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Planck: a microwave telescope 

The satellite 

•  Launched and placed in L2 orbit in 2009. Full scan every 6 month. 

•  75 detectors covering 9 frequency channels, grouped as “LFI” (HEM transistors) 
and “HFI” (bolometers). 

•  Planck strengths: large and redundent sky coverage, number of channels & 

detectors, low detector noise (25 x better than WMAP). Resolution intermediate 

between WMAP (3 x better) and ACT, SPT. 
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PLANCK LFI HFI 

Center Freq (GHz) 30 44 70 100 143 217 353 545 857 

Angular resolution  (FWHM 
arcmin) 

33 24 14 10 7.1 5.0 5.0 5 5 

Sensitivity in I [µK.deg]  

[σpix Ωpix
1/2] 

2.7 2.6 2.6 1.0 0.6 1.0 2,9 

Sensitivity in Q or U [µK.deg] 
[σpix Ωpix

1/2] 
4.5 4.6 4.6 1.8 1.4 2.4 7.3 



operational timeline 



(nearly) raw data stream 



The sky seen by Planck 

(1 cm) 

(0.3 cm) 

(0.85 mm) (0.35 mm) 



the Planck CMB map 

‘SMICA’ CMB map (central 3% replaced w/ constrained realization) 



Planck: 3rd generation CMB satellite 

•  Planck meets or exceeds goals (‘blue book’) 
•  improves on WMAP by a factor of 3 in angular 

resolution and 25 in instantaneous sensitivity 



the Planck CMB power spectrum 

Planck (or Planck+WP) 



Planck spectrum vs ΛCDM model  

Planck Collaboration: Cosmological parameters

Planck+WP Planck+WP+highL Planck+lensing+WP+highL Planck+WP+highL+BAO

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . . 0.022032 0.02205 ± 0.00028 0.022069 0.02207 ± 0.00027 0.022199 0.02218 ± 0.00026 0.022161 0.02214 ± 0.00024

⌦ch2 . . . . . . . . . . 0.12038 0.1199 ± 0.0027 0.12025 0.1198 ± 0.0026 0.11847 0.1186 ± 0.0022 0.11889 0.1187 ± 0.0017

100✓MC . . . . . . . . 1.04119 1.04131 ± 0.00063 1.04130 1.04132 ± 0.00063 1.04146 1.04144 ± 0.00061 1.04148 1.04147 ± 0.00056

⌧ . . . . . . . . . . . . 0.0925 0.089+0.012
�0.014 0.0927 0.091+0.013

�0.014 0.0943 0.090+0.013
�0.014 0.0952 0.092 ± 0.013

ns . . . . . . . . . . . 0.9619 0.9603 ± 0.0073 0.9582 0.9585 ± 0.0070 0.9624 0.9614 ± 0.0063 0.9611 0.9608 ± 0.0054

ln(1010As) . . . . . . . 3.0980 3.089+0.024
�0.027 3.0959 3.090 ± 0.025 3.0947 3.087 ± 0.024 3.0973 3.091 ± 0.025

APS
100 . . . . . . . . . . 152 171 ± 60 209 212 ± 50 204 213 ± 50 204 212 ± 50

APS
143 . . . . . . . . . . 63.3 54 ± 10 72.6 73 ± 8 72.2 72 ± 8 71.8 72.4 ± 8.0

APS
217 . . . . . . . . . . 117.0 107+20

�10 59.5 59 ± 10 60.2 58 ± 10 59.4 59 ± 10

ACIB
143 . . . . . . . . . . 0.0 < 10.7 3.57 3.24 ± 0.83 3.25 3.24 ± 0.83 3.30 3.25 ± 0.83

ACIB
217 . . . . . . . . . . 27.2 29+6

�9 53.9 49.6 ± 5.0 52.3 50.0 ± 4.9 53.0 49.7 ± 5.0

AtSZ
143 . . . . . . . . . . 6.80 . . . 5.17 2.54+1.1

�1.9 4.64 2.51+1.2
�1.8 4.86 2.54+1.2

�1.8

rPS
143⇥217 . . . . . . . . 0.916 > 0.850 0.825 0.823+0.069

�0.077 0.814 0.825 ± 0.071 0.824 0.823 ± 0.070

rCIB
143⇥217 . . . . . . . . 0.406 0.42 ± 0.22 1.0000 > 0.930 1.0000 > 0.928 1.0000 > 0.930

�CIB . . . . . . . . . . 0.601 0.53+0.13
�0.12 0.674 0.638 ± 0.081 0.656 0.643 ± 0.080 0.667 0.639 ± 0.081

⇠tSZ⇥CIB . . . . . . . . 0.03 . . . 0.000 < 0.409 0.000 < 0.389 0.000 < 0.410

AkSZ . . . . . . . . . . 0.9 . . . 0.89 5.34+2.8
�1.9 1.14 4.74+2.6

�2.1 1.58 5.34+2.8
�2.0

⌦⇤ . . . . . . . . . . . 0.6817 0.685+0.018
�0.016 0.6830 0.685+0.017

�0.016 0.6939 0.693 ± 0.013 0.6914 0.692 ± 0.010

�8 . . . . . . . . . . . 0.8347 0.829 ± 0.012 0.8322 0.828 ± 0.012 0.8271 0.8233 ± 0.0097 0.8288 0.826 ± 0.012

zre . . . . . . . . . . . 11.37 11.1 ± 1.1 11.38 11.1 ± 1.1 11.42 11.1 ± 1.1 11.52 11.3 ± 1.1

