Totally asymptotically free Trinification

Giulio Maria Pelaggi

Università di Pisa & INFN Pisa

New Frontiers in Theoretical Physics XXXV Convegno Nazionale di Fisica Teorica and GGI 10th anniversary, Firenze

Based on arXiv:1507.06848 by G.M.P., A. Strumia, S. Vignali and arXiv:1512.07225 by G.M.P., A. Strumia, E. Vigiani

The hierarchy problem and the Naturalness

How can we deal with the quadratically divergent corrections to the mass of the scalar boson?

Guide line for Beyond the SM physics \rightarrow Naturalness: divergences are canceled by new physics at some energy scale $\Lambda_{nat}.$

 $\delta m_h^2(\Lambda_{ ext{nat}}^2) \lesssim m_h^2.$

Common solutions: SUSY and composite Higgs models.

Naturalness suggests new physics below the TeV but LHC didn't see anything (significant)... Maybe it doesn't work in this way.

What is TAF

A model that can be extrapolated using the RGEs up to infinite energy is

Totally Asymptotically Free

TAF models can bypass the hierarchy-naturalness problem: there are no cut-off scales, so power divergent corrections have no physical meaning.

[Farina, Pappadopulo, Strumia, arXiv:1303.7244; Giudice, Isidori, Salvio, Strumia, arXiv:1412.2769]

We suppose that gravity does not spoil this behavior, so this property holds also over M_{Pl} .

How to find a TAF model

The general form of the RGEs for all the couplings is known [Machacek & Vaughn, Nuc. Phys. B **222** (1983), 83 and subsequent].

One can solve them, finding the asymptotic behaviour. Simple.

BUT

If we have tens of couplings, the system of differential equations is difficult to solve.

Is there a general way to deal with it?

What is TAF

We rescale the couplings by their leading asymptotic behavior

$$g_i^2(t) = rac{ ilde{g}_i^2(t)}{t}$$
 $y_a^2(t) = rac{ ilde{y}_a^2(t)}{t}$ $\lambda_m(t) = rac{ ilde{\lambda}_m(t)}{t}$,

where $t = \ln(\mu^2/\mu_0^2)/(4\pi^2)$. The one-loop RGEs become

$$\frac{dx_I}{d\ln t} = V_I(x) \quad \text{where} \quad x_I = \{\tilde{g}_i, \tilde{y}_a, \tilde{\lambda}_m\}$$

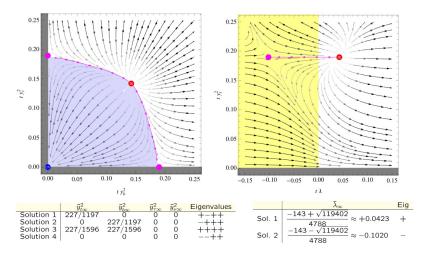
Solving the **algebraic** system $\frac{dx_l}{d \ln t} = V_l = 0$, we find the fixed points x_{∞} : the couplings flow to zero with fixed ratios. If there is at least one fixed point the model is TAF.

Conclusions 0000

What	TAF

Search for TAF 0●0000 Conclusions 0000

SM Flows



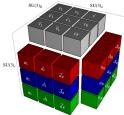
[Giudice, Isidori, Salvio, Strumia, arXiv:1412.2769]

What is TAF 000 Search for TAF 00●000 Conclusions 0000

Minimal Trinification

Is the SM TAF? No.

The coupling g_Y hits a Landau pole (like all the abelian groups). We embed it in a non-abelian group $G_{\text{Trin}} = \text{SU}(3)_L \otimes \text{SU}(3)_R \otimes \text{SU}(3)_c$



