

Pauli Exclusion Principle tests with VIP2

Johann Marton for the VIP2 Collaboration Stefan Meyer Institute (SMI), Vienna

Outline

- Motivation for testing a solid rule of nature (i.e. pillar of QM)
- Experimental Method of VIP/VIP2
- Results obtained so far
- New experimental setup VIP2
- Summary and outlook

W. Pauli 1925

"In an atom there cannot be two or more equivalent electrons for which the values of all four quantum numbers coincide. If an electron exists in an atom for which all of these numbers have definite values, then the state is occupied."

W.Pauli, Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren, Zeitschrift für Physik 31 (1925) 765.

Austrian Academy

Motivation

PEP lacks a clear, intuitive explanation

... Already in my original paper I stressed the circumstance that I was unable to give a logical reason for the exclusion principle or to deduce it from more general assumptions.

I had always the feeling and I still have it today, that this is a deficiency.

... The impression that the shadow of some incompleteness [falls] here on the bright light of success of the new quantum mechanics seems to me unavoidable.

W. Pauli, Nobel lecture 1945

Motivation

If something in fundamental physics can be tested, then it absolutely must be tested

(L. Okun)

The Pauli Principle and the spin statistics connection

Ralph Kronig (1904-1995) suggested that electrons have spin (1925). Pauli: *"it is indeed a very clever idea but has nothing to do with reality"*

Our Knowledge today:

Bosons and Fermions Symmetric states → bosons (possibly many particles in the same quantum state) Anti-symmetric states → fermions (one particle per quantum state) → Different statistics

Pauli and spin-statistics

OCTOBER 15, 1940

PHYSICAL REVIEW

The Connection Between Spin and St

W. PAULI Physikalisches Institut, Eidg. Technischen Hochschule, Züri and Institute for Advanced Study, Princeton, New (Received August 19, 1940)

In the following paper we conclude for the relativistically invaria particles: From postulate (I), according to which the energy must of *Fermi-Dirac* statistics for particles with arbitrary half-integral s according to which observables on different space-time points with commutable, the necessity of *Einstein-Bose* statistics for particles wi It has been found useful to divide the quantities which are irreducil formations into four symmetry classes which have a commutable mu $+\epsilon$, $-\epsilon$ with $\epsilon^2 = 1$.

Hence we come to the result: For integral spin the quantization according to the exclusion principle is not possible. For this result it is essential, that the use of the D_1 function in place of the D function be, for general reasons, discarded.

On the other hand, it is formally possible to quantize the theory for half-integral spins according to Einstein-Bose-statistics, but according to the general result of the preceding section the energy of the system would not be positive. Since for physical reasons it is necessary to postulate this, we must apply the exclusion principle in connection with Dirac's hole theory.

In conclusion we wish to state, that according to our opinion the connection between spin and statistics is one of the most important applications of the special relativity theory.

Consequences

Some examples:

Periodic table of the elements

Stability of matter

Neutron stars

..... etc

So far no violation of the spin-statistics could be found - but violations can arise in string theory

..The Pauli Exclusion Principle is one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it is still debated today because an intuitive, elementary explanation is still missing.." [Bartalucci et al., 2006]

Many attempts were already made to accomplish small/tiny violation of the Pauli Principle.

PHYSICAL REVIEW D 78, 126009 (2008) Spin-statistics violations in superstring theory

Mark G. Jackson*

Particle Astrophysics Center and Theory Group, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA (Received 28 October 2008; published 29 December 2008)

Experimental constraints

-Energy scale \rightarrow high energy experiments

-Coupling constant \rightarrow precision experiments (like deviations from fermionic spin statistics)

$$\frac{\beta^2}{2} \le 4.5 \times 10^{-28}$$
. VIP 2006

This bound is expected to improve another 2 orders of magnitude over the next few years due to larger integrated currents. Though the energy scale is low at only 8 keV, the incredible precision means this might be a viable way of detecting superstring-motived violations.

