\mathcal{V} -lines produced by DM: a model building perspective for neutrino telescopes

Thomas Hambye Univ. of Brussels (ULB), Belgium

Based on: C. El Aisati, C. Garcia-Cely, TH, L. Vanderheyden, arXiv: 1706.06600

C. El Aisati, M. Gustafsson, TH, arXiv: 1506.02657

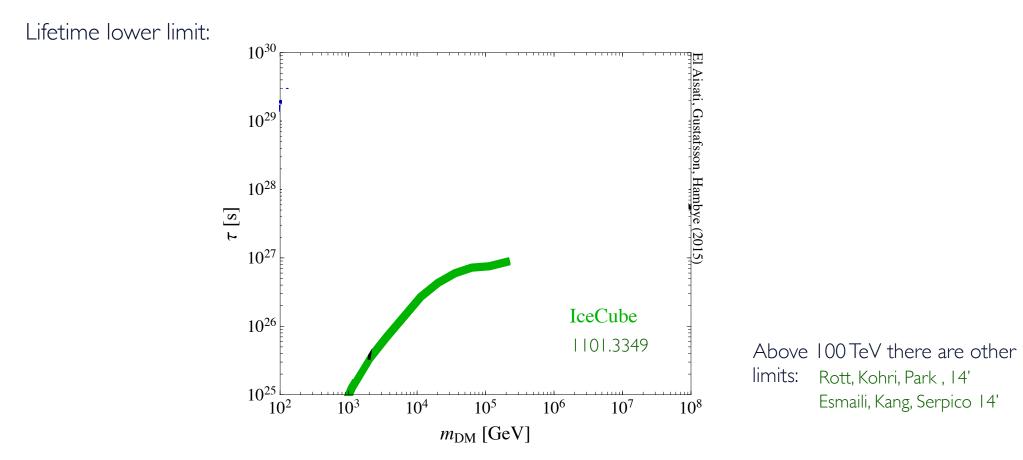
C. El Aisati, M. Gustafsson, TH, T. Scarna, arXiv: 1510.05008

C. El Aisati, TH,T. Scarna, arXiv:1403.1280

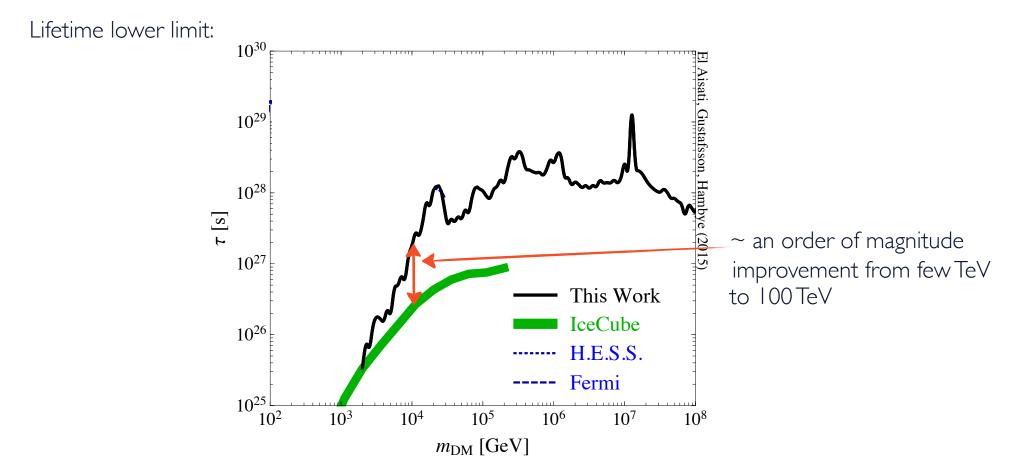
M. Gustafsson, TH, T. Scarna, arXiv: 1303.4423

Pahen' 17, Napoli, 26/09/2017

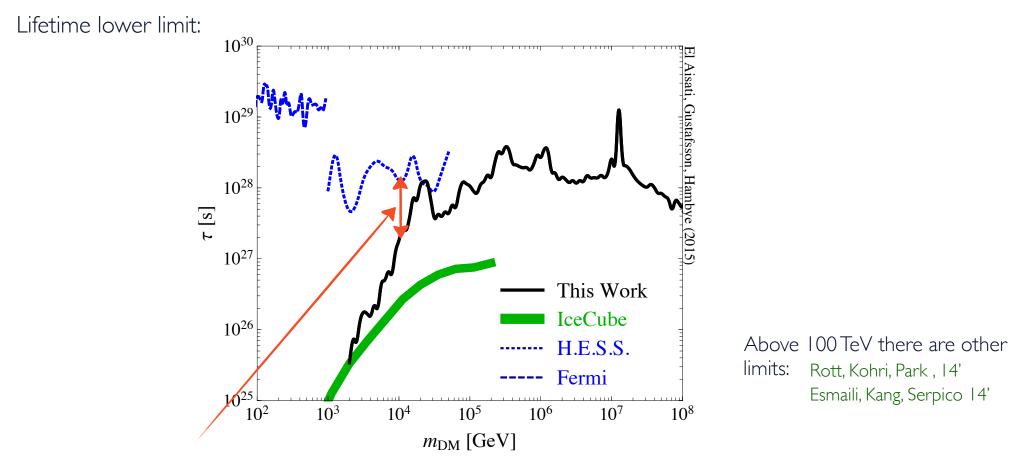
from DM annihilation or decay



from DM annihilation or decay



from DM annihilation or decay

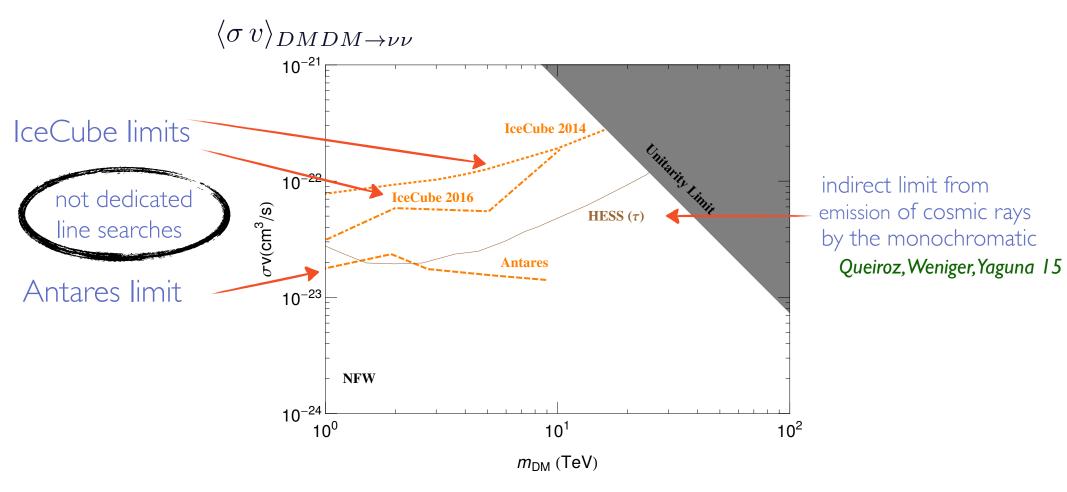


between few TeV and 50 TeV, γ and ν line sensitivities are similar! - within a factor I to 20

from DM annihilation or decay

 \sim Observational situation for an annihilation: $\langle \sigma v \rangle_{DMDM \to \nu\nu}$

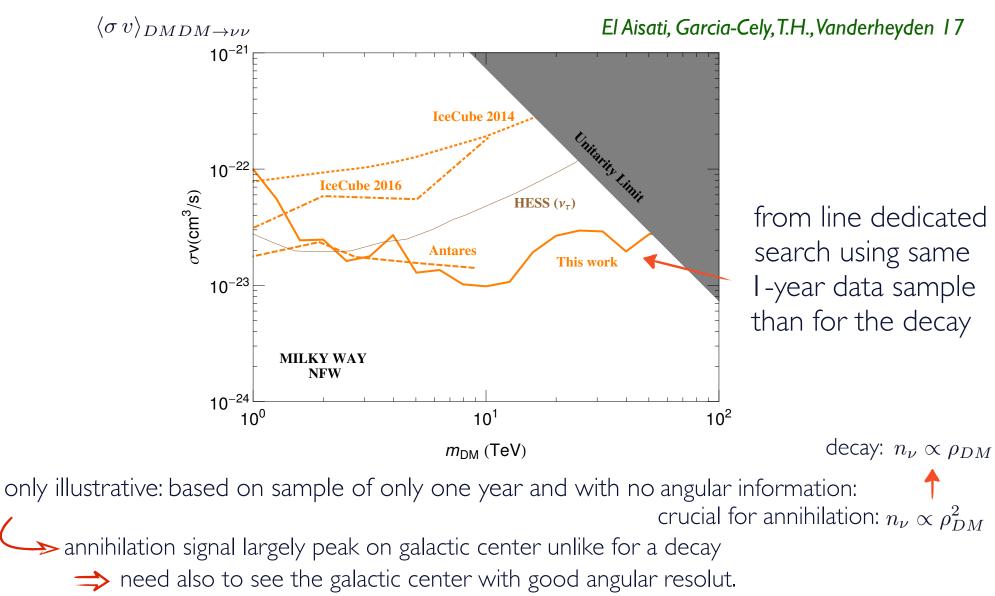
Annihilation cross section upper limit:



from DM annihilation or decay

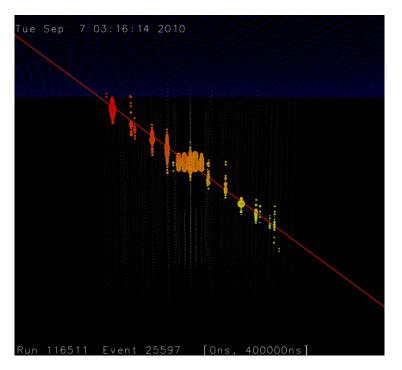
 \longrightarrow Observational situation for an annihilation: $\langle \sigma v \rangle_{DMDM \to \nu\nu}$