Minimal Trinification					
Field spin $SU(3)_L$ $SU(3)_R$					$SU(3)_{c}$
$egin{array}{rcl} Q_R &=& egin{pmatrix} u_R^1 & u_R^2 \ d_R^1 & d_R^2 \ d_R'^1 & d_R'^2 \ d_R'' & d_R'^2 \ \end{pmatrix}$	$ \begin{array}{c} u_R^3 \\ d_R^3 \\ d_R^{\prime 3} \end{array} $	1/2	1	3	3
$Q_{L} = \begin{pmatrix} u_{L}^{1} & d_{L}^{1} \\ u_{L}^{2} & d_{L}^{2} \\ u_{L}^{3} & d_{L}^{3} \end{pmatrix}$	$ \begin{bmatrix} \bar{d}_R^{\prime 1} \\ \bar{d}_R^{\prime 2} \\ \bar{d}_R^{\prime 3} \end{bmatrix} $	1/2	3	1	3
$L = \begin{pmatrix} \bar{\nu}'_L & e'_L \\ \bar{e}'_L & \nu'_L \\ e_R & \nu_R \end{pmatrix}$	$\begin{pmatrix} e_L \\ \nu_L \\ \nu' \end{pmatrix}$	1/2	3	3	1
Н		0	3	3	1

What is TAF	Search for TAF	Conclusions
000	000●00	0000
Features of Trinification	models	

► To reproduce the right gauge couplings for the SM it predicts

$$g_L = g_2$$
 $g_R = \frac{2g_2g_Y}{\sqrt{3g_2^2 - g_Y^2}}$ $g_c = g_3$

• The Higgses have a non-zero VEV:

$$\langle H \rangle = \begin{pmatrix} v_u & 0 & 0 \\ 0 & v_d & v_L \\ 0 & V_R & V \end{pmatrix}$$

so G_{Trin} is spontaneously broken:

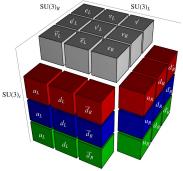
$$G_{\mathsf{Trin}} \xrightarrow{V} G_{LRSM} \xrightarrow{V_R} G_{SM} \xrightarrow{v} \mathsf{SU(3)}_c \otimes \mathsf{U(1)}_{em}$$

► The lightest new vectors are the right-handed W_R^{\pm} , with mass $\sim g_R V$

Search for TAF 0000●0 Conclusions 0000

Features of Trinification models

- Each generation of $Q_R \oplus Q_L \oplus L$ contains 27 fermions:
 - the 15 SM chiral fermions,
 - a vector-like lepton doublet $L' \oplus \overline{L'}$,
 - ► a vector-like right-handed down quark $d'_R \oplus \overline{d}'_R$,
 - two neutral singlets, ν_R and ν' .



► 3 Higgses are needed to give a mass ~ yV to the new heavy fermions without fine-tuning.

The phenomenology seems promising, but Minimal Trinification with 3 Higgses is not TAF.

Expanding the minimal model

Adding extra particles modifies the UV behavior of the couplings:

	name	representation	Δb_i		Yukawas		
	1	(1, 1, 1)	0	0	0	$1LH^*$	-
e	8_L	(8, 1, 1)	2	0	0	$8_L L H^*$	-
tab	8_R	(1, 8, 1)	0	2	0	$8_R L H^*$	-
unstable	$L' \oplus \overline{L}'$	$(3, \bar{3}, 1) \oplus (\bar{3}, 3, 1)$	2	2	0	L'LH	$L'L'H + \overline{L}'\overline{L}'H^*$
-	$Q'_L \oplus \bar{Q}'_L$	$(ar{3},1,3)\oplus(3,1,ar{3})$	2	0	2	$Q'_L Q_R H$	-
	$Q'_R \oplus \bar{Q}'_R$	$(1,3,ar{3})\oplus(1,ar{3},3)$	0	2	2	$Q'_R Q_L H$	-
	$3_L \oplus \bar{3}_L$	$(3,1,1) \oplus (\bar{3},1,1)$	$\frac{2}{3}$	0	0	-	-
	$3_R\oplus ar{3}_R$	$(1,3,1)\oplus (1,ar{3},1)$	0	$\frac{2}{3}$	0	-	-
	$3_c \oplus \bar{3}_c$	$(1,1,3)\oplus(1,1,ar{3})$	0	0	$\frac{2}{3}$	-	-
	8_c	(1, 1, 8)	0	0	2	-	-
e	$6_L \oplus \overline{6}_L$	$(6,1,1)\oplus (\bar{6},1,1)$	$\frac{10}{3}$	0	0	-	-
stable	$6_R \oplus \overline{6}_R$	$(1,6,1)\oplus(1,ar{6},1)$	0	$\frac{10}{3}$	0	-	-
s	$6_c \oplus \overline{6}_c$	$(1,1,6)\oplus(1,1,\overline{6})$	0	0	$\frac{10}{3}$	-	-
	$\tilde{L} \oplus \tilde{L}$	$(3,3,1) \oplus (\bar{3},\bar{3},1)$	2	2	0	-	_
	$ ilde{Q}_L \oplus ar{ ilde{Q}}_L$	$(3,1,3)\oplus(\bar{3},1,\bar{3})$	2	0	2	-	-
	$\tilde{Q}_R \oplus \bar{\tilde{Q}}_R$	$(1,3,3)\oplus(1,\bar{3},\bar{3})$	0	2	2	-	—