PRL 105, 051601 (2010)

PHYSICAL REVIEW LETTERS

week ending 30 JULY 2010

Non-Pauli Transitions from Spacetime Noncommutativity

A. P. Balachandran,^{1,2} Anosh Joseph,¹ and Pramod Padmanabhan^{1,2}

¹Department of Physics, Syracuse University, Syracuse, New York 13244-1130, USA ²The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India 600 113 (Received 2 April 2010; published 26 July 2010)

The consideration of noncommutative spacetimes in quantum theory can be plausibly advocated from physics at the Planck scale. Typically, this noncommutativity is controlled by fixed "vectors" or "tensors" with numerical entries like $\theta_{\mu\nu}$ for the Moyal spacetime. In approaches enforcing Poincaré invariance these deform or twist the method of (anti)summetrization of identical particle state vectors. We

TABLE I.	Bounds on the noncommutativity parameter χ .					
Experiment	Туре	Bound on χ (length scales)	Bound on χ (energy scales)			
Borexino Kamiokande NEMO NEMO-2 Maryland	Nuclear Nuclear Atomic Nuclear	$\leq 10^{-43} \text{ m}$ 10^{-42} m 10^{-15} m 10^{-41} m 10^{-22} m	$\gtrsim 10^{24} \text{ TeV}$ 10^{23} TeV 10^8 eV 10^{22} TeV 10^3 TeV			
VIP	Atomic	10^{-23} m	10^{4} TeV			

vents to Pauli-forbidden tical spinorial particles. isitions, we infer that the scale beyond the Planck

Methods to test PEP

- Atomic transitions → VIP, VIP2
- Nuclear transitions
- Nuclear reactions
- Anomalous atomic structure
- Anomalous nuclear structure
- Statistics of neutrinos
- Astrophysics and cosmology

Methods to test PEP

- Different methods different assumptions
- Different systems, e.g. atoms, nuclei ...
- Clearest method: "new" fermions testing PEP
- Avoiding Greenberg-Messiah superselection
- How to get "new" fermions?
 - Radioactive source
 - Circulating current (Ramberg-Snow)
 - Pair production

The pre-VIP experiment limit Ramberg and Snow (RS)

Phys. Lett. B238 (1990) 438

X-ray detector: Closed proportional tube Detector calibration $\Delta E \sim 1200 \text{ eV} @ 8 \text{keV}$

random walk of the conduction electrons in the copper strip

of Sciences

PEP Tests with atomic transitions

From S.R. Elliott et al., Found. Phys. 42 (2012) 1015

Process	Туре	Experimental limit	$\frac{1}{2}\beta^2$ limit	
Atomic transitions				_
$\beta^- + Pb \rightarrow P\breve{b}$	Ia		3×10^{-2}	Recently created fermions interacting
$e_{pp}^- + \text{Ge} \rightarrow \breve{\text{Ge}}$	Ia		1.4×10^{-3}	with system
$e_{I}^{-} + \mathrm{Cu} \rightarrow \mathrm{Cu}$	П		1.7×10^{-26}	
$e_I^- + \mathrm{Cu} \to \mathrm{Cu}$	Π		4.5×10^{-28}	Distant fermions interacting
$e_I^- + \mathrm{Cu} \to \mathrm{Cu}$	Π		6.0×10^{-29}	with system
$e_I^- + Pb \rightarrow Pb$	Π		1.5×10^{-27}	J
$e_f^- + Pb \rightarrow Pb$	IIa		2.6×10^{-39}	Stable system
$I \rightarrow I + X$ -ray	III	$\tau > 2 \times 10^{27} \text{ sec}$	3×10^{-44}	transition
$I \rightarrow \check{I} + X$ -ray	III	$\tau > 4.7 \times 10^{30} \text{ sec}$	$6.5 imes 10^{-46}$	

Best lim	nits for P	Barriers Strate Starters Strate Starters Strate Starters Strate Monoshing Starters Strate Monoshing Starters Strate Monoshing Starters Strate Monoshing Starters Strate Starters Straters Starters Straters Starte	f n correte procession in the Yane ramosphere continuent in the same ramosphere the schild in the same ramosphere the schild in the same ramosphere in the schild in the schild		
Nuclear transition	$^{12}C \rightarrow ^{11}B + p$	BOREXINO @LNGS	$\frac{\beta^2}{2} < 7.4 \cdot 10^{-60}$	G. Bellini et al., PRC 81 (2	010) 034,317
Atomic transitionDAMA $I \rightarrow I + \gamma$ β^2 @LNGS $\frac{\beta^2}{2} < 4.7 \cdot 10^{-46}$				R. Bernabei et al., Eur. Ph (2009) 327	ys. J. C62