Annihilation cross section upper limit:

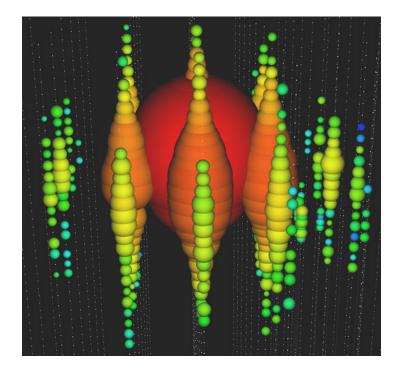


 \mathcal{V} -line search from DM annihilation: need good energy resolution and good angular resolution towards galactic center

muon track:



good angular resolut.: $\sim 0.2^{\circ} - 1^{\circ}$ poor energy resolut. unless fully contained OK to see the galactic center for starting inside events cascade events:



good energy resolut.: $\sim 15\%$ not so good ang. resol.: $\sim 10^\circ - 15^\circ$ good for galactic center events

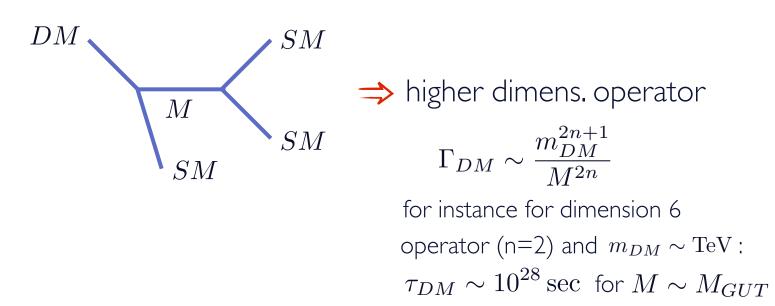
 \Rightarrow very promising even if not as easy as for a decay and as for a γ -line

What about model-building? \mathcal{V} -line sensitivity reachable?

for the decay case: easy to have an observable flux!

models based on accidental DM stability:

low energy accidental symmetry broken at high energy as for proton decay:



the decay case can be fully probed and parametrized by writing down the full list of higher dimes. operators linear in the DM field

Decay mode example: $DM \rightarrow \nu + \gamma$

El Aisati, Gustafsson, TH, Scarna 'I 6

DM field Fields contract. Operator

Operator

 $\rightarrow \nu$ -line + γ -line: double monochromatic smoking gun!!

 \rightarrow very few possible effective operator structures up to dim-6:

one dim-5 structure:	$\mathcal{O}^{(5)Y} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu},$
	$\mathcal{O}^{(5)L} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu},$
3 dim-6 structure:	$\mathcal{O}^{1Y} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}\phi,$
($\mathcal{O}^{1L} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu}\phi,$
C	$\mathcal{D}^{2Y} \equiv D_{\mu} \bar{L} \gamma_{\nu} \psi_{DM} F_Y^{\mu\nu},$
C	$\mathcal{O}^{2L} \equiv D_{\mu} \bar{L} \gamma_{\nu} \psi_{DM} F_L^{\mu\nu},$
	$\mathcal{D}^{3Y} \equiv \bar{L} \gamma_{\mu} D_{\nu} \psi_{DM} F_Y^{\mu\nu},$
C	$\mathcal{O}^{3L} \equiv \bar{L} \gamma_{\mu} D_{\nu} \psi_{DM} F_L^{\mu\nu},$
\Rightarrow varying over pos	sible DM quantum numbers
\Rightarrow $ u$ -line and γ -li	ne correlated:

- same energy
- ratio of line intensities fixed by operator
- associated flux of cosmic rays fixed by operator and around the corner

for other decay channel operators see also Feldstein, Kusenko, Matsumoto, Yanagida, 13'

Operator	DM field	Fields contract.	Operator
Structure	(n-plet, Y)	(n-plet)	
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}$	(2, -1)		$\mathcal{O}^{(5)Y}_{2\text{-let}}$
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu}$	(2, -1)		$\mathcal{O}^{(5)L}_{2\text{-let}}$
$Lo_{\mu\nu}\varphi_{DM} L$	(4, -1)		$\mathcal{O}^{(5)L}_{4\text{-let}}$
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}H$	(1, 0)		$\mathcal{O}_{H,1\text{-let}}^{1Y}$
	(3, 0)		$\mathcal{O}_{H,3\text{-let}}^{1Y}$
$\bar{L}\sigma_{\mu u}\psi_{DM}F_L^{\mu u}H$	(1,0)		$\mathcal{O}_{H,1\text{-let}}^{1L}$
	(3, 0)	a: $(\bar{L}H) = 1$	$\mathcal{O}_{H,3 ext{-let}}^{1L,a}$
	(3, 0)	c: $(\psi_{DM}H) = 2$	$\mathcal{O}_{H,3 ext{-let}}^{1L,c}$
	(3, 0)	d: $(\psi_{DM}H) = 4$	$\mathcal{O}_{H,3\text{-let}}^{1L,d}$
	(3, 0)	e: $(\bar{L}\psi_{DM}) = 2$	$\mathcal{O}_{H,3\text{-let}}^{1L,e}$
	(3, 0)	f: $(\bar{L}\psi_{DM}) = 4$	$\mathcal{O}_{H,3 ext{-let}}^{1L,f}$
	(5, 0)		$\mathcal{O}_{H,5\text{-let})}^{1L}$
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}\tilde{H}$	(3, -2)		$\mathcal{O}_{\tilde{H},3\text{-let}}^{1Y}$
$ar{L}\sigma_{\mu u}\psi_{DM}F_L^{\mu u} ilde{H}$	(3, -2)	b: $(\bar{L}\tilde{H}) = 3$	$\mathcal{O}_{\tilde{H},3\text{-let}}^{1L,b}$
	(3, -2)	c: $(\psi_{DM}\tilde{H}) = 2$	$\mathcal{O}_{\tilde{H},3 ext{-let}}^{1L,c}$
	(3, -2)	d: $(\psi_{DM}\tilde{H}) = 4$	$\mathcal{O}_{\tilde{H},3 ext{-let}}^{1L,d}$
	(3, -2)	e: $(\bar{L}\psi_{DM}) = 2$	$\mathcal{O}_{ ilde{H},3 ext{-let}}^{1L,e}$
	(3, -2)	f: $(\bar{L}\psi_{DM}) = 4$	$\mathcal{O}_{ ilde{H},3 ext{-let}}^{1L,f}$
	(5, -2)		$\mathcal{O}_{\tilde{H},5\text{-let}}^{1L}$
$D_{\mu}\bar{L}\gamma_{\nu}\psi_{DM}F_{Y}^{\mu\nu}$	(2, -1)		$\mathcal{O}^{2Y}_{2\text{-let}}$
$\frac{1}{D_{\mu}\bar{L}\gamma_{\nu}\psi_{DM}F_{L}^{\mu\nu}}$	(2, -1)		$\mathcal{O}^{2L}_{2\text{-let}}$
	(4, -1)		$\mathcal{O}^{2L}_{4 ext{-let}}$
$\bar{L}\gamma_{\mu}D_{\nu}\psi_{DM}F_{Y}^{\mu\nu}$	(2, -1)		$\mathcal{O}^{3Y}_{ ext{2-let}}$
$\bar{L}\gamma_{\mu}D_{\nu}\psi_{DM}F_{L}^{\mu u}$	(2, -1)		$\mathcal{O}^{3L}_{2 ext{-let}}$
$L_{\mu} D \psi \psi D M L_{L}$	(4, -1)		$\mathcal{O}^{3L}_{4 ext{-let}}$

full list of operators up to quintuplet

What about model-building? \mathcal{V} -line sensitivity reachable?

for the <u>annihilation case</u>: possibilities to have an observable flux! 2 issues:

- ν -line sensitivity much weaker than γ -line sensitivity \longrightarrow not necessarily a problem because ν -line can proceed easily at tree level unlike γ -line
 - future ν -line sensitivity $\langle \sigma v \rangle_{DM DM \to \nu\nu} \sim \text{few } 10^{-25}$ will not reach the thermal freeze out total cross section value $\langle \sigma v \rangle_{Tot} \sim 3 \cdot 10^{-26}$
 - \checkmark this excludes an observable ν -line for most models but not necessarily: need for a boost of the cross section from freeze out epoch to today

astrophysical boost particle physics boost: Sommerfeld effect

non relativistic DM particles today can exchange many lighter mediators before annihilating

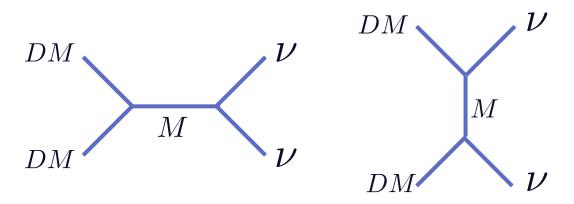
Determination of minimal models leading to observable \mathcal{V} -line from DM annihilation

El Aisati, Garcia-Cely, TH, Vanderheyden 17

→ for spin 0 or 1/2 DM

with DM out of single multiplet of $SU(3)_c \times SU(2)_L \times U(1)_Y$

with $DM DM \rightarrow \nu \nu$ mediated by single mediator multiplet



- \Rightarrow systematic study of these minimal models
- \Rightarrow which ones of these models can lead to an observable ν -line from DM annihilation through the Sommerfeld effect????