H0 . . . . . . . . . . . 67.04 67.3 ± 1.2 67.15 67.3 ± 1.2 67.94 67.9 ± 1.0 67.77 67.80 ± 0.77

Age/Gyr . . . . . . . 13.8242 13.817 ± 0.048 13.8170 13.813 ± 0.047 13.7914 13.794 ± 0.044 13.7965 13.798 ± 0.037

100✓⇤ . . . . . . . . . 1.04136 1.04147 ± 0.00062 1.04146 1.04148 ± 0.00062 1.04161 1.04159 ± 0.00060 1.04163 1.04162 ± 0.00056

rdrag . . . . . . . . . . 147.36 147.49 ± 0.59 147.35 147.47 ± 0.59 147.68 147.67 ± 0.50 147.611 147.68 ± 0.45

Table 5. Best-fit values and 68% confidence limits for the base ⇤CDM model. Beam and calibration parameters, and addi-
tional nuisance parameters for “highL” data sets are not listed for brevity but may be found in the Explanatory Supplement
(Planck Collaboration ES 2013).

strongly degenerate with the Poisson point source ampli-
tude at 100 GHz. This degeneracy is broken when the high-
resolution CMB data are added to Planck.

The last two points are demonstrated clearly in Fig. 7, which
shows the residuals of the Planck spectra with respect to the
best-fit cosmology for the Planck+WP analysis compared to the
Planck+WP+highL fits. The addition of high-resolution CMB
data also strongly constrains the net contribution from the kSZ
and tSZ⇥CIB components (dotted lines), though these compo-
nents are degenerate with each other (and tend to cancel).

Although the foreground parameters for the Planck+WP fits
can di↵er substantially from those for Planck+WP+highL, the
total foreground spectra are rather insensitive to the addition of
the high-resolution CMB data. For example, for the 217 ⇥ 217
spectrum, the di↵erences in the total foreground solution are less
than 10 µK2 at ` = 2500. The net residuals after subtracting both
the foregrounds and CMB spectrum (shown in the lower panels
of each sub-plot in Fig. 7) are similarly insensitive to the addi-
tion of the high-resolution CMB data. The foreground model is
su�ciently complex that it has a high “absorptive capacity” to
any smoothly-varying frequency-dependent di↵erences between
spectra (including beam errors).

Table 6. Goodness-of-fit tests for the Planck spectra. The ��2 =
�2 � N` is the di↵erence from the mean assuming the model is
correct, and the last column expresses ��2 in units of the disper-
sion

p
2N`.

Spectrum `min `max �2 �2/N` ��2/
p

2N`

100 ⇥ 100 50 1200 1158 1.01 0.14
143 ⇥ 143 50 2000 1883 0.97 �1.09
217 ⇥ 217 500 2500 2079 1.04 1.23
143 ⇥ 217 500 2500 1930 0.96 �1.13

All 50 2500 2564 1.05 1.62

To quantify the consistency of the model fits shown in Fig. 7
for Planck we compute the �2 statistic

�2 =
X

``0
(Cdata
` �CCMB

` �Cfg
` )M�1

``0 (C
data
`0 �CCMB

`0 �Cfg
`0 ), (33)

for each of the spectra, where the sums extend over the mul-
tipole ranges `min and `max used in the likelihood, M``0 is
the covariance matrix for the spectrum Cdata

` (including cor-
rections for beam eigenmodes and calibrations), CCMB

` is the
best-fit primordial CMB spectrum and Cfg

` is the best-fit fore-
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red curve: 
best fit 6-parameter 
ΛCDM model 
 
goodness of fit: 
 
 
 
 
 
 
 
(no known model 
extension fits 
significantly better) 



extreme compression! 

1.  science samples: 530’632’594’653 
(991’929’524’565 for full mission), a 
few terabytes 

2. maps: ca 50 mega-pixels, compression 
10’000:1 

3.  power spectrum: ca 2500 values, 
compression 20’000:1 

4. model: 6 parameters, compression 
400:1 

total compression ca 1011:1 ! 

