moutarde | Light Cone 2015 | 11 / 25

 $\frac{\Delta}{2}$

Sketching the

pion GPD

GPDs in the rainbow ladder approximation. Physical content.

 Bethe-Salpeter vertex.

Introduction Theoretical

framework

Definition

Double Distributions

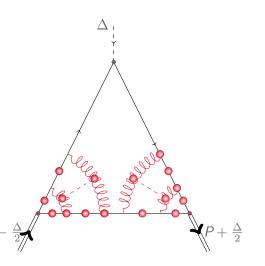
GPD modeling

Diagrams

Preserving symmetries

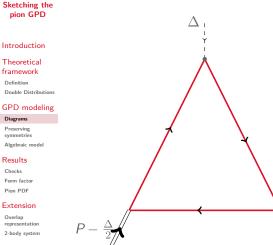
Algebraic model

Results


Checks

Form factor

Pion PDF


Extension

Overlap representation 2-body system

GPDs in the rainbow ladder approximation. Physical content.

- Bethe-Salpeter vertex.
- Dressed quark propagator.

Conclusions

< □ > < ⊕ > < ≣ > < ≣ > Ξ

 H. Moutarde | Light Cone 2015 | 11 / 25

 $\frac{\Delta}{2}$

Sketching the

pion GPD

GPDs in the rainbow ladder approximation. Physical content.

- Bethe-Salpeter vertex.
 - Dressed quark propagator.

Introduction

Theoretical framework

Definition

Double Distributions

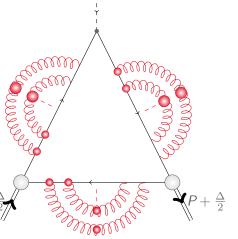
GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results


Checks Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

H. Moutarde | Light Cone 2015 | 11 / 25

CCORRECT CONTRACTOR

Sketching the

pion GPD

Introduction

Theoretical

framework Definition

> Preserving symmetries

Algebraic model Results Checks Form factor Pion PDF Extension Overlap

Double Distributions

GPD modeling

GPDs in the rainbow ladder approximation. Physical content.

- Bethe-Salpeter vertex.
 - Dressed quark propagator.
 - Much more than tree level perturbative diagram!

representation 2-body system Conclusions

$\frac{\Delta}{2}$

H. Moutarde | Light Cone 2015 | 11 / 25

< (17) × <

GPDs in the rainbow ladder approximation. Physical content.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

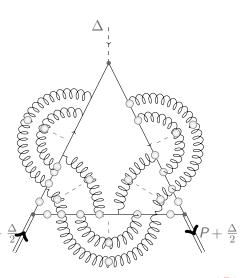
GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results


Checks

Form factor Pion PDF

Extension

Overlap representation 2-body system

Conclusions

- Bethe-Salpeter vertex.
- Dressed quark propagator.
- Much more than tree level perturbative diagram!
- Enable description of non perturbative phenomena.

 < □ > < ⊡ > < ⊒ > < ⊒ > < ⊒ > < Ξ</td>

 H. Moutarde
 Light Cone 2015
 11 / 25

Sketching the pion GPD

Polynomiality from Poincaré covariance.

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor

Pion PDF

Extension

Overlap representation

2-body system

Conclusions

 < □ > < ⊡ > < ⊡ > < ⊇ > < ⊇ </td>
 > <</td>
 ⊇

 > <</td>

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

Polynomiality from Poincaré covariance. Soft pion theorem from symmetry-preserving truncation of Bethe-Salpeter and gap equations. Mezrag *et al.*, Phys. Lett. **B741**, 190 (2015)

< □ > < ⊡ > < ⊡ > < ⊇ > < ⊇ </td> > <</td> ⊇ > <</td>

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

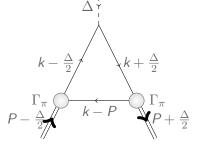
Algebraic model

Results

Checks

Form factor

Pion PDF


Extension

Overlap representation 2-body system

Conclusions

Polynomiality from Poincaré covariance. Soft pion theorem from symmetry-preserving truncation of Bethe-Salpeter and gap equations. Mezrag *et al.*, Phys. Lett. **B741**, 190 (2015)