Determination of minimal models leading to observable *V*-line from DM annihilation many constraints:

• constraint I: annihilation must proceed through s-wave velocity powers today

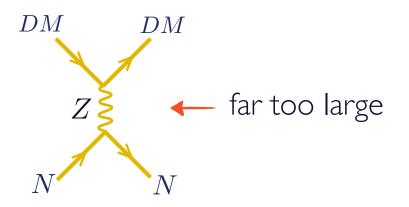
→ for the $DM DM \rightarrow \nu \bar{\nu}$ channel this excludes all scalar and Majorana DM models

but leaves open many possibilities in the $DM DM \rightarrow \nu \nu$ channel

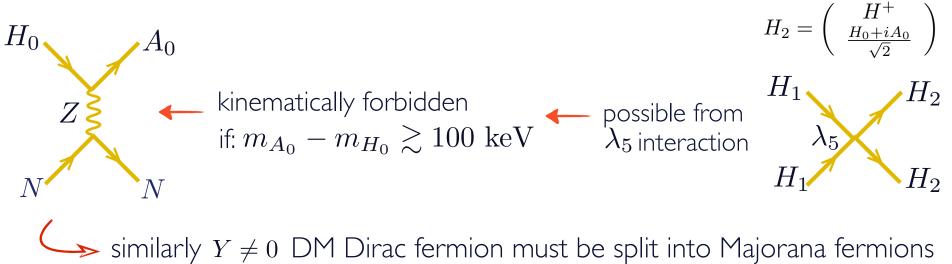
Determination of minimal models leading to observable \mathcal{V} -line from DM annihilation

• constraint 2: direct detection constraint:

big issue for DM multiplet
 with non-zero hypercharge
 need to split in mass the neutral components of the DM multiplet



→ example: DM is neutral component of scalar doublet: ``inert'' doublet



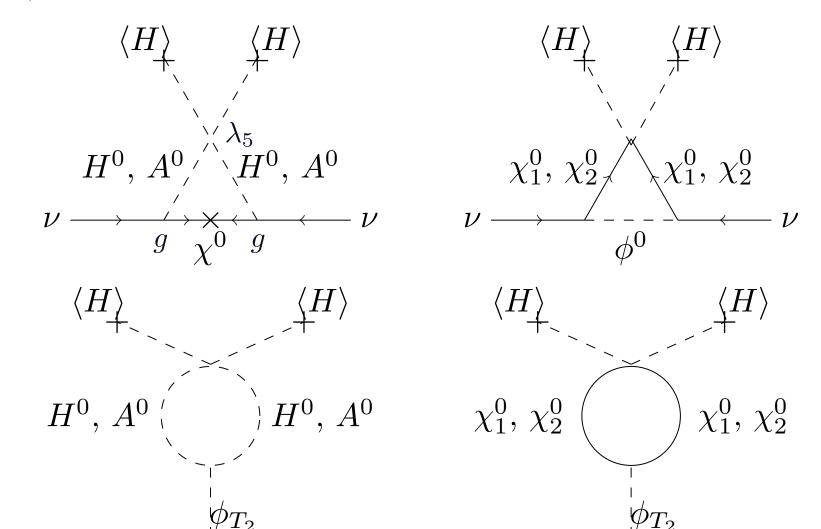
s-wave + direct detection surviving models

20 models: DM and mediator up to triplets Annihilation m_{ν} OK Suppressed $\ell^+\ell^-$ | Model DMMediator at 1-loop? by $v_{\rm EW}/m_{\rm DM}$? Channel T_0 s-chann. vector S F_1 only Dirac DM t-chann. scalar T_0 D F_2 $\overline{\text{DM}}\text{DM} \to \overline{\nu}\nu$ Dirac Yes No for $\nu \bar{\nu}$ channel =Ss-chann. vector F_3 S \overline{D} St-chann. scalar F_4 D s-chann. scalar T_2 No S_1^r \pm $\overline{S_2^r}$ DYes S S_3^r SDNo $\overline{S_4^r}$ T_0 DNo Real Scalar No T_2 D $\overline{S_5^r}$ t-chann. Majorana Yes T_0 S_6^r DYes D $\overline{T_2}$ $\overline{S_7^r}$ Yes F_1^m D s-chann. scalar T_2 \pm No F_2^m SDYes F_3^m $\nu\nu$ channel S $DMDM \rightarrow \nu\nu$ No D $\frac{T_0}{T_2}$ $\overline{F_4^m}$ No DMajorana No $\overline{F_5^m}$ DYes t-chann. scalar $\overline{F_6^m}$ T_0 DYes $\overline{T_2}$ \overline{D} $\frac{F_7^m}{S_1}$ Yes $\frac{S}{T_0}$ $\frac{D}{D}$ Complex Scalar t-chann. Majorana Yes Yes S_2 F_4 SDDirac t-chann. scalar Yes Yes $\overline{T_0}$ \overline{D} F_2

El Aisati, Garcia-Cely, T.H., Vanderheyden '17 See also related table in Lindner, Merle, Niro '10

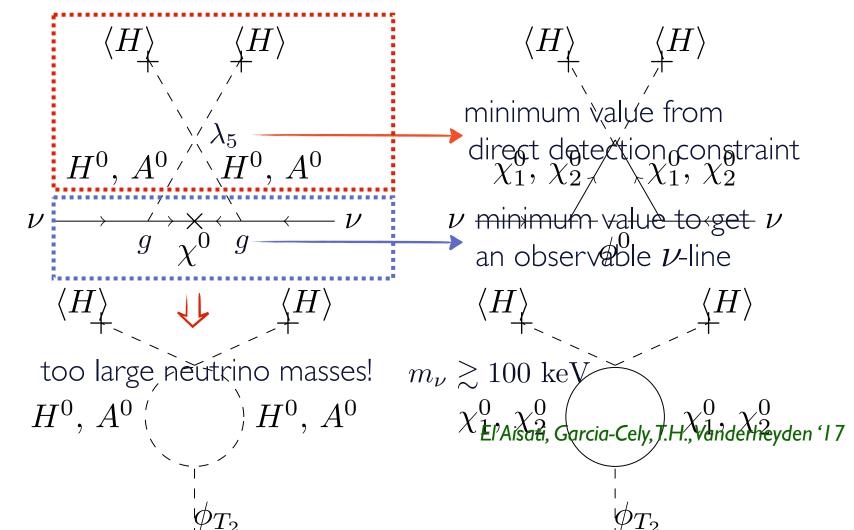
\mathcal{V} mass constraint: kills many $\mathcal{V}\mathcal{V}$ channel possibilities \mathbf{U} constraint 3:

example: inert doublet DM:



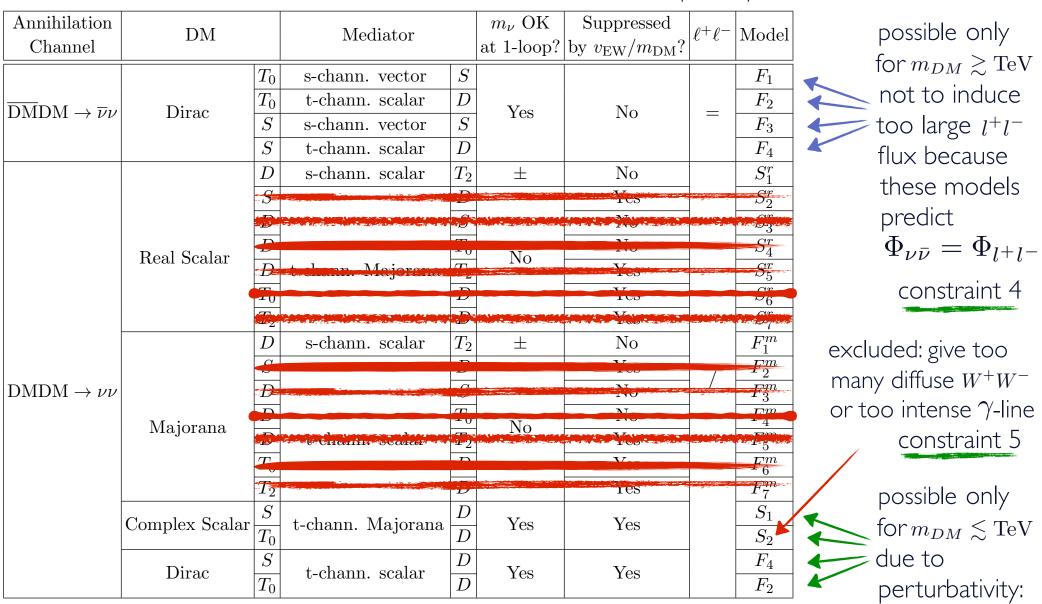
\mathcal{V} mass constraint: kills many $\mathcal{V}\mathcal{V}$ channel possibilities \downarrow constraint 3:

example: inert doublet DM:



s-wave + direct detection + V mass surviving models

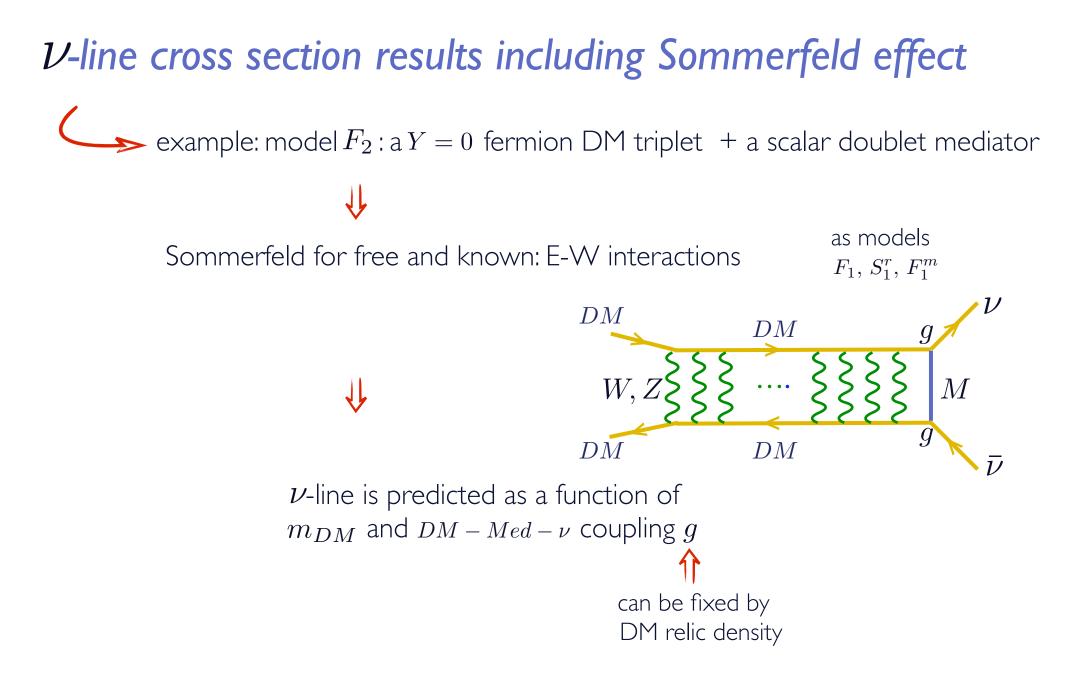
8 models:

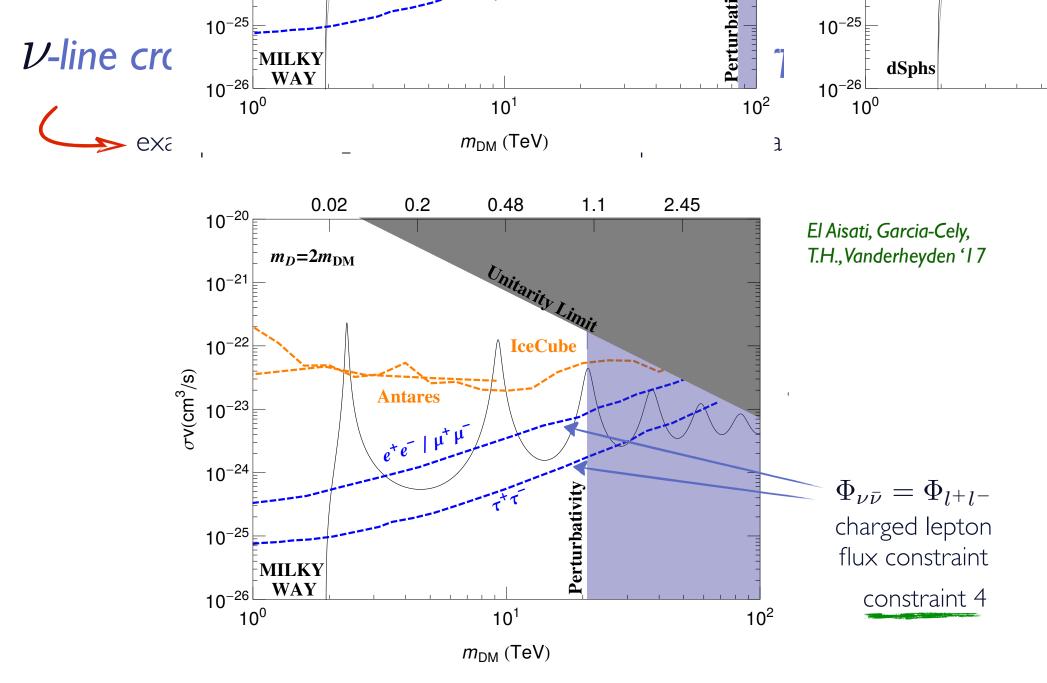


El Aisati, Garcia-Cely, T.H., Vanderheyden 'I 7

constraint 6

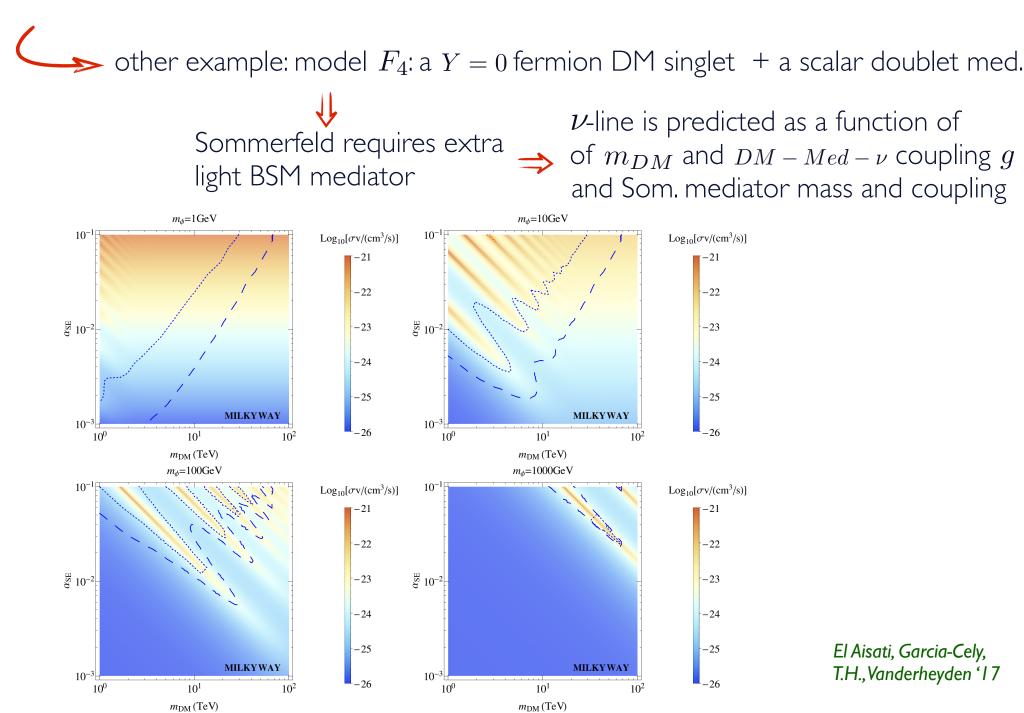
DM and mediator up to triplets



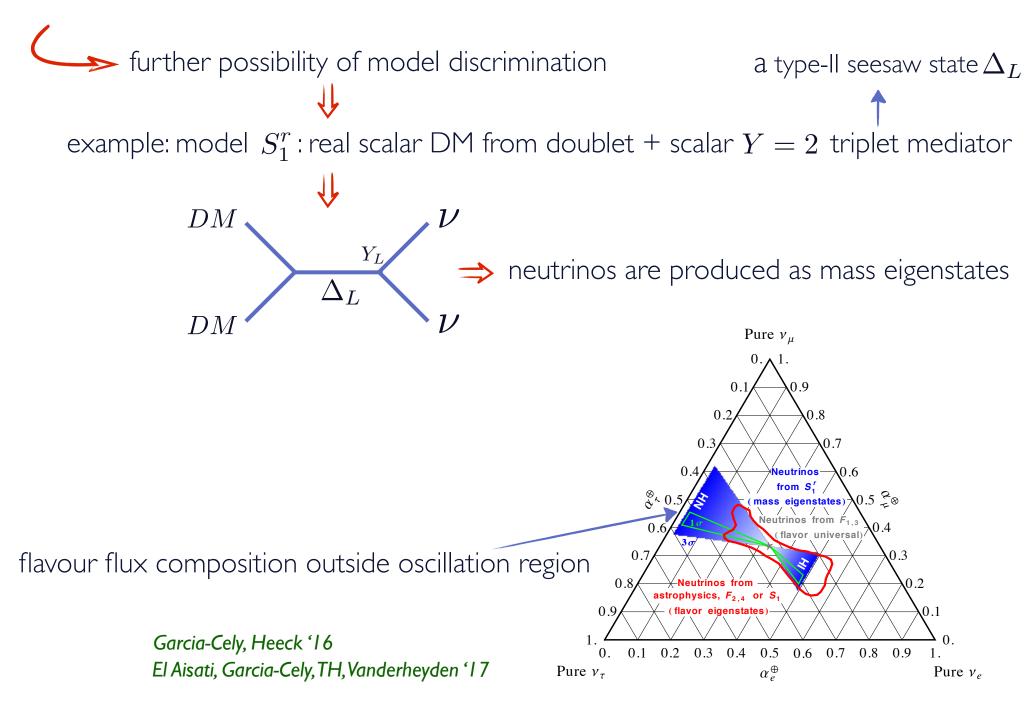


 \Rightarrow all fluxes predicted: ν -line and associated charged lepton flux around the corner \checkmark discrimination of the models