Nuclear Physics in Astrophysics IV IOP Publishins doi:10.1088/1742-6596/202/1/012039 Journal of Physics: Conference Series 202 (2010) 012039 PHYSICAL REVIEW C 81, 034317 (2010) New experimental limits on the Pauli-forbidden transitions in ¹²C nuclei obtained with 485 days Borexino data G. Bellini,1 S. Bonetti, L. Ludhova,1 E. Meroni,1 L. Ludhova,¹ E. Meroni,¹ F. Calaprice,⁴ A. Chavar J. Xu,⁴ C. Cararo,⁵ S. D. S. Zavatareli,⁵ H. de Ker Exclusion J. Dai⁶, I. Machulin,8 A. Sabelni A.d'Angelo^{*,*}, H.L. He^{*}, A. Incicchitti^{*}, H.H. Kuang⁶, X.H. Ma⁶, F. Montecchia^{7,2}, F. Nozzolj^{1,2}, D. Prosperi^{3,4}, X.D. Sheng⁶, Z.P. Ye^{6,8} S. Gazzana,¹⁰ C. Ghiano,¹⁰ Aldo Ianni,¹⁰ G. Korga,¹⁰ D. Montanari,¹⁰ A. Razeto,¹⁰ R. Tartaglia,¹⁰ M. Goeger-Neff,¹¹ T. Lewke,¹¹ O. Meindl,¹¹ L. Oberauer,¹¹ F. von Feilitzsch,¹¹ Y. Winter,¹¹ M. Wurm,¹¹ C. Grieb,¹² S. Hardy,¹² M. Jovce,¹² ¹ Dip. di Fisica, Università di Roma "Tor Versata", I-00133 Rome, Italy
 ² INFN, sez. Roma "Tor Versata", I-00133 Rome, Italy
 ³ Dip. di Fisica, Università di Roma "La Sapienza", I-00185 Rome, Italy
 ⁴ INFN, sez. Roma, I-00185 Rome, Italy S. Manecki, ¹² L. Papp, ¹² R. S. Raghavan, ¹² D. Rountree, ¹² R. B. Vogelaar, ¹² W. Maneschg, ¹³ S. Schönert, ¹³ H. Simgen, ¹³ G. Zuzel,¹³ M. Misiaszek,¹⁴ M. Wojcik,¹⁴ F. Ortica,¹⁵ and A. Romani¹⁵ (Borexino Collaboration) ⁵Laboratori Nazionali del Gran Sasso, I.N.F.N., Assergi, Italy ⁶IHEP, Chinese Academy, P.O. Box 918/3, Beijing 100039, China ⁷Lab. Sperimentale Policentrico di Ingegneria Medica, Università di Roma "Tor Vergata"

> Abstract. Searches for non-paulian nuclear processes, i.e. processes normally forbidden by the Pauli-Exclusion-Principle (PEP) with highly radiopure NaI(TI) scintillators allow the test of this fundamental principle with high sensitivity. Status and perspectives are briefly addressed.

⁸University of Jing Gangshan, Jiangxi, China

ute

Goal of VIP (VIolation of the Pauli Principle)

The VIP experiment has the scientific goal of reducing by four orders of magnitude the limits on the probability of a possible violations of the Pauli exclusion principle for the electrons

From:

(Ramberg & Snow -1990)

$$\beta^2 / 2 \le 1.7 \cdot 10^{-26} (> 95\% \ C.L.)$$
$$\beta^2 / 2 \le 10^{-30}$$

to

THE INTERNATIONAL VIP COLLABORATION

M. Bragadireanu, T. Ponta

"Horia Holubei" National Institute of Physics and Nuclear Engineering -Bucharest, Romania

M. Laubenstein

Laboratori Nazionali del Gran Sasso dell'INFN - Italy

M. S. Bartalucci, S. Bertolucci, M. Catitti, C. Curceanu (Petrascu), S. Di Matteo, C.Guaraldo, M. Iliescu, D. Pietreanu, D. L. Sirghi, F. Sirghi, L. Sperandio, O. Vazquez Doce Laboratori Nazionali di Frascati dell'INFN - Frascati, Italy