(nearly 107:1 from map) 
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The full CMB power spectrum 
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Implications and outlook 

1.  Parameter constraints from Planck 
2.  Beyond flat ΛCDM 

•  curvature 

•  dark energy 
3.  Looking into the fireball 

•  formation of the light 
elements 

•  neutrinos and Neff 

•  inflation 
4.  beyond Planck: BICEP2 

5.  outlook & conclusions 



The flat ΛCDM Universe Planck Collaboration: Cosmological parameters

Planck+WP Planck+WP+highL Planck+lensing+WP+highL Planck+WP+highL+BAO

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . . 0.022032 0.02205 ± 0.00028 0.022069 0.02207 ± 0.00027 0.022199 0.02218 ± 0.00026 0.022161 0.02214 ± 0.00024

⌦ch2 . . . . . . . . . . 0.12038 0.1199 ± 0.0027 0.12025 0.1198 ± 0.0026 0.11847 0.1186 ± 0.0022 0.11889 0.1187 ± 0.0017

100✓MC . . . . . . . . 1.04119 1.04131 ± 0.00063 1.04130 1.04132 ± 0.00063 1.04146 1.04144 ± 0.00061 1.04148 1.04147 ± 0.00056

⌧ . . . . . . . . . . . . 0.0925 0.089+0.012
�0.014 0.0927 0.091+0.013

�0.014 0.0943 0.090+0.013
�0.014 0.0952 0.092 ± 0.013

ns . . . . . . . . . . . 0.9619 0.9603 ± 0.0073 0.9582 0.9585 ± 0.0070 0.9624 0.9614 ± 0.0063 0.9611 0.9608 ± 0.0054

ln(1010As) . . . . . . . 3.0980 3.089+0.024
�0.027 3.0959 3.090 ± 0.025 3.0947 3.087 ± 0.024 3.0973 3.091 ± 0.025

APS
100 . . . . . . . . . . 152 171 ± 60 209 212 ± 50 204 213 ± 50 204 212 ± 50

APS
143 . . . . . . . . . . 63.3 54 ± 10 72.6 73 ± 8 72.2 72 ± 8 71.8 72.4 ± 8.0

APS
217 . . . . . . . . . . 117.0 107+20

�10 59.5 59 ± 10 60.2 58 ± 10 59.4 59 ± 10

ACIB
143 . . . . . . . . . . 0.0 < 10.7 3.57 3.24 ± 0.83 3.25 3.24 ± 0.83 3.30 3.25 ± 0.83

ACIB
217 . . . . . . . . . . 27.2 29+6

�9 53.9 49.6 ± 5.0 52.3 50.0 ± 4.9 53.0 49.7 ± 5.0

AtSZ
143 . . . . . . . . . . 6.80 . . . 5.17 2.54+1.1

�1.9 4.64 2.51+1.2
�1.8 4.86 2.54+1.2

�1.8

rPS
143⇥217 . . . . . . . . 0.916 > 0.850 0.825 0.823+0.069

�0.077 0.814 0.825 ± 0.071 0.824 0.823 ± 0.070

rCIB
143⇥217 . . . . . . . . 0.406 0.42 ± 0.22 1.0000 > 0.930 1.0000 > 0.928 1.0000 > 0.930

�CIB . . . . . . . . . . 0.601 0.53+0.13
�0.12 0.674 0.638 ± 0.081 0.656 0.643 ± 0.080 0.667 0.639 ± 0.081

⇠tSZ⇥CIB . . . . . . . . 0.03 . . . 0.000 < 0.409 0.000 < 0.389 0.000 < 0.410

AkSZ . . . . . . . . . . 0.9 . . . 0.89 5.34+2.8
�1.9 1.14 4.74+2.6

�2.1 1.58 5.34+2.8
�2.0

⌦⇤ . . . . . . . . . . . 0.6817 0.685+0.018
�0.016 0.6830 0.685+0.017

�0.016 0.6939 0.693 ± 0.013 0.6914 0.692 ± 0.010

�8 . . . . . . . . . . . 0.8347 0.829 ± 0.012 0.8322 0.828 ± 0.012 0.8271 0.8233 ± 0.0097 0.8288 0.826 ± 0.012

zre . . . . . . . . . . . 11.37 11.1 ± 1.1 11.38 11.1 ± 1.1 11.42 11.1 ± 1.1 11.52 11.3 ± 1.1

H0 . . . . . . . . . . . 67.04 67.3 ± 1.2 67.15 67.3 ± 1.2 67.94 67.9 ± 1.0 67.77 67.80 ± 0.77

Age/Gyr . . . . . . . 13.8242 13.817 ± 0.048 13.8170 13.813 ± 0.047 13.7914 13.794 ± 0.044 13.7965 13.798 ± 0.037

100✓⇤ . . . . . . . . . 1.04136 1.04147 ± 0.00062 1.04146 1.04148 ± 0.00062 1.04161 1.04159 ± 0.00060 1.04163 1.04162 ± 0.00056

rdrag . . . . . . . . . . 147.36 147.49 ± 0.59 147.35 147.47 ± 0.59 147.68 147.67 ± 0.50 147.611 147.68 ± 0.45

Table 5. Best-fit values and 68% confidence limits for the base ⇤CDM model. Beam and calibration parameters, and addi-
tional nuisance parameters for “highL” data sets are not listed for brevity but may be found in the Explanatory Supplement
(Planck Collaboration ES 2013).

strongly degenerate with the Poisson point source ampli-
tude at 100 GHz. This degeneracy is broken when the high-
resolution CMB data are added to Planck.