\mathcal{V} -line cross section results including Sommerfeld effect



\mathcal{V} -line flavor composition



\mathcal{V} -telescope search for a line:

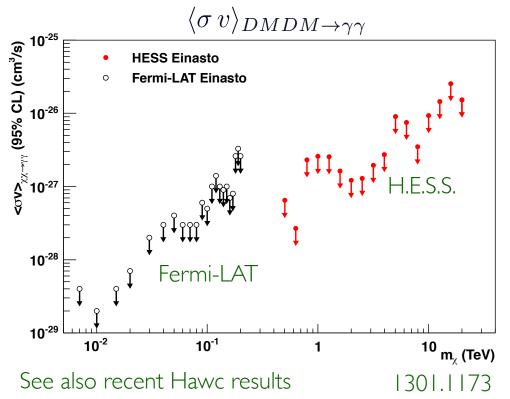
Iarge improvement of sensitivity to be expected soon!!

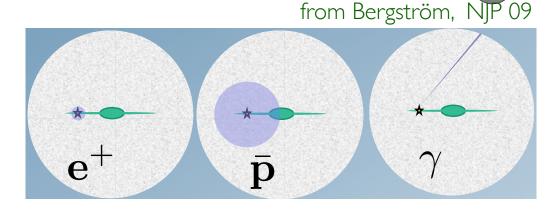
- $\underbrace{ \sum DM \text{ decay case:}}_{\nu} \nu \text{ and } \gamma \text{ line sensitivities of same order in multiTeV range}$ $- many models could lead to observable <math>\nu$ -line including for interesting $DM \rightarrow \gamma + \nu$ scenario
- \sim DM annihilation case: ν -line sensitivity << γ -line sensitivity
 - $\nu\text{-line}$ sensitivity doesn't reach freeze out value
 - simple specific models leading to observable ν -line do exist thanks to Sommerfeld effect and can be studied in in a systematic way
 - \checkmark possibilities of model discrimination from ν -line energy, intensity and flavor composition and associated diffuse cosmic ray emission
 - overall picture remains true beyond minimal models

Monochromatic flux of γ : DM smoking gun

- no astrophysical background
- flux and direction basically unaffected during propagation
- very active experimental field: Fermi-LAT, HESS, CTA, Gamma400, Dampe, ...

Annihilation cross section upper limit:



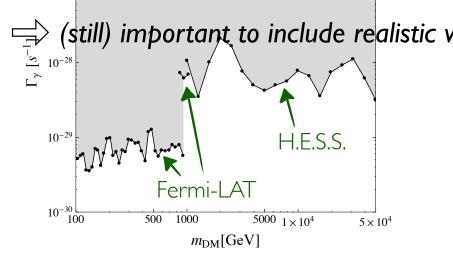


from DM annihilation or decay

DM

Soostdfactorimit:

- each_decade in Msubhate contributes ro
- depends on uncertain form of microh (large extrapolations necessary!)



Decay bound from Icecube details

 $DM \rightarrow \nu + X$: \mathcal{V} flux expected in detector for a given lifetime

Galactic component:

$$\frac{d\phi_h}{dE_{\nu}d\Omega}(b,l) = \frac{1}{4\pi \, m_{DM} \, \tau_{DM}} \frac{dN}{dE_{\nu}} \int_{l.o.s.} ds \, \rho_h[r(s,b,l)]$$
particle physics factor galactic DM factor
NFW profile

Extragalactic component:

$$\frac{d\phi_{eg}}{dE_{\nu}d\Omega} = \frac{\Omega_{DM}\rho_c}{4\pi} \int dz \, \frac{c}{H(z)} \frac{1}{m_{DM}\tau_{DM}} \frac{dN}{dE} \Big|_{E=E_{\nu}(1+z)}$$
cosmological factor

Flux in detector issues: flavor, ν vs $\overline{\nu}$, earth absorption, ...

• u-oscillations: average u flavor:

 $P(\nu_e \leftrightarrow \nu_e) = 0.573, \quad P(\nu_e \leftrightarrow \nu_\mu) = 0.277$ $P(\nu_e \leftrightarrow \nu_\tau) = 0.150, \quad P(\nu_\mu \leftrightarrow \nu_\mu) = 0.348$ $P(\nu_\mu \leftrightarrow \nu_\tau) = 0.375, \quad P(\nu_\tau \leftrightarrow \nu_\tau) = 0.475$ $P(\nu_\mu \leftrightarrow \nu_\tau) = 0.375, \quad P(\nu_\tau \leftrightarrow \nu_\tau) = 0.475$ $P(\nu_\tau \leftrightarrow \nu_\tau) = 0.475$ $P(\nu_\tau \leftrightarrow \nu_\tau) = 0.475$

earth absorption effects.... taken into account

Number of events expected in detector for a given lifetime

depends on instrument response for a given data sample

$$\alpha = flavor \, index$$

$$\frac{dN_{\alpha}}{dE_{\nu}d\Omega dE'd\cos\theta'd\phi'} = \frac{d(\phi_h + \phi_{eg})_{\alpha}}{dE_{\nu}d\Omega} \mathcal{E}_{\alpha} D_{eff,\alpha}$$

instrument response:
$$\mathcal{E}_{\alpha} = A_{eff,\alpha}(E_{\nu},\theta) \times \Delta t$$

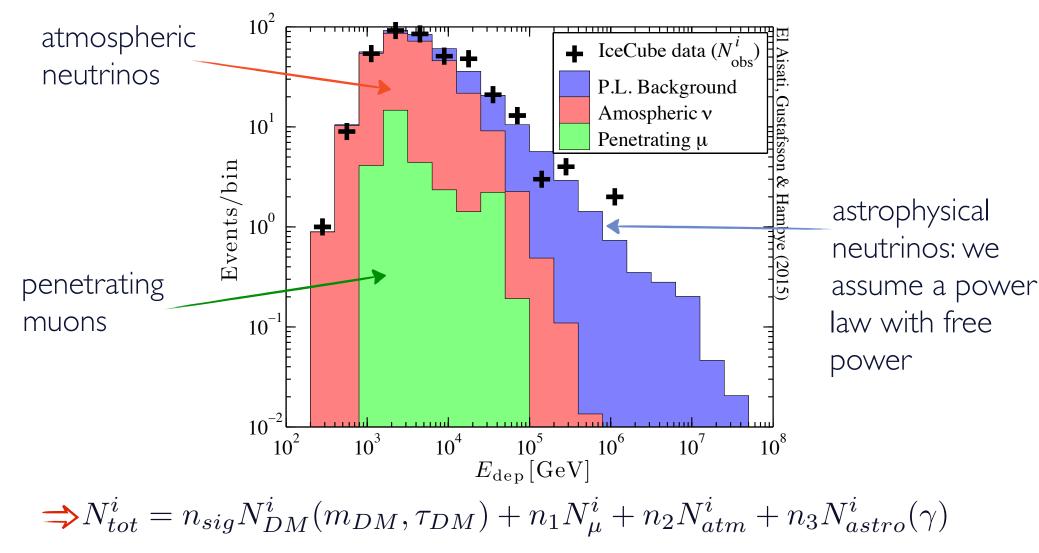
$$\mathcal{E}_{\alpha} = A_{eff,\alpha}(E_{\nu},\theta) \times \Delta t$$

$$\mathcal{E}_{\alpha} = A_{eff,\alpha}(E_{\nu},\theta) \times \Delta t$$

$$\Rightarrow N_{DM}^{i} = \int dE' \int d\cos\theta' \int d\phi' \int dE \int d\Omega \sum_{\alpha=e,\mu,\tau,\bar{e},\bar{\mu},\bar{\tau}} P_{\alpha} \frac{dN_{\alpha}}{dE_{\nu}d\Omega dE' d\cos\theta' d\phi'}$$

for a public 2010-2012 IceCube data sample $(78+8 \text{ strings}, 100 \text{ GeV} - 10^8 \text{ GeV}, 383 \text{ detected events})$