> J.-P. Egger Univ. of Neuchâtel - Neuchâtel, Switzerland

E. Milotti

Univ. Degli Studi di Trieste and INFN Sezione di Trieste - Trieste, Italy

M. Cargnelli, Hexi-Shi, T. Ishiwatari, J. Marton, E. Widmann, J. Zmeskal Stefan Meyer Institute for Subatomic Physics - Vienna, Austria

VIP Method: Improved Ramberg-Snow method: Introducing electrons via a current for probing

Search for anomalous X-ray transitions

Transition energies of anomalous X-rays in Cu

Multiconfiguration Dirac-Fock approach (including rel. corrections, lamb shift, Breit operator, radiative corrections)

Transition	Initial en.	Final en.	Transition	Radiative transition	Multipole order	
			energy (eV)	rate (s-1)		
2p _{1/2} - 1s _{1/2}	-45799	-53528	7729	2.63E+14	E1	K_{α}
2p _{3/2} - 1s _{1/2}	-45780	-53528	7748	2.56E+14	E1+M2	J
3p _{1/2} - 1s _{1/2}	-44998	-53528	8530	2.78E+13	E1	
3p _{3/2} - 1s _{1/2}	-44996	-53528	8532	2.68E+13	E1+M2	J K _β
"Normal" 2	<mark>p-1s transit</mark>	tion in Cu @	8040 eV	~ 300 eV d	ifference in energy	Ι,

VIP Apparatus

The VIP X-ray detectors: CCDs

X-ray spectra with the VIP final setup at LNF

2 types of measurements:

14510 min with I=40A 14510 min with I=0A

Subtraction gives:

$$\Delta N_X = -21 \pm 73$$

Analysis of VIP with RS method:

$$\Delta N_{X} \geq \frac{1}{2} \beta^{2} N_{new} \frac{N_{int}}{10} f_{g} = \frac{\beta^{2} (\Sigma I \Delta t) D}{e \mu} \frac{1}{20} f_{g}$$

$$\Delta N_{X} \geq \frac{\beta^{2}}{2} (4.9 \cdot 10^{29}) \Delta N_{X} = -21 \pm 73$$

$$\frac{\beta^{2}}{2} \leq \frac{3 \cdot 73}{4.9 \cdot 10^{29}}$$

$$\frac{\beta^{2}}{2} \leq 4.5 \cdot 10^{-28} \text{ at } 99.7 \text{ C.L.}$$

S. Bartalucci, et. al, Physics Letters B 641, 18 (2006).

Test site and final location:

Laboratori Nazionali del Gran Sasso (LNGS), Istituto Nazionale di Fisica Nucleare

LNGS

VIP Setup at LNGS

VIP Experiment at LNGS Thu Apr 13 2006 12:19:35

VIP-LNGS result

After about 2 years running

 $\beta^2/2 < 4.7 \times 10^{-29}$

(Preliminary)

L. Sperandio Ph. D. Thesis, Univ. Roma2, 2008
C. Curceanu et al., Phys. Proc. 17 (2011) 40
C. Curceanu et al., Journal of Physics: Conference Series 361 (2012) 012006
Marton et al., Phys. Conf. Ser. 447 (2012) 012070

J. Marton et al., J. Phys., Conf. Ser. 447 (2013) 012070

Experiments testing PEP using "fresh" electrons

Experiment	Year	Material	Limit	Source	Publication
M. Goldhaber, G. Scharff Goldhaber	1948	Pb	3 · 10 ⁻²	electrons from β^{-} decay	PR 73 (1948) 1492
E. Ramberg, G.A. Snow	1990	Cu	1,7 · 10 ⁻²⁶	electric current	PLB 238 (1990) 438
S. Bartalucci et al. (VIP)	2006	Cu	4,5 · 10 ⁻²⁸	electric current	PLB 641 (2006) 18
C. Curceanu et al. (VIP)	2011	Cu	4,7 · 10 ⁻²⁹	electric current	Phys. Proc. 17 (2011) 40
S.R. Elliott et al.	2012	Pb	1,5 · 10 ⁻²⁷	electric current	Found. Phys. 42 (2012) 1015

How to increase the sensitivity?