The last two points are demonstrated clearly in Fig. 7, which
shows the residuals of the Planck spectra with respect to the
best-fit cosmology for the Planck+WP analysis compared to the
Planck+WP+highL fits. The addition of high-resolution CMB
data also strongly constrains the net contribution from the kSZ
and tSZ⇥CIB components (dotted lines), though these compo-
nents are degenerate with each other (and tend to cancel).

Although the foreground parameters for the Planck+WP fits
can di↵er substantially from those for Planck+WP+highL, the
total foreground spectra are rather insensitive to the addition of
the high-resolution CMB data. For example, for the 217 ⇥ 217
spectrum, the di↵erences in the total foreground solution are less
than 10 µK2 at ` = 2500. The net residuals after subtracting both
the foregrounds and CMB spectrum (shown in the lower panels
of each sub-plot in Fig. 7) are similarly insensitive to the addi-
tion of the high-resolution CMB data. The foreground model is
su�ciently complex that it has a high “absorptive capacity” to
any smoothly-varying frequency-dependent di↵erences between
spectra (including beam errors).

Table 6. Goodness-of-fit tests for the Planck spectra. The ��2 =
�2 � N` is the di↵erence from the mean assuming the model is
correct, and the last column expresses ��2 in units of the disper-
sion

p
2N`.

Spectrum `min `max �2 �2/N` ��2/
p

2N`

100 ⇥ 100 50 1200 1158 1.01 0.14
143 ⇥ 143 50 2000 1883 0.97 �1.09
217 ⇥ 217 500 2500 2079 1.04 1.23
143 ⇥ 217 500 2500 1930 0.96 �1.13

All 50 2500 2564 1.05 1.62

To quantify the consistency of the model fits shown in Fig. 7
for Planck we compute the �2 statistic

�2 =
X

``0
(Cdata
` �CCMB

` �Cfg
` )M�1

``0 (C
data
`0 �CCMB

`0 �Cfg
`0 ), (33)

for each of the spectra, where the sums extend over the mul-
tipole ranges `min and `max used in the likelihood, M``0 is
the covariance matrix for the spectrum Cdata

` (including cor-
rections for beam eigenmodes and calibrations), CCMB

` is the
best-fit primordial CMB spectrum and Cfg

` is the best-fit fore-
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Planck Collaboration: Cosmological parameters

Planck+WP Planck+WP+highL Planck+lensing+WP+highL Planck+WP+highL+BAO

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . . 0.022032 0.02205 ± 0.00028 0.022069 0.02207 ± 0.00027 0.022199 0.02218 ± 0.00026 0.022161 0.02214 ± 0.00024

⌦ch2 . . . . . . . . . . 0.12038 0.1199 ± 0.0027 0.12025 0.1198 ± 0.0026 0.11847 0.1186 ± 0.0022 0.11889 0.1187 ± 0.0017

100✓MC . . . . . . . . 1.04119 1.04131 ± 0.00063 1.04130 1.04132 ± 0.00063 1.04146 1.04144 ± 0.00061 1.04148 1.04147 ± 0.00056

⌧ . . . . . . . . . . . . 0.0925 0.089+0.012
�0.014 0.0927 0.091+0.013

�0.014 0.0943 0.090+0.013
�0.014 0.0952 0.092 ± 0.013

ns . . . . . . . . . . . 0.9619 0.9603 ± 0.0073 0.9582 0.9585 ± 0.0070 0.9624 0.9614 ± 0.0063 0.9611 0.9608 ± 0.0054

ln(1010As) . . . . . . . 3.0980 3.089+0.024
�0.027 3.0959 3.090 ± 0.025 3.0947 3.087 ± 0.024 3.0973 3.091 ± 0.025

APS
100 . . . . . . . . . . 152 171 ± 60 209 212 ± 50 204 213 ± 50 204 212 ± 50

APS
143 . . . . . . . . . . 63.3 54 ± 10 72.6 73 ± 8 72.2 72 ± 8 71.8 72.4 ± 8.0

APS
217 . . . . . . . . . . 117.0 107+20

�10 59.5 59 ± 10 60.2 58 ± 10 59.4 59 ± 10

ACIB
143 . . . . . . . . . . 0.0 < 10.7 3.57 3.24 ± 0.83 3.25 3.24 ± 0.83 3.30 3.25 ± 0.83

ACIB
217 . . . . . . . . . . 27.2 29+6

�9 53.9 49.6 ± 5.0 52.3 50.0 ± 4.9 53.0 49.7 ± 5.0

AtSZ
143 . . . . . . . . . . 6.80 . . . 5.17 2.54+1.1

�1.9 4.64 2.51+1.2
�1.8 4.86 2.54+1.2

�1.8

rPS
143⇥217 . . . . . . . . 0.916 > 0.850 0.825 0.823+0.069

�0.077 0.814 0.825 ± 0.071 0.824 0.823 ± 0.070

rCIB
143⇥217 . . . . . . . . 0.406 0.42 ± 0.22 1.0000 > 0.930 1.0000 > 0.928 1.0000 > 0.930