Mellin moments.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

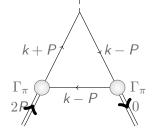
Algebraic model

Results

Checks

Form factor

Pion PDF


Extension

Overlap representation 2-body system

Conclusions

Polynomiality from Poincaré covariance. **Soft pion theorem** from **symmetry-preserving** truncation of Bethe-Salpeter and gap equations. Mezrag *et al.*, Phys. Lett. **B741**, 190 (2015)

- Mellin moments.
- Soft pion kinematics.

-2P

Symmetry-preserving truncation. Most of the GPD properties are obtained *a priori*.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor Pion PDF

Extension

Overlap representation 2-body system

Conclusions

Polynomiality from Poincaré covariance. **Soft pion theorem** from **symmetry-preserving** truncation of Bethe-Salpeter and gap equations. Mezrag *et al.*, Phys. Lett. **B741**, 190 (2015)

- Mellin moments.
- Soft pion kinematics.
- Axial and axial vector vertices Γ₅, Γ^μ₅ in chiral limit.

Symmetry-preserving truncation. Most of the GPD properties are obtained *a priori*.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

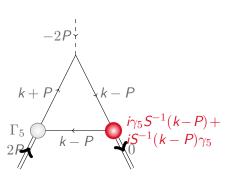
Preserving symmetries

Algebraic model

Results

Checks

Form factor


Pion PDF

Extension

Overlap representation 2-body system

Conclusions

Polynomiality from Poincaré covariance. **Soft pion theorem** from **symmetry-preserving** truncation of Bethe-Salpeter and gap equations. Mezrag *et al.*, Phys. Lett. **B741**, 190 (2015)

- Mellin moments.
- Soft pion kinematics.
- Axial and axial vector vertices Γ₅, Γ₅^μ in chiral limit.
- Axial-vector Ward identity.

Symmetry-preserving truncation. Most of the GPD properties are obtained *a priori*.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

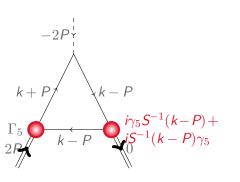
Preserving symmetries

Algebraic model

Results

Checks

Form factor Pion PDF


_

Extension

Overlap representation 2-body system

Conclusions

Polynomiality from Poincaré covariance. **Soft pion theorem** from **symmetry-preserving** truncation of Bethe-Salpeter and gap equations. Mezrag *et al.*, Phys. Lett. **B741**, 190 (2015)

- Mellin moments.
- Soft pion kinematics.
- Axial and axial vector vertices Γ₅, Γ₅^μ in chiral limit.
- Axial-vector Ward identity.
- Recover pion DA
 Mellin moments.

H. Moutarde | Light Cone 2015 | 12 / 25

Interaction strength and phenomenology. Constraints from the lattice and from spectroscopy.

RL

DB

DSE

2

25

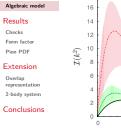
15

 k^2 [GeV²]

Sketching the pion GPD

Introduction

Theoretical framework


Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

0.5

- Gap equation kernel depends on interaction strength function $\mathcal{I}(k^2)$.
- Current model of $\mathcal{I}(k^2)$ yields ground and excited-state hadron masses with a **10-15 % accuracy** compared to experimental data.

Roberts et al., Few Body Syst. 51, 1 (2011)

Good agreement with independent evaluation from lattice data + Dyson-Schwinger equations.