A phenomenologically interesting TAF model: Minimal Trinification (with Q_L , Q_R , L and 3 Higgses) plus a vector-like quark family $\tilde{Q}_L \oplus \overline{\tilde{Q}}_L$ and $\tilde{Q}_R \oplus \overline{\tilde{Q}}_R$. Search for TAF

Diboson excess

In Run 1 of LHC there were excesses ($\sim 3\sigma$) in some channels at an energy $\simeq 2$ TeV.

These anomalies can be fitted with the processes

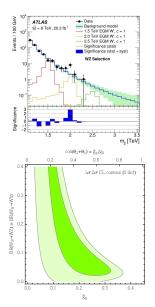
$$pp
ightarrow rac{W_R^\pm}{W_R}
ightarrow W^\pm Z$$

and

$$pp
ightarrow W_R^{\pm}
ightarrow W^{\pm} H.$$

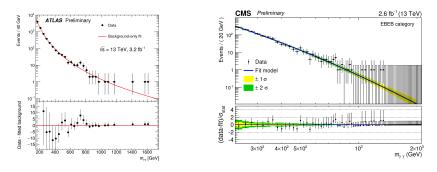
The predicted value $g_R \simeq 0.444$ is compatible with the excess.

[ATLAS Coll. arXiv:1506.00962]



What is TAF 000 Search for TAF 000000

Diphoton excess



ATLAS and CMS observed an excess, with a statistical significance $\sim 3\sigma$, in the di-photon channel, at an energy $\simeq 750$ GeV. [ATLAS-CONF-2015-081, CMS-PAS-EXO-15-004]

In Trinification models it can be interpreted as one of the extra scalars (singlet or doublet) in the Higgs multiplets.

What is TAF	Search for TAF	Conclusions
000	000000	0000
Diphoton excess		

We call this new scalar S: it is produced by gluon fusion and decays in $\gamma\gamma$ through loops of the extra heavy fermions D' and L'.

68

کے۲

No signal has been seen in other channels ($S \longrightarrow WW$, ZZ, $Z\gamma$). The predictions of this model are under the experimental bounds.

We performed a systematic search of TAF models such that:

- the theory holds up to infinite energy
- the phenomenology is consistent with the data

Among Trinification models we found that:

- minimal Trinification has no TAF solutions
- ► to get the right fermion masses, 3 Higgs are needed.
- ▶ the most interesting Trinification TAF model includes $\tilde{Q}_L \oplus \overline{\tilde{Q}}_L$ and $\tilde{Q}_R \oplus \overline{\tilde{Q}}_R$
- Trinification can explain the diboson and diphoton excesses.

Backup slides

Quark masses

Up quarks:

$$\begin{array}{cccc} & u_{Rj} & U_{R} & \bar{U}_{L} \\ u_{Li} & v_{un} y_{Q}^{nij} & v_{un} y_{Q}^{ni4} & 0 \\ U_{L} & v_{un} y_{Q}^{n4j} & v_{un} y_{Q}^{n44} & M_{L} \\ \bar{U}_{R} & 0 & M_{R} & v_{un} y_{\bar{Q}}^{n} \end{array} \right)$$