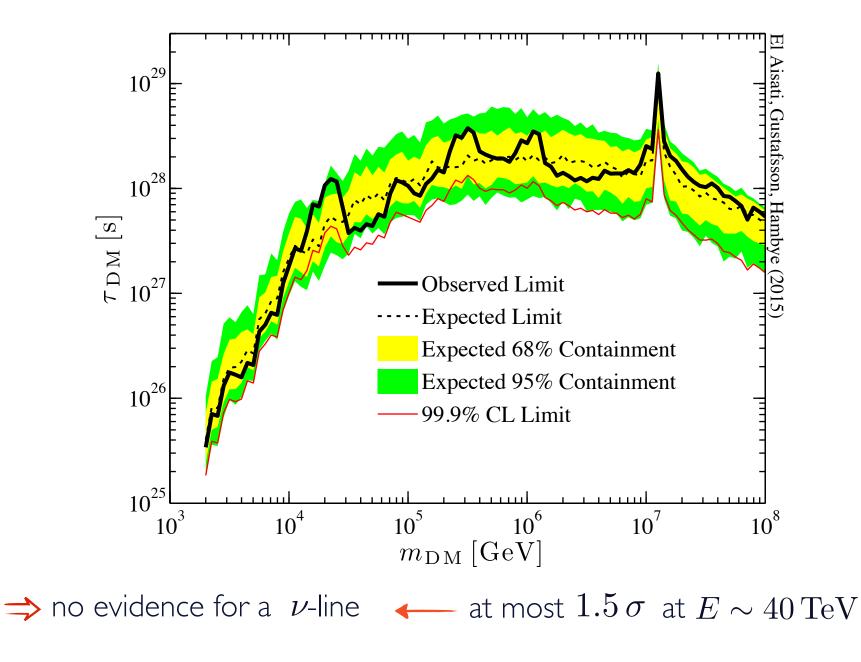
Background



free normalizations $n_{sig,1,2,3}$ and free power γ

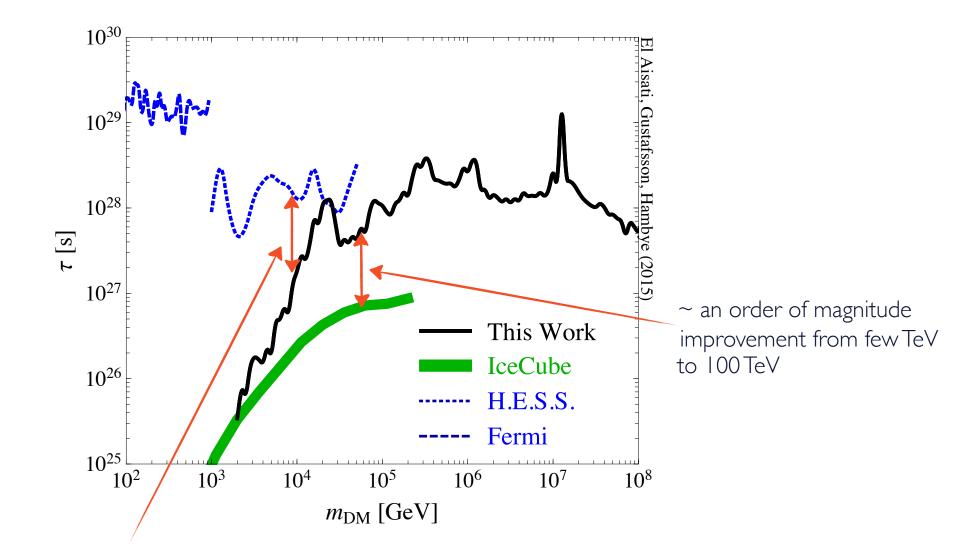
 \Rightarrow statistical method: test statistic of profile likelihood ratio (as for Fermi γ -line)

Result: lower limit on lifetime

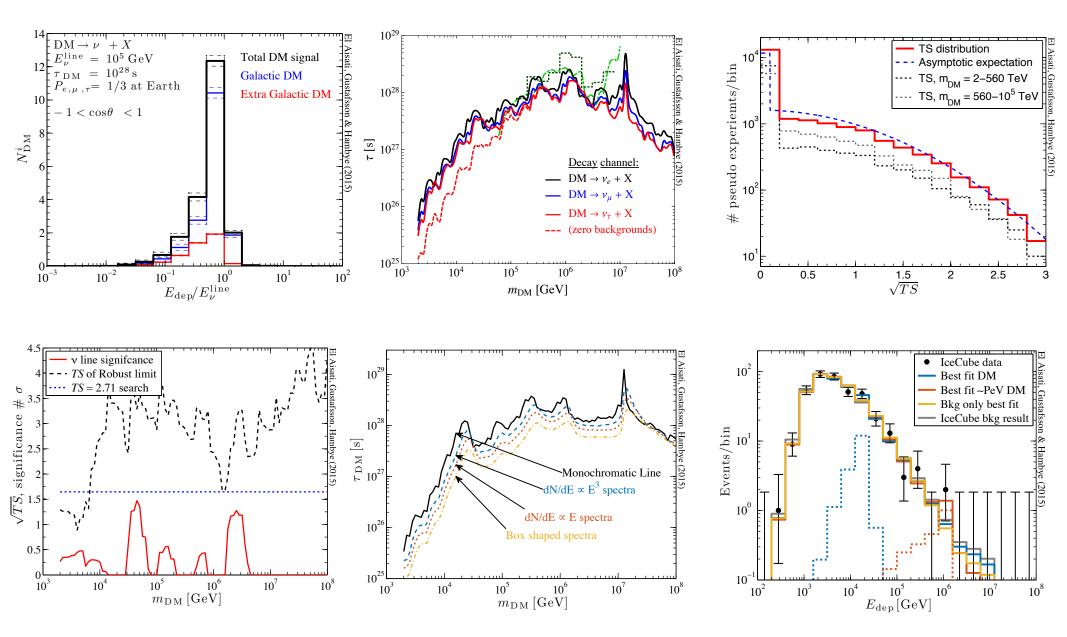


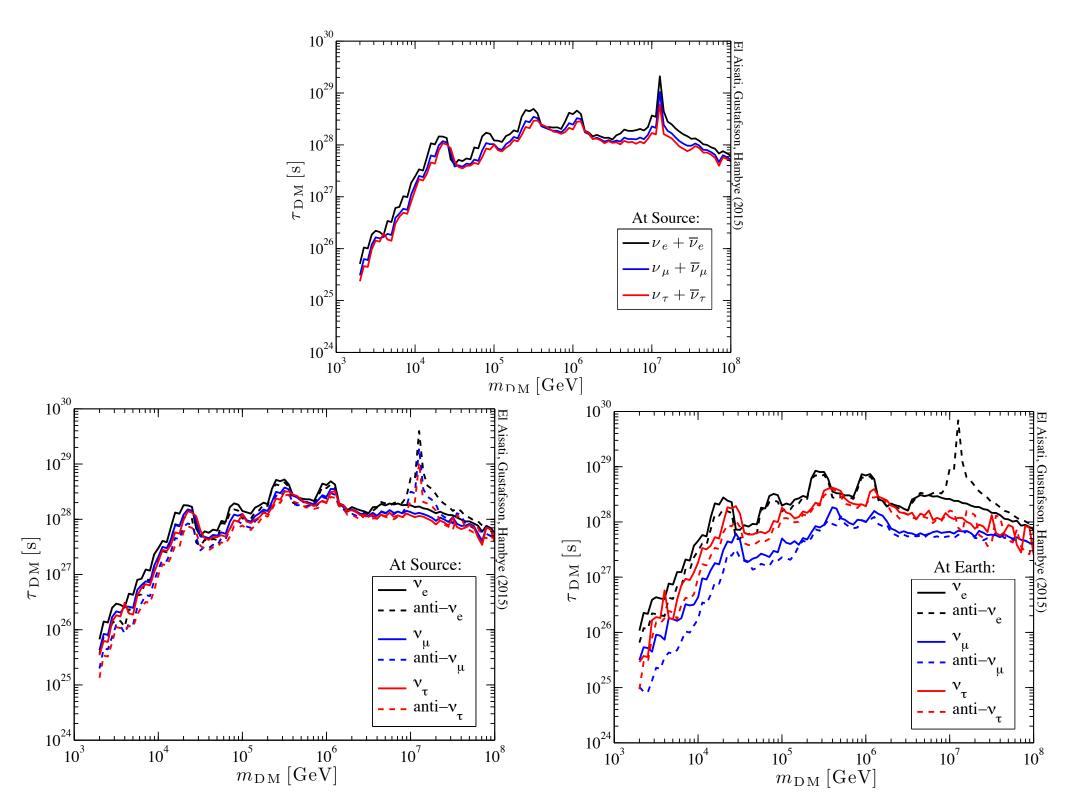
 $m_{DM}\gtrsim 100\,{
m TeV}\,$ bounds in Rott, Kohri, Park '14, Esmaili, Kang, Serpico '14 are similar

Comparison with previous limits and with γ -line limits



between few TeV and 50 TeV, γ and ν line sensitivities are similar! \leftarrow within a factor I to 20





Double smoking gun scenario: details

Systematic study of $DM \rightarrow \nu + \gamma$ double smoking gun scenario: EFT

a 2-body radiative decay of a neutral particle is anyway given by non-renormalizable interactions