> Binosi *et al.*, Phys. Lett. **B742**, 183 (2015)

 < □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡</td>

 H. Moutarde
 Light Cone 2015
 13 / 25

Towards an algebraic model. Dealing with the solutions of the gap and Bethe-Salpeter equations.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

- Numerical resolution of gap and Bethe-Salpeter equations in Euclidean space.
- Analytic continuation to Minkowskian space required.
- **III-posed** problem in the sense of Hadamard.
- Parameterize solutions and fit to numerical solution:

Gap Complex-conjugate pole representation:

$$S(k) = \sum_{i=0}^{N} \left[\frac{z_i}{i \not k + m_i} + \frac{z_i^*}{i \not k + m_i^*} \right]$$

Bethe-Salpeter Nakanishi representation of amplitude \mathcal{F}_{π} :

$$\mathcal{F}_{\pi}(q^2, q \cdot P) = \int_{-1}^{+1} \mathrm{d}\alpha \, \int_{0}^{\infty} \mathrm{d}\lambda \frac{\rho(\alpha, \lambda)}{(q^2 + \alpha q \cdot P + \lambda^2)^n}$$

H. Moutarde | Light Cone 2015 | 14 / 25

Intermediate step before using numerical solutions of Dyson-Schwinger and Bethe-Salpeter equations.

Sketching the pion GPD Expressions for vertices and propagators:

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

$$\begin{split} S(p) &= \left[-i\gamma \cdot p + M \right] \Delta_M(p^2) \\ \Delta_M(s) &= \frac{1}{s + M^2} \\ \Gamma_\pi(k,p) &= i\gamma_5 \frac{M}{f_\pi} M^{2\nu} \int_{-1}^{+1} \mathrm{d}z \, \rho_\nu(z) \, \left[\Delta_M(k_{+z}^2) \right]^\nu \\ \rho_\nu(z) &= R_\nu (1 - z^2)^\nu \end{split}$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$. Chang *et al.*, Phys. Rev. Lett. **110**, 132001 (2013) Only two parameters:

< □ > < □ > < □ > < ≥ > < ≥ > ≥
 H. Moutarde | Light Cone 2015 | 15 / 25

Intermediate step before using numerical solutions of Dyson-Schwinger and Bethe-Salpeter equations.

Sketching the pion GPD Expressions for vertices and propagators:

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

 $S(p) = \left[-i\gamma \cdot p + \mathbf{M} \right] \Delta_{\mathbf{M}}(p^{2})$ $\Delta_{\mathbf{M}}(s) = \frac{1}{s + \mathbf{M}^{2}}$ $\Gamma_{\pi}(k, p) = i\gamma_{5} \frac{\mathbf{M}}{f_{\pi}} \mathbf{M}^{2\nu} \int_{-1}^{+1} dz \, \rho_{\nu}(z) \left[\Delta_{\mathbf{M}}(k_{+z}^{2}) \right]^{\nu}$ $\rho_{\nu}(z) = R_{\nu} (1 - z^{2})^{\nu}$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$. Chang *et al.*, Phys. Rev. Lett. **110**, 132001 (2013) Only two parameters:

Dimensionful parameter *M*.

イロト 不得下 イヨト イヨト 二日

Intermediate step before using numerical solutions of Dyson-Schwinger and Bethe-Salpeter equations.

Sketching the pion GPD Expressions for vertices and propagators:

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

$$\begin{split} S(p) &= \left[-i\gamma \cdot p + M \right] \Delta_M(p^2) \\ \Delta_M(s) &= \frac{1}{s + M^2} \\ \Gamma_\pi(k,p) &= i\gamma_5 \frac{M}{f_\pi} M^{2\nu} \int_{-1}^{+1} \mathrm{d}z \, \rho_\nu(z) \, \left[\Delta_M(k_{+z}^2) \right]^\nu \\ \rho_\nu(z) &= R_\nu (1 - z^2)^\nu \end{split}$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$. Chang *et al.*, Phys. Rev. Lett. **110**, 132001 (2013) Only two parameters:

- Dimensionful parameter M.
- Dimensionless parameter ν

H. Moutarde Light Cone 2015 | 15 / 25

イロト 不得 トイヨト イヨト 二日

Intermediate step before using numerical solutions of Dyson-Schwinger and Bethe-Salpeter equations.