�CIB . . . . . . . . . . 0.601 0.53+0.13
�0.12 0.674 0.638 ± 0.081 0.656 0.643 ± 0.080 0.667 0.639 ± 0.081

⇠tSZ⇥CIB . . . . . . . . 0.03 . . . 0.000 < 0.409 0.000 < 0.389 0.000 < 0.410

AkSZ . . . . . . . . . . 0.9 . . . 0.89 5.34+2.8
�1.9 1.14 4.74+2.6

�2.1 1.58 5.34+2.8
�2.0

⌦⇤ . . . . . . . . . . . 0.6817 0.685+0.018
�0.016 0.6830 0.685+0.017

�0.016 0.6939 0.693 ± 0.013 0.6914 0.692 ± 0.010

�8 . . . . . . . . . . . 0.8347 0.829 ± 0.012 0.8322 0.828 ± 0.012 0.8271 0.8233 ± 0.0097 0.8288 0.826 ± 0.012

zre . . . . . . . . . . . 11.37 11.1 ± 1.1 11.38 11.1 ± 1.1 11.42 11.1 ± 1.1 11.52 11.3 ± 1.1

H0 . . . . . . . . . . . 67.04 67.3 ± 1.2 67.15 67.3 ± 1.2 67.94 67.9 ± 1.0 67.77 67.80 ± 0.77

Age/Gyr . . . . . . . 13.8242 13.817 ± 0.048 13.8170 13.813 ± 0.047 13.7914 13.794 ± 0.044 13.7965 13.798 ± 0.037

100✓⇤ . . . . . . . . . 1.04136 1.04147 ± 0.00062 1.04146 1.04148 ± 0.00062 1.04161 1.04159 ± 0.00060 1.04163 1.04162 ± 0.00056

rdrag . . . . . . . . . . 147.36 147.49 ± 0.59 147.35 147.47 ± 0.59 147.68 147.67 ± 0.50 147.611 147.68 ± 0.45

Table 5. Best-fit values and 68% confidence limits for the base ⇤CDM model. Beam and calibration parameters, and addi-
tional nuisance parameters for “highL” data sets are not listed for brevity but may be found in the Explanatory Supplement
(Planck Collaboration ES 2013).

strongly degenerate with the Poisson point source ampli-
tude at 100 GHz. This degeneracy is broken when the high-
resolution CMB data are added to Planck.

The last two points are demonstrated clearly in Fig. 7, which
shows the residuals of the Planck spectra with respect to the
best-fit cosmology for the Planck+WP analysis compared to the
Planck+WP+highL fits. The addition of high-resolution CMB
data also strongly constrains the net contribution from the kSZ
and tSZ⇥CIB components (dotted lines), though these compo-
nents are degenerate with each other (and tend to cancel).

Although the foreground parameters for the Planck+WP fits
can di↵er substantially from those for Planck+WP+highL, the
total foreground spectra are rather insensitive to the addition of
the high-resolution CMB data. For example, for the 217 ⇥ 217
spectrum, the di↵erences in the total foreground solution are less
than 10 µK2 at ` = 2500. The net residuals after subtracting both
the foregrounds and CMB spectrum (shown in the lower panels
of each sub-plot in Fig. 7) are similarly insensitive to the addi-
tion of the high-resolution CMB data. The foreground model is
su�ciently complex that it has a high “absorptive capacity” to
any smoothly-varying frequency-dependent di↵erences between
spectra (including beam errors).

Table 6. Goodness-of-fit tests for the Planck spectra. The ��2 =
�2 � N` is the di↵erence from the mean assuming the model is
correct, and the last column expresses ��2 in units of the disper-
sion

p
2N`.

Spectrum `min `max �2 �2/N` ��2/
p

2N`

100 ⇥ 100 50 1200 1158 1.01 0.14
143 ⇥ 143 50 2000 1883 0.97 �1.09
217 ⇥ 217 500 2500 2079 1.04 1.23
143 ⇥ 217 500 2500 1930 0.96 �1.13

All 50 2500 2564 1.05 1.62

To quantify the consistency of the model fits shown in Fig. 7
for Planck we compute the �2 statistic

�2 =
X

``0
(Cdata
` �CCMB

` �Cfg
` )M�1

``0 (C
data
`0 �CCMB

`0 �Cfg
`0 ), (33)

for each of the spectra, where the sums extend over the mul-
tipole ranges `min and `max used in the likelihood, M``0 is
the covariance matrix for the spectrum Cdata

` (including cor-
rections for beam eigenmodes and calibrations), CCMB

` is the
best-fit primordial CMB spectrum and Cfg

` is the best-fit fore-
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5.4σ detection (see later) 

looking back to the first few 
minutes, 1.3% precision 
0.06% precision on angular 
scale 

(TCMB = 2.7255±0.0006K [COBE]) 

(2.5%) 

(2.3%) 



weighing mass with light 

Gravity deflects light, 
including the CMB photons. 
This modifies the CMB pattern 
subtly: we see the matter in 
the universe in front of the 
CMB backlight! 

(Nearly) all the 
structure in the 

universe! 

(26σ worth of signal, so we see 
mostly noise, but 10-20σ correlation 
with LSS and 42σ with CIB) 



Is space really flat? 