 \checkmark very slow decay: could be natural if the mediator inducing it

is heavy, similar to proton case

stability due to accidental symmetry

a dim-6 operator mediated by GUT scale gives: $\tau_{DM} \sim 10^{28}\,{\rm sec}$

$$\mathcal{L}_{eff} = \sum_{i} \frac{c_{i}^{dim-5}}{\Lambda_{UV}} \mathcal{O}_{i}^{dim-5} + \sum_{i} \frac{c_{i}^{dim-6}}{\Lambda_{UV}^{2}} \mathcal{O}_{i}^{dim-6} + \dots$$
very few operators: one dim-5 structure: $\mathcal{O}^{(5)Y} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_{Y}^{\mu\nu}$,
 $\mathcal{O}^{(5)L} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_{L}^{\mu\nu}$,
3 dim-6 structure: $\mathcal{O}^{1Y} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_{Y}^{\mu\nu}\phi$,
 $\mathcal{O}^{1L} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_{L}^{\mu\nu}\phi$,
 $\mathcal{O}^{2Y} \equiv D_{\mu}\bar{L}\gamma_{\nu}\psi_{DM}F_{Y}^{\mu\nu}$,
 $\mathcal{O}^{2L} \equiv D_{\mu}\bar{L}\gamma_{\nu}\psi_{DM}F_{L}^{\mu\nu}$,
 $\mathcal{O}^{3Y} \equiv \bar{L}\gamma_{\mu}D_{\nu}\psi_{DM}F_{Y}^{\mu\nu}$,

$$\mathcal{O}^{3L} \equiv \bar{L} \gamma_{\mu} D_{\nu} \psi_{DM} F_L^{\mu\nu},$$

Systematic study of $DM \rightarrow \nu + \gamma$ double smoking gun scenario: EFT

 $\begin{array}{l} \searrow \\ \text{taking into account possible DM quantum numbers DM can} \\ \text{be a singlet, doublet, triplet,} \\ \text{quadruplet or quintuplet} \\ (\text{with } \phi = H \text{ or } \overline{H}) \end{array}$

Operator	DM field	Fields contract.	Operator
Structure	(n-plet, Y)	(n-plet)	
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}$	(2, -1)		$\mathcal{O}^{(5)Y}_{ ext{2-let}}$
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu}$	(2,-1)		$\mathcal{O}^{(5)L}_{ ext{2-let}}$
	(4,-1) (1,0)		$\frac{\mathcal{O}_{4\text{-let}}^{(5)L}}{\mathcal{O}_{H,1\text{-let}}^{1Y}}$
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}H$	(1,0) (3,0)		${\mathcal O}_{H,1 ext{-let}}^{H,1 ext{-let}} \ {\mathcal O}_{H,3 ext{-let}}^{1Y}$
$\bar{L}\sigma_{\mu u}\psi_{DM}F_L^{\mu u}H$	(3,0) (1,0)		$\mathcal{O}_{H,3\text{-let}}^{H,3\text{-let}}$ $\mathcal{O}_{H,1\text{-let}}^{1L}$
	(3,0)	a: $(\bar{L}H) = 1$	$\mathcal{O}_{H,3\text{-let}}^{1L,a}$
	(3,0)	c: $(\psi_{DM}H) = 2$	$\mathcal{O}_{H,3\text{-let}}^{1L,c}$
	(3, 0)	d: $(\psi_{DM}H) = 4$	$\mathcal{O}_{H,3 ext{-let}}^{1L,d}$
	(3, 0)	e: $(\bar{L}\psi_{DM}) = 2$	$\mathcal{O}_{H,3 ext{-let}}^{1L,e}$
	(3,0)	f: $(\bar{L}\psi_{DM}) = 4$	$\mathcal{O}_{H,3 ext{-let}}^{1L,f}$
	(5,0)		$\mathcal{O}_{H,5\text{-let})}^{1L}$
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}\tilde{H}$	(3, -2)		$\mathcal{O}_{ ilde{H},3 ext{-let}}^{1Y}$
$\bar{L}\sigma_{\mu u}\psi_{DM}F_L^{\mu u}\tilde{H}$	(3, -2)	b: $(\bar{L}\tilde{H}) = 3$	$\mathcal{O}^{1L,b}_{ ilde{H},3 ext{-let}}$
	(3, -2)	c: $(\psi_{DM}\tilde{H}) = 2$	$\mathcal{O}_{ ilde{H},3 ext{-let}}^{1L,c}$
	(3, -2)	d: $(\psi_{DM}\tilde{H}) = 4$	$\mathcal{O}_{ ilde{H}.3 ext{-let}}^{1L,d}$
	(3, -2)	e: $(\bar{L}\psi_{DM}) = 2$	$\mathcal{O}_{ ilde{H},3 ext{-let}}^{1L,e}$
	(3, -2)	f: $(\bar{L}\psi_{DM}) = 4$	$\mathcal{O}^{1L,f}_{ ilde{H},3 ext{-let}}$
	(5, -2)		$\mathcal{O}_{ ilde{H},5 ext{-let}}^{1L}$
$D_{\mu}\bar{L}\gamma_{\nu}\psi_{DM}F_{Y}^{\mu\nu}$	(2, -1)		$\mathcal{O}^{2Y}_{ ext{2-let}}$
$D_{\mu}\bar{L}\gamma_{\nu}\psi_{DM}F_{L}^{\mu u}$	(2, -1)		$\mathcal{O}^{2L}_{ ext{2-let}}$
	(4, -1)		$\mathcal{O}^{2L}_{4 ext{-let}}$
$\bar{L}\gamma_{\mu}D_{\nu}\psi_{DM}F_{Y}^{\mu\nu}$	(2, -1)		$\mathcal{O}^{3Y}_{ ext{2-let}}$
$\bar{L}\gamma_{\mu}D_{\nu}\psi_{DM}F_{L}^{\mu u}$	(2, -1)		$\mathcal{O}^{3L}_{ ext{2-let}}$
	(4, -1)		$\mathcal{O}^{3L}_{ ext{4-let}}$

Operator predictions: line energies and intensities

I) same line energies

II) correlated line intensities: more u than γ

rightarrow gauge invariance: $F_{\mu\nu}^{Y}$ or $F_{\mu\nu}^{L} \Rightarrow DM \rightarrow \nu\gamma, \nu Z, lW$

if operator has a $F_{\mu\nu}^{Y}$ and $m_{DM} >> m_{Z}$: $\frac{n_{\nu}}{n_{\gamma}} = \frac{1}{\cos^{2}\theta_{W}} = 1.3$ if operator has a $F_{\mu\nu}^{L}$ and $m_{DM} >> m_{Z}$: $\frac{n_{\nu}}{n_{\gamma}} = \frac{1}{\sin^{2}\theta_{W}} = 4.3$ if combination of operators: $\frac{n_{\nu}}{n_{\gamma}} \ge 1$ and of order 1 unless tuning Operator predictions: additional continuum fluxes of cosmic rays

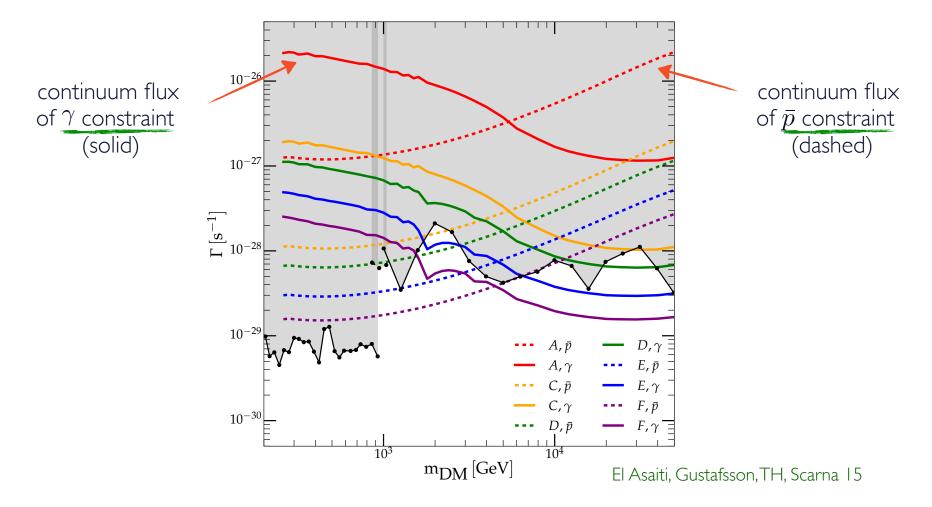
$$\checkmark Z, W, l \text{ produce } \bar{p}, \gamma_D, e^{\pm}, \dots$$

It turns out that all operators can give only 5 possible line intensity to CR number ratios