Down quarks:

 d_{R}^{j} $V_{dn}Y_{Q}^{nij}$ $V_{R}Y_{Q}^{2ij}$ $V_{R}Y_{Q}^{24j}$ $V_{R}Y_{Q}^{24j}$ $V_{dn}Y_{Q}^{n4j}$ $d_{R}^{j'}$ $v_{L}y_{Q}^{2ij}$ $V_{n}y_{Q}^{nij}$ $V_{n}y_{Q}^{n4j}$ $v_{L}y_{Q}^{24j}$ 0 D'_{R} $v_{L}y_{Q}^{2i4}$ $V_{n}y_{Q}^{ni4}$ $V_{n}y_{Q}^{n44}$ $v_{L}y_{Q}^{24j}$ D_R $V_{dn}Y_Q^{ni4}$ $V_RY_Q^{2i4}$ $V_RY_Q^{244}$ $V_{dn}Y_Q^{n44}$ *D*'_L 0 0 \bar{D}_L 0 d_{L}^{i} $\bar{d}_{R}^{i'}$ \bar{D}_{R}^{\prime} D_{L}^{\prime} \bar{D}_{R}^{\prime} \bar{D}_{R} 0 M_L 0 M_L 0 v_{un}y_Qⁿ M_R 0 v_{un}y_Q 0 0 0 0 0 M_R 0

Let's assume that H_1 breaks G_{333} but preserves G_{SM} (i.e. $V_1 \neq 0$ and $v_{d1} = v_{u1} = v_{L1} = 0$).

The Yukawa couplings y_{Q1} and y_{L1} allow to give large enough masses $M_{d'_R} = V_1 y_{Q1} \gtrsim 700 \text{GeV}$ and $M_{e'_R} = V_1 y_{L1} \gtrsim 200 \text{GeV}$ to the extra primed fermions, without also giving too large masses to the SM fermions.

 H_2 and H_3 can have the small Yukawa couplings needed to reproduce the light SM fermion masses,

$$m_e \sim \sum_{n=2}^3 v_{dn} y_{Ln}, \qquad m_u \sim \sum_{n=2}^3 v_{un} y_{Qn}, \qquad m_d \sim \sum_{n=2}^3 v_{dn} y_{Qn}.$$

Charged leptons:

$$e_{R} \quad \bar{e}'_{L} \\ e_{L} \begin{pmatrix} -v_{dn}y_{Ln} & V_{Rn}y_{Ln} \\ v_{Ln}y_{Ln} & -V_{n}y_{Ln} \end{pmatrix}$$

Neutral leptons:

The vev V_1 alone breaks $G_{333} \rightarrow SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \otimes SU(3)_c$. A SU(2)_L doublet H_L , a SU(2)_R doublet H_R and a Z' singlet acquire mass:

$$M_{H_L} = rac{g_L}{\sqrt{2}}V_1, \qquad M_{H_R} = rac{g_R}{\sqrt{2}}V_1, \qquad M_{Z'} = V_1\sqrt{rac{2}{3}}(g_L^2 + g_R^2).$$

Let's take only V_n and V_{Rn} : SM group still unbroken.

Defining
$$V^2 \equiv \sum_n (V_n^2 + V_{Rn}^2)$$
, $\alpha \equiv \sum_n V_{Rn}^2/V^2$ and $\beta \equiv \sum_n V_n V_{Rn}/V^2$, the gauge bosons are:

- a SU(2)_L doublet with 4 components: $M_{H_L} = g_L V / \sqrt{2}$;
- two charged fields H_R^{\pm} with mass $M_{H_R^{\pm}} = g_R V / \sqrt{2}$

• two neutral fields H_R^0 with mass

$$M_{H_R^0}^2 = rac{g_R^2 V^2}{4} \Big[1 + \sqrt{(1-2\alpha)^2 + 4\beta^2} \Big].$$

• the right-handed W_R^{\pm} vectors (the lightest) with mass

$$M_{W_R^{\pm}}^2 = rac{g_R^2 V^2}{4} \Big[1 - \sqrt{(1 - 2\alpha)^2 + 4\beta^2} \Big]$$

▶ the Z_R and the Z_{B-L} vectors, that mix together. In the limit $V_{Rn} \ll V_n$ the mass eigenvalues are

$$M_{Z'} = V \sqrt{rac{2}{3}(g_L^2 + g_R^2)}, \quad M_{Z''} \simeq |eta| g_R V_R \sqrt{rac{g_R^2/2 + 2g_L^2}{g_R^2 + g_L^2}}.$$

► The 12 SM vectors remain massless.