Sketching the pion GPD Expressions for vertices and propagators:

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks Form factor

Pion PDF

Extension

Overlap representation 2-body system

Conclusions

$$\begin{split} S(p) &= \left[-i\gamma \cdot p + M \right] \Delta_M(p^2) \\ \Delta_M(s) &= \frac{1}{s + M^2} \\ \Gamma_\pi(k,p) &= i\gamma_5 \frac{M}{f_\pi} M^{2\nu} \int_{-1}^{+1} \mathrm{d}z \, \rho_\nu(z) \, \left[\Delta_M(k_{+z}^2) \right]^\nu \\ \rho_\nu(z) &= R_\nu (1 - z^2)^\nu \end{split}$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1 - z)/2$. Chang *et al.*, Phys. Rev. Lett. **110**, 132001 (2013) Only two parameters:

- Dimensionful parameter *M*.
- Dimensionless parameter v. Fixed to 1 to recover asymptotic pion DA.

H. Moutarde Light Cone 2015 | 15 / 25

イロン 不得 とくきとくまとう き

Results: Theoretical Constraints and Phenomenology

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Sketching the pion GPD

Introduction Theoretical framework Definition

Diagrams Preserving symmetries Algebraic model Results Checks Form factor Pion PDF Extension Overlap representation 2-body system Conclusions Analytic expression in the DGLAP region.

$$H_{x\geq\xi}^{u}(x,\xi,0) = \frac{48}{5} \left\{ \frac{3\left(-2(x-1)^{4}\left(2x^{2}-5\xi^{2}+3\right)\log(1-x)\right)}{20\left(\xi^{2}-1\right)^{3}} \right\}$$
Theoretical framework
Definition
Deale Distributions
GPD modeling
Diagrams
Preserving symmetries
Agebraic model
H
$$\frac{3\left(x^{3}(x(2(x-4)x+15)-30)-15(2x(x+5)+5)\xi^{4}\right)\log\left(x^{2}-\xi^{2}\right)}{20\left(\xi^{2}-1\right)^{3}} + \frac{3\left(x^{3}(x(2(x-4)x+15)-30)-15(2x(x+5)+5)\xi^{4}\right)\log\left(x^{2}-\xi^{2}\right)}{20\left(\xi^{2}-1\right)^{3}} + \frac{3\left(-5x(x(x(x+2)+36)+18)\xi^{2}-15\xi^{6}\right)\log\left(x^{2}-\xi^{2}\right)}{20\left(\xi^{2}-1\right)^{3}} + \frac{3\left(2(x-1)\left((23x+58)\xi^{4}+(x(x(x+67)+112)+6)\xi^{2}+x(x((5-2x)x+15)+3)\xi^{2}-15\xi^{6}\right)\log\left(1-\xi^{2}\right)\right)}{20\left(\xi^{2}-1\right)^{3}} + \frac{3\left(\left(15(2x(x+5)+5)\xi^{4}+10x(3x(x+5)+11)\xi^{2}\right)\log\left(1-\xi^{2}\right)\right)}{20\left(\xi^{2}-1\right)^{3}} + \frac{3\left(2x(5x(x+2)-6)+15\xi^{6}-5\xi^{2}+3\right)\log\left(1-\xi^{2}\right)\right)}{20\left(\xi^{2}-1\right)^{3}} \right\}$$

• • • • • • • • • • • • • - E - N H. Moutarde | Light Cone 2015 17 / 25

Sketching the pion GPD	 Analytic expression in the DGLAP region. Similar expression in the ERBL region.
Introduction	
Theoretical framework Definition Double Distributions	
GPD modeling	
Diagrams	
Preserving symmetries	
Algebraic model	
Results	
Checks	
Form factor	
Pion PDF	
Extension	
Overlap	

representation 2-body system

Conclusions

Sketching the pion GPD

- Analytic expression in the DGLAP region.
- Similar expression in the ERBL region.
- **Explicit check** of **support property** and **polynomiality** with correct powers of *ξ*.