	DM	field	Operator	Prediction	
operators with a $F_{\mu\nu}^{Y}$:	n-ple	t, Y		$R_{\nu/\gamma}$	$R_{\gamma/CR}$
$\frac{1}{\mu\nu}$	1	0	\mathcal{O}_{H}^{1Y}	1.3	A
$A: R_{\gamma/CR} = \cos^2 \theta_W / (\sin^2 \theta_W \cdot n_{CR/Z}),$		0	\mathcal{O}_{H}^{1L}	4.3	E
	2	-1	$ \begin{array}{c} \mathcal{O}^{(5)Y}, \mathcal{O}^{2Y}, \mathcal{O}^{3Y} \\ \mathcal{O}^{(5)L}, \mathcal{O}^{2L}, \mathcal{O}^{3L} \end{array} $	1.3	A
		-1	$\mathcal{O}^{(5)L},\mathcal{O}^{2L},\mathcal{O}^{3L}$	4.3	E
only $DM \to \gamma \nu, Z\nu$ channels	5		\mathcal{O}_{H}^{1Y}	1.3	A
operators with a $F^L_{\mu\nu}$:	3	0	$egin{array}{l} \mathcal{O}_{H}^{1L,a} \ \mathcal{O}_{H}^{1L,d}, \mathcal{O}_{H}^{1L,f} \end{array}$	4.3	C
	0	0		4.3	D
$C: R_{\gamma/CR} = \sin^2 \theta_W / (\cos^2 \theta_W \cdot n_{CR/Z}),$			$\mathcal{O}_{H}^{1L,c}, \mathcal{O}_{H}^{1L,e}$	4.3	E
			$\mathcal{O}_{ ilde{H}}^{1Y}$	1.3	A
			$\mathcal{O}_{ ilde{H}}^{1L,e}$	4.3	C
	3	-2	$egin{array}{c} \mathcal{O}_{ ilde{H}}^{1L,e} \ \mathcal{O}_{ ilde{H}}^{1L,b}, \mathcal{O}_{ ilde{H}}^{1L,d} \end{array} \end{array}$	4.3	D
$D, E, F : B_{C}/CR = \frac{\sin^2 \theta_W}{\cos^2 \theta_W}$			$\mathcal{O}_{ ilde{H}}^{1L,c}$	4.3	E
$D, E, F: R_{\gamma/CR} = \frac{\sin \theta_W}{\cos^2 \theta_W \cdot n_{CR/Z} + c_W \cdot (n_{CR/W+l^-} + n_{CR/W-l^+})}$			$\left \begin{array}{c} \mathcal{O}_{ ilde{H}}^{1L,f} \end{array} ight $	4.3	F
	4	-1	$\left \ \mathcal{O}^{(5)L}, \ \mathcal{O}^{2L}, \ \mathcal{O}^{3L} ight.$	4.3	D
$c_W = rac{1}{4}, 1, rac{9}{4}$	5	0	$\left \mathcal{O}_{H}^{1L} \right $	4.3	D
$DM \to \gamma \nu, Z\nu, Wl$ channels	5	-2	$\left \mathcal{O}_{ ilde{H}}^{1L} ight $	4.3	D

Operator predictions: additional continuum fluxes of cosmic rays

 \longrightarrow upper bound on γ -line intensity from imposing that associated CR flux doesn't exceed observed ones



clear possibilities to have double monochromatic DM evidence + observation of associated CR excess!

Importance of 3-body decays for operators involving a scalar field

$$\mathcal{O}^{1Y} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}\phi,$$
$$\mathcal{O}^{1L} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu}\phi,$$

$$\Gamma_{2-body} \propto \frac{1}{8\pi} \frac{v_{\phi}^2}{m_{DM}}$$

$$\Gamma_{3-body} \propto \frac{1}{128\pi^3} m_{DM}$$

$$\underbrace{ \Gamma_{3-body}}_{\Gamma_{2-body}} \sim \frac{1}{16\pi^2} \frac{m_{DM}^2}{v_{\phi}^2} \Rightarrow \begin{array}{c} \text{3-body channels dominate 2-body} \\ \text{channels for } m_{DM} \gtrsim 4 \,\text{TeV} \\ \text{(with } \phi = H \,\text{or } \bar{H}) \end{array}$$

3-body channel consequences

 $\psi_{DM} \rightarrow \nu \gamma h, \, \nu \gamma Z_L, \, l \gamma W_L, \, \nu Zh, \, \nu ZZ_L, \, l ZW_L, \, l Wh, \, l WZ_L, \, \nu WW_L$

• additional cosmic rays

3-body channel consequences

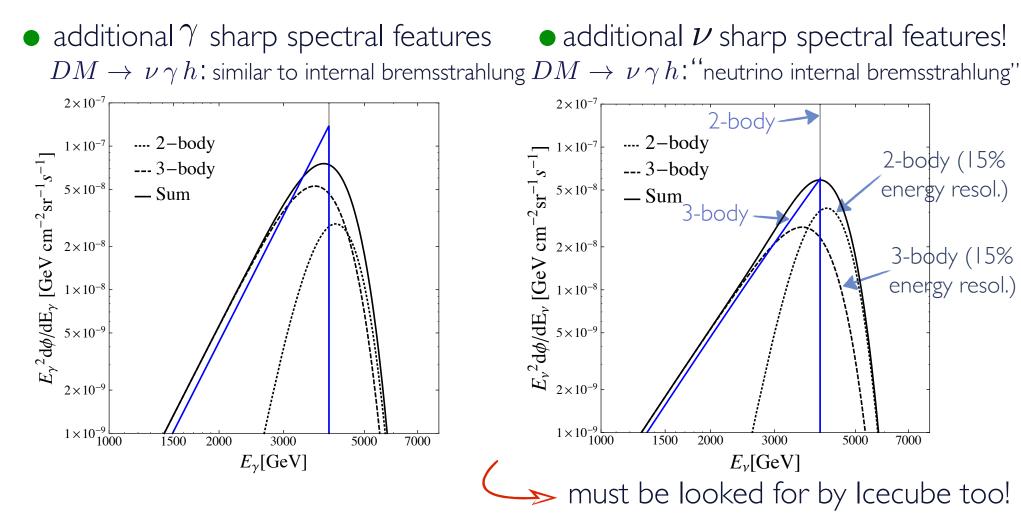
 $\psi_{DM} \rightarrow \nu \gamma h, \, \nu \gamma Z_L, \, l \gamma W_L, \, \nu Zh, \, \nu ZZ_L, \, l ZW_L, \, l Wh, \, l WZ_L, \, \nu WW_L$

- additional cosmic rays
- additional γ sharp spectral features $DM
 ightarrow
 u \, \gamma \, h$: similar to internal bremsstralung 2×10^{-7} 2-body-.... 2-body 1×10^{-7} $E_{\gamma}^{2} d\phi/dE_{\gamma} [\text{GeV cm}^{-2} \text{sr}^{-1} s^{-1}]$ ---- 3-body3-body — Sum 3-body (15% energy resol.) 5×10^{-8} 2×10^{-8} 2-body (15% energy resol.) 1×10^{-8} 5×10^{-9} 2×10^{-9} 1×10^{-9} 1000 1500 2000 3000 5000 7000 $E_{\gamma}[\text{GeV}]$

3-body channel consequences

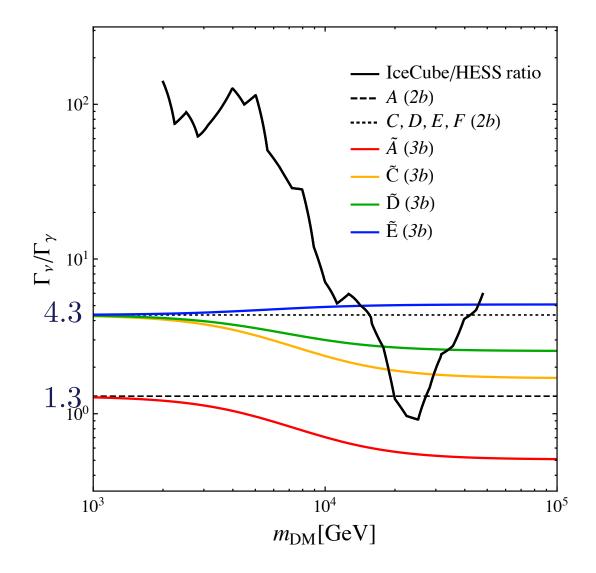
 $\psi_{DM} \rightarrow \nu \gamma h, \, \nu \gamma Z_L, \, l \gamma W_L, \, \nu Zh, \, \nu ZZ_L, \, l ZW_L, \, l Wh, \, l WZ_L, \, \nu WW_L$

additional cosmic rays

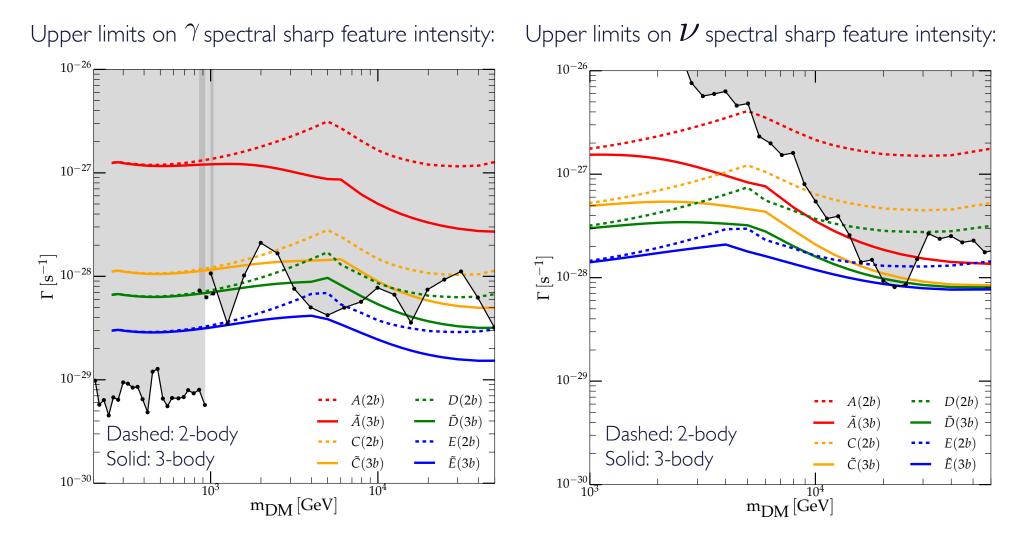


Summing 2 and 3 body sharp feature γ and $\,\nu$

ratios of ν sharp feature intensity to γ sharp feature intensity



Summing 2 and 3 body sharp feature γ and ν : upper limits



clear possibilities to have double monochromatic DM
 evidence + observation of associated CR excess!
 and to distinguish classes of operators and scenarios