0.0 0.2 0.4 0.6 0.8 1.0

⌦m

0.0

0.2

0.4

0.6

0.8

1.0

⌦
⇤

40

45

50

55

60

65

70

75

H
0

0.24 0.32 0.40 0.48

⌦m

0.56

0.64

0.72

0.80

⌦
⇤

+lensing

+lensing+BAO

40

45

50

55

60

65

70

75

H
0

The 0.06% precision measurement 
of the sound horizon scale at last 
scattering gives us a known ruler! 
 
A single measurement only gives one 
constraint à geometric degeneracy 
 
 
 
The models in the tail have a higher 
lensing signal, and so CMB lensing 
breaks partially the geometric 
degeneracy, allowing us to rule out 
Λ=0 and constrain Ωk at the percent-
level with CMB data alone. 
 
(first done by ACT/SPT in 2011/12) 
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Planck is not the perfect DE 
experiment (that’s why are 
working on Euclid) – but all DE 
experiments need Planck J 



the first three minutes 
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Looking into the fireball, back to the first three minutes 
•  at high energies the nuclei of heavier elements are kicked apart 

by the high energy photons, they can only form at ~ 0.1 MeV 
•  final abundance depends strongly on #baryons/#photons 
•  CMB measures both, so can compare to direct observations! 
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Neff (or ‘dark radiation’) 
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neutrinos 
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(AL: lensing impact on 
power spectrum) 
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probing the first 10-xx seconds… 

Generic predictions of inflation: 
•  flat space 
•  nearly (but not quite) scale invariant perturbations (à ns) 
•  nearly Gaussian perturbations on all scales 
•  Gravitational waves (tensor perturbations à r parameter) 

✔ 
✔ 

? 
✔ 

lots of models ruled  
out or disfavoured! 

& Higgs inflation 



probing inflation more deeply 

exact shape of 
power spectrum 

non-Gaussian 
perturbations 

primordial 
gravitational 

waves 

phase transition 
remnants 

(cosmic strings) 

ns≠1 
no running 
no features 

no detection 
r < 0.11 

V*<(2x1016 GeV)4 

no detection 
f10 < 0.01 
(NG strings) 

Gµ<1.3x10-7 
(NG strings) (probes vacuum 

structure) 

(probes interactions) 

no detection 
fNL[local]= 
2.7±5.8 

Constraints start to cut deeply into inflation parameter space! 

(probes 
energy scale) 



‘standard’ bispec amplitudes 
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Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

good indication that no spurious NG features are present in the
actual data set when compared to our simulations. It should be
noted that we found a similarly good level of agreement between
estimators for the non-primordial shapes of point sources and
ISW-lensing, although we chose not to present those results here
in order to focus on the primordial shapes. Finally, regarding the
wavelet pipeline, the lower weight correlation and suboptimal
error bars produce an expected larger scatter when compared to
the other estimators. Nonetheless, the level of agreement is still
of order 1�, which is quite acceptable for consistency checks of
the optimal results. Again, this MC expectation agrees with what
we see in our results on the real data.

7. Results

For our analysis of Planck data we considered foreground-
cleaned maps obtained with the four component separation
methods SMICA, NILC, SEVEM, and C-R. For each map, fNL
amplitudes for the local, equilateral, and orthogonal primordial
shapes have been measured using three (four for SMICA) bispec-
trum estimators described in Sect. 3. The results can be found
in Sect. 7.1. These estimators, as explained earlier, basically use
an expansion of the theoretical bispectrum templates in di↵erent
domains, and truncate the expansion when a high level of corre-
lation with the primordial templates is achieved. These accurate
decompositions, which are highly correlated with each other, are
then matched to the data in order to extract fNL. The di↵erent
expansions are all di↵erent implementations of the maximum-
likelihood estimator given in Eq. (32). So the final estimates are
all expected to be optimal, and measure fNL from nearly identi-
cal fitting templates. As discussed and tested in detail on simu-
lations in Sect. 6, central fNL values from di↵erent methods are
expected to be consistent with each other within about 0.3� fNL .
It is then clear that comparing outputs from both di↵erent esti-
mators and di↵erent component separation methods, as we do,
allows for stringent internal consistency checks and improved
robustness of the final fNL results.

In addition, the binned and modal techniques produce shape-
independent full bispectrum reconstructions in their own di↵er-
ent domains. These reconstructions, discussed in Sect. 7.2, com-
plement the standard fNL measurements in an important way,
since they allow detection of possible NG features in the three-
point function of the data that do not correlate significantly with
the standard primordial shapes. This advantage is shared by the
skew-C` method, also applied to the data. A detection of such
features would either produce a warning that some residual spu-
rious NG e↵ects are still present in the data or provide an in-
teresting hint of “non-standard” primordial NG that is not cap-
tured by the local, equilateral and orthogonal shapes. Additional
constraints for a broad range of specific models are provided
in Sect. 7.3 (see also Sect. 2.3). In Sect. 7.4 we present the
constraints on local NG obtained with Minkowski Functionals.
Finally, in Sect. 7.5 we present our CMB trispectrum results.