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor Pion PDF

Extension

Overlap representation

2-body system

Conclusions

 < □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > <</td>
 > <</td>

 H. Moutarde
 Light Cone 2015
 17 / 25

Analytic expression in the DGLAP region. Sketching the pion GPD Similar expression in the ERBL region. Introduction Theoretical with correct powers of ξ . framework Also direct verification using Mellin moments of H. Definition Double Distributions GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

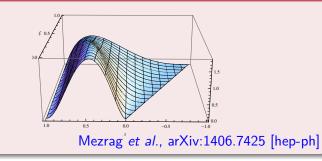
Form factor Pion PDF

Extension

Overlap representation 2-body system

Conclusions

Explicit check of **support property** and **polynomiality**



Sketching the pion GPD

- Analytic expression in the DGLAP region.
 - Similar expression in the ERBL region.
- **Explicit check** of **support property** and **polynomiality** with correct powers of *ξ*.
 - Also direct verification using Mellin moments of *H*.

Valence $H^u(x,\xi,t)$ as a function of x and ξ at vanishing t.

H. Moutarde | Light Cone 2015 | 17 / 25

Introduction

Theoretical framework

Definition Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Checks

Form factor Pion PDF

Extension

Overlap representation 2-body system

Conclusions

Pion form factor.

Determination of the model dimensionful parameter M.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

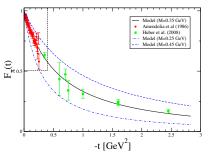
Checks

Form factor

Pion PDF

Extension

Overlap representation


2-body system

Conclusions

Pion form factor obtained from isovector GPD:

$$\int_{-1}^{+1} \mathrm{d}x \, H^{l=1}(x,\xi,t) = 2F_{\pi}(t)$$

Single dimensionful parameter $M \simeq 350$ MeV.

Mezrag *et al.*, arXiv:1406.7425 [hep-ph]

H. Moutarde | Light Cone 2015 | 18 / 25

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Pion form factor.

Determination of the model dimensionful parameter M.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

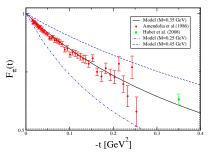
Results

Checks

Form factor

Pion PDF

Extension


Overlap representation

2-body system

Conclusions

$$\int_{-1}^{+1} \mathrm{d}x \, H^{l=1}(x,\xi,t) = 2F_{\pi}(t)$$

• Single dimensionful parameter $M \simeq 350$ MeV.

Mezrag *et al.*, arXiv:1406.7425 [hep-ph]

H. Moutarde | Light Cone 2015 | 18 / 25

Pion form factor.

Determination of the model dimensionful parameter M.

Sketching the pion GPD

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

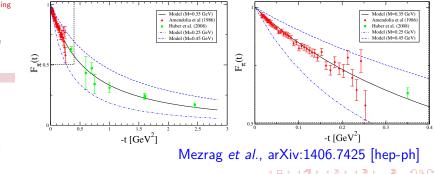
Diagrams

Preserving symmetries

Algebraic model

Results

Checks Form factor


Pion PDF

Extension

Overlap representation 2-body system Pion form factor obtained from isovector GPD:

$$\int_{-1}^{+1} \mathrm{d}x \, H^{l=1}(x,\xi,t) = 2F_{\pi}(t)$$

• Single dimensionful parameter $M \simeq 350$ MeV.

H. Moutarde | Light Cone 2015 | 18 / 25

Pion Parton Distribution Function. Determination of the model initial scale.

Sketching the pion GPD Pion PDF obtained from forward limit of GPD:

 $q(x) = H^q(x, 0, 0)$

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

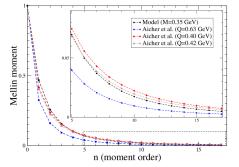
Preserving symmetries

Algebraic model

Results

Checks

Form factor


Pion PDF

Extension

Overlap representation 2-body system

Conclusions

 Use LO DGLAP equation and compare to PDF extraction. Aicher *et al.*, Phys. Rev. Lett. **105**, 252003 (2010)

Mezrag et al., arXiv:1406.7425 [hep-ph]

Extension: Implementing Positivity and Polynomiality

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Overlap representation. A first-principle connection with Light Front Wave Functions.

Sketching the pion GPD

Decompose an hadronic state $|H; P, \lambda\rangle$ in a Fock basis:

Introduction
$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x \mathrm{d}\mathbf{k}_{\perp}]_N \psi_N^{(\beta,\lambda)}(x_1, \mathbf{k}_{\perp 1}, \dots, x_N, \mathbf{k}_{\perp N}) |\beta, k_1, \dots, k_N\rangle$$

Theoretical framework

framew Definition

Introdu

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

Results

Chocks

Form factor

Pion PDF

Extension

Overlap representation

2-body system

Conclusions

Derive an expression for the pion GPD in the DGLAP region $\xi < x < 1$:

$$H^{q}(x,\xi,t) \propto \sum_{\beta,j} \int [d\bar{x} d\bar{\mathbf{k}}_{\perp}]_{N} \delta_{j,q} \delta(x-\bar{x}_{j}) \psi_{N}^{(\beta,\lambda)*}(\hat{x}',\hat{\mathbf{k}}_{\perp}') \psi_{N}^{(\beta,\lambda)}(\tilde{x},\tilde{\mathbf{k}}_{\perp})$$

with $\tilde{x}, \tilde{\mathbf{k}}_{\perp}$ (resp. $\hat{x}', \hat{\mathbf{k}}'_{\perp}$) generically denoting incoming (resp. outgoing) parton kinematics.

Diehl et al., Nucl. Phys. **B596**, 33 (2001)

Similar expression in the ERBL region $-\xi \le x \le \xi$, but with overlap of *N*- and (N+2)-body LFWF.

> H. Moutarde Light Cone 2015 21 / 25

Pion Parton Distribution Function. Algebraic model in the overlap representation.

Overlap — Triangle diagram

Sketching the pion GPD

Evaluate LFWF in algebraic model:
$$\psi(\textbf{x},\textbf{k}_{\perp}) \propto \frac{\textbf{x}(1-\textbf{x})}{[(\textbf{k}_{\perp}-\textbf{x}\textbf{P}_{\perp})^2+\textit{M}^2]^2}$$

Introduction

Theoretical framework

Definition

Double Distributions

GPD modeling

Diagrams

Preserving symmetries

Algebraic model

a(x)

1.5

1.0

Results

Checks Form factor

Pion PDF

Overlap representation 2-body system

$$\psi(x, \mathbf{k}_{\perp}) \propto \frac{\chi(1-\chi)}{[(\mathbf{k}_{\perp} - x\mathbf{P}_{\perp})^2 + \mathbf{E}_{\perp}]^2}$$

Expression for the GPD at $t = 0$:

$$H(x,\xi,0) \propto \frac{(1-x)^2(x^2-\xi^2)}{(1-\xi^2)^2}$$

Manifest 2-body symmetry.

• Expression for the PDF:

 $q(x) = 30x^2(1-x)^2$

• Off-forward case: in progress.

不同 とうきょうきょう

H. Moutarde | Light Cone 2015 | 22 / 25

Conclusions

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Conclusions and prospects. Symmetry-preserving GPD modeling.

Sketching the pion GPD

Introduction

Theoretical framework

Definition Double Distributions

GPD modeling

- Diagrams
- Preserving symmetries
- Algebraic model

Results

- Checks Form factor
- Pion PDF

Extension

- Overlap representation 2-body system
- Conclusions

- Computation of GPDs, DDs, PDFs, LFWFs and form factors in the nonperturbative framework of Dyson-Schwinger and Bethe-Salpeter equations.
- **Explicit check** of several theoretical constraints, including polynomiality, support property and soft pion theorem.
- Simple algebraic model exhibits most features of the numerical solutions of the Dyson-Schwinger and Bethe-Salpeter equations.
- Very good agreement with existing pion form factor and PDF data.
- In progress: a priori implementation of polynomiality and positivity.

Commissariat à l'énergie atomique et aux énergies alternatives DSM Centre de Saclay | 9119) Gif-sur-Yvette Cedex Irfu T, +330(19 60 67 38 | F, +330(1) 60 68 78 84 SPINI

Etablissement public à caractère industriel et commercial R.C.S. Paris B 775 685 01

▲□▶ ▲□▶ ▲ => ▲ => → <</p>