7.1. Constraints on local, equilateral and orthogonal fNL

Our goal here is to investigate the standard separable local, equi-
lateral and orthogonal templates used e.g., in previous WMAP
analyses (see e.g., Bennett et al. 2012). When using the modal,
binned, or wavelet estimator, these theoretical templates are ex-
panded approximately (albeit very accurately) using the relevant
basis functions or bins. On the other hand, the KSW estimator by
construction works with the exact templates and, for this reason,
it is chosen as the baseline to provide the final fNL results for

Table 8. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL .

Independent ISW-lensing subtracted

KSW KSW

SMICA

Local . . . . . . . . . 9.8 ± 5.8 2.7 ± 5.8

Equilateral . . . . . �37 ± 75 �42 ± 75

Orthogonal . . . . . �46 ± 39 �25 ± 39

the standard shapes (local, equilateral, orthogonal), see Table 8.
However, both the binned and modal estimators achieve opti-
mal performance and an extremely high correlation for the stan-
dard templates (⇠ 99%), so they are statistically equivalent to
KSW, as demonstrated in the previous section. This means that
we can achieve a remarkable level of cross-validation for our
Planck NG results. We will be able to present consistent con-
straints for the local, equilateral and orthogonal models for all
four Planck foreground-cleaned maps, using three independent
optimal estimators (refer to Table 9). Regarding component sep-
aration methods, we adopt the SMICA map as the default for the
final KSW results given its preferred status among foreground-
separation techniques in Planck Collaboration XII (2013). The
other component separation maps will be used for important
cross-validation of our results and to evaluate potential sensi-
tivity to foreground residuals.

All the results presented in this Section were obtained using
the union mask U73, which leaves 73% of the sky unmasked.
The mask is the union of the confidence masks of the four di↵er-
ent component separation methods, where each confidence mask
defines the region where the corresponding CMB cleaning is
trusted (see Planck Collaboration XII 2013). As will be shown in
Sect. 8.2, results are robust to changes that make the mask larger,
but choosing a significantly smaller mask would leave some NG
foreground contamination. For the linear term CMB and noise
calibration, and error bar determination, we used sets of realistic
FFP6 maps that include all steps of data processing, and have
realistic noise and beam properties (Planck Collaboration ES
2013). The simulations were also lensed using the Lenspix al-
gorithm and filtered through the component separation pipelines.

In Table 8 we show results for the combination of the KSW
estimator and the SMICA map, at a resolution of `max = 2500.
We present both “independent” single-shape results and “ISW-
lensing subtracted” ones. The former are obtained by directly
fitting primordial templates to the data. For the latter, two ad-
ditional operations have been performed. In the first place, as
the name indicates, they have been corrected by subtracting
the bias due to the correlation of the primordial bispectra to
the late-time ISW-lensing contribution (Mangilli & Verde 2009;
Junk & Komatsu 2012; Hanson et al. 2009b, see Sect. 5.2). In
addition, a joint fit of the primordial shape with the (Poissonian)
point source bispectrum amplitude extracted from the data
has been performed on the results marked “ISW-lensing sub-
tracted”.10 Since the ISW-lensing bispectrum is peaked on

10 More precisely, in the subtracted ISW-lensing results the equilateral
and orthogonal primordial shapes are also fitted jointly, although this
has a nearly negligible impact on the final result because the two shapes
are by construction nearly perfectly uncorrelated.

24

KSW: matched 
bispectrum filter 
 
fNL: amplitude 
parameter 
 
main shapes: 

local 
k1<<k2,k3 
multi-field 

equilateral 
k1~k2~k3 
non-canonical kinetic term 

orthogonal: different from the other two 



Results summary 

Planck nominal mission data (15.5 months, data available): 
•  stunning confirmation of ΛCDM ‘standard model’ (a few anomalies, 

but imnsho nothing to get too excited about at this point) 
•  composition: 5% normal matter, 27% dark matter, 68% dark energy 
•  BBN very consistent with theory and other measurements 
•  no extra light d.o.f. detected, Neff <~ 4 at 95% 
•  neutrino mass constraints mν <~ 0.66 eV at 95% 
•  no sign of sterile neutrinos (but also not excluded if heavy enough or 

not thermalized), varying constants or decaying dark matter 
•  inflation: no gravitational waves, non-Gaussianity or phase-transition 

remnants detected, primordial power spectrum compatible with pure 
power law with index ns = 0.960±0.007  

October 2014: full mission data set (29 months) + polarization! 



Planck polarisation teaser 

l

The Planck polarization data is 
excellent except on very large 
scales where we still have to 
clean it better. 
 
The red line is not a fit to the 
polarization data, but the 
predicted curve from the 
temperature data and the 
ΛCDM model! 



Planck summary & outlook 

Things that worked: 
1.  the definitive temperature CMB data set for cosmology 
2.  amazing (unreasonable?) agreement with the flat ΛCDM model 
3.  no contradictions with inflation scenario (and detection of ns≠1) 
4.  incredibly good constraints on model parameters, e.g. 

•  age: 13.82±0.05 Gyr 
•  curvature: Ωk = -0.01±0.01 
•  sum of neutrino masses* < 0.23eV 

Things that still need work: 
1.  polarization data 
2.  funny anomalies on large scales 
3.  the other topic you are all waiting for … 

(*: uses extra non-CMB data, limit is 0.85eV else) 
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and now for something different 

BICEP2 B-modes,       
arXiv:1403.3985 

amazing 
sensitivity! 

 
•  what does it 

mean? 
•  is it 

primordial? 

(since then: >90 papers 
on arXiv with BICEP2 in 
title; >200 with BICEP2 in 
abstract!) 



BICEP2 and inflation 
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(other standard parameters 
only marginally affected when 
adding BICEP2 to Planck+WP) 

Primordial tensor waves 
are expected in all 

‘inflation-like’ models (all 
light d.o.f. acquire frozen-
in quantum fluctuations) 
à looking back to 

inflation! 

•  determines energy scale of inflation, PT ~ H*
2/Mp

2  
•  large field excursion, Δφ/Mp ~ 10 
•  could test consistency relation r = -8nT 

V 1/4
⇤ = 2.1⇥ 1016GeV

⇣ r

0.2

⌘1/4

GUT 
scale 



caveat 1: likelihood + pivot 

Audren,	  Figueora	  &	  Tram,	  
arXiv:1405.1390	  
•  BICEP2	  pivot	  was	  actually	  0.05	  

(not	  0.002)	  
•  nt=0	  vs	  consistency	  rela=on	  
à	  Planck	  limit	  in	  this	  case	  is	  r	  <	  0.135	  
•  there	  is	  also	  some	  difference	  

between	  the	  public	  and	  internal	  
BICEP2	  likelihoods	  

à	  Planck	  and	  BICEP2	  are	  not	  very	  
incompaGble	  even	  w/o	  running	  



caveat 2: radio loops 
Liu,	  Mertsch	  &	  Sarkar,	  arXiv:1404.1899	  
à	  There	  may	  be	  galacGc	  foregrounds	  far	  from	  the	  galacGc	  plane	  



caveat 3: dust 
Flauger,	  Zaldarriaga,	  …	  
Mortonson	  &	  Seljak,	  arXiv:
1405.5857	  
•  re-‐es=mate	  of	  the	  dust	  contribu=on	  

in	  BICEP2	  field	  
•  dust	  ClBB	  ~	  l-‐2.3	  	  	  (Planck)	  

•  early	  dust	  models	  are	  missing	  
fluctua=ons	  (pol.	  angles	  /	  frac=on)	  

•  careful	  extrapola=on	  from	  353GHz	  
needed	  	  

à	  factor	  of	  2	  in	  pol.	  frac=on	  is	  enough	  
(CIB	  subtrac=on?)	  
à	  Need	  to	  understand	  dust	  
contaminaGon	  beWer	  (Planck?),	  atm	  
status	  of	  BICEP2	  detecGon	  unclear	  



Other experiments to come

BICEP2, Keck Array (South Pole)100GHz, 150 GHz
POLAR-1, POLAR Array (South Pole) 150 GHz
ABS (Atacama desert, Cile), wide band at 145GHz, 800 square degrees, ` = 25 –
200,
POLARBEAR-2 (South pole) 15o ⇥ 15o patch, �(r) ⇠ 0.012, 90/150/220GHz, 2nd
run 2013-2016
QUIET-II (Atacama desert, Cile), 43 GHz and 95GHz, radiometers, �(r) < 0.01
SPTpol (South Pole) 90GHz, 150 GHz, �(r) = 0.028 at 1�, anglular res.: arc-min
to a few degrees.
ACTpol Atacama Cosmology Telescope. 48 GHz, 218 GHz, and 277 GHz (small
scales, lensing)
Ballon: SPIDER (Austral summer of 2013/14 for a long duration (20 days) flight
from Antarctica) 90GHz, 150 GHz, 280GHz, ` = 10– 300, �(r) = 0.01.
Ballon: EBEX (very similar, austral summer 12/13, 11 days) 150, 250, and 410
GHz, 6000 square degrees observed, analysis ongoing. (Re-fly: with 90, 150, 240
GHz, want to achieve �(r) = 0.0035.)
Satellite: Planck, �(r)  0.025, full sky, 7 polarisation frequencies from 30GHz to
353GHz.
Satellie : LiteBird, 6 frequencies from 50GHz to 270GHz, �(r) < 10�3 (JAXA,
Japanese, Chinese).
Satellite: PRISM, CoRE M mission to be submitted to ESA this fall �(r) < 10�3.

Ruth Durrer (Université de Genève) The BICEP2 results April 2014 14 / 14

2016? 

arXiv:1405.5524 



Overall conclusions 

•  Planck has performed beyond expectations 
•  Great TT data, CMB lensing, ‘legacy’ data (CIB, dust, …) 

•  BICEP2 demonstrates the incredible increase in 
sensitivity from new detector technologies 

•  Detecting primordial tensor modes would be amazing 

•  Now it’s all about systematics & foregrounds 
•  New results are on the way 

•  Planck full data set incl. polar in October 
•  many sub-orbital results are coming soon! 



Thank you 