- More "fresh" electrons higher current limited by heat dissipation
- Higher x-ray efficiency: increase of detector solid angle, intrinsic efficiency
- Reduce background: small efficient detectors
- Better energy resolution
- Optimize shilding: low activity material (inner layer), active shielding

Improved experiment VIP2

- Large (1 cm²) SDDs provide excellent energy resolution (even superior than CCDs at 8keV)
- Timing capability for triggering
- Compact design suitable for gaining larger solid angle
- Successfully used in the detection of kaonic atom x-ray spectroscopy at DAFNE (SIDDHARTA) with large background reduction

Sketch of the VIP2 Setup: Cu foil, 2x3 SDD x-ray detectors

Copper target VIP2

Length: 30 mm Width: 10 mm Cross section: 0.4 mm²

Current: 100 A

Sketch of the VIP2 Setup Passive shielding removed

te OAW Austrian Academy of Sciences

Background reduction for VIP2 by active shielding

environmental radiation

Scheme of a setup with plastic scintillators sandwiching the SDD x-ray detectors (scheme for Monte-Carlo simulation)

VIP2 Active shielding with scintillators

Austrian Academy of Sciences

Scintillator timing tests at BTF

Detector timing performance

time resolution of scintillator from BTF measurement

time resolution of SDDs from test setup measurement of cosmic rays

Test setup at LNF

10 Scintillation detectors for active shielding with SiPM readout

VIP2 Features

Changes		Factor
Acceptance	12% (1%)	12
Higher current	100A (50A)	2
Reduced length	3 cm (8.8 cm)	1/3
Total linear factor		8
Better SDD energy resolution	170 eV (340 eV)	4
Reduced active area	6 cm2 (114 cm²)	20
Better shielding and veto		5-10
Higher SDD efficiency		1/2
Background reduction		200-400
Overall improvement		>120

 \rightarrow Limit from 10⁻²⁹ to 10⁻³¹

Current Status

- VIP2 inner setup under test in the laboratory
 - Cooling/Cryogenics
 - SDDs: stability, calibration, energy resolution
 - Active shielding tests
 - Tests with current (target up to 180A operated)
- Setup at LNGS in 2015

Summary and Outlook

- Pauli principle a fundamental rule of nature but difficult to explain in a simple way.
- Pauli principle violation can be studied searching for Pauli-forbidden atomic transitions (using "new" electrons) with very high sensitivity.
- VIP experiment in Gran Sasso set the best limit (≈10⁻²⁹) for PEP violation for electrons using the Ramberg-Snow method.
- VIP aims at improving the sensitivity by orders of magnitudes (new X-ray detectors, active shielding).

Thank you for your attention

Oscar W. Greenberg (2012)

The search for fundamental properties of the physical world is crucial for our understanding of Nature.

A great deal of effort has been devoted to testing special relativity, that the speed of light is the maximum velocity of propagation of physical effects. Similar efforts have been devoted to testing the validity of CPT symmetry. The Pauli exclusion principle is another basic property that should be tested to high accuracy. Any detection of violation of the exclusion principle will have far reaching impact on physics.

Spare

Cosmological limits

Process		Experimental Limit	$\frac{1}{2}\beta^2$ limit		
Astrophysics and Cosmology					
Solar burning and p-p bound state	IIa		$< 1.6 \times 10^{-15}$		
Primordial nucleosynthesis and ${}^{5}Li$	Ι	${}^{5}\tilde{L}i/{}^{6}Li < 8 \times 10^{-18}$	$< 2 \times 10^{-28}$		
Supernova neutrons and anomal. nuclei	Ia	$\tilde{O}/O < 10^{-18}$	$< 10^{-17}$		
Neutrino stat. and primordial nucleosyn.	Ι	⁴ He production			
Thermal evolution of the Universe	Ι		$< 10^{-15} - 10^{-17}$		

Different interpretation

Alternative analysis S.R. Elliott, Found. Phys. 42 (2012) 1015

Consider free electron collisions with atoms

$$\frac{\beta^2}{2} < \frac{\Delta N_X}{g_f} \frac{1}{P N_{new}^{free} N_{int}^{free}}$$

$$N_{\text{int}}^{free} = \Delta t \frac{v_f}{\mu}$$
$$N_{new}^{free} = N_e V$$

Experiment	$N_e \ (/\mathrm{cm}^3)$	$V ~({ m cm}^3)$	$v_f ~({\rm cm/s})$	$N_{int}^{free} imes N_{new}^{free}$	$\frac{N_{3\sigma}}{\epsilon_{tot}}$	$\frac{1}{2}\beta^2$
VIP-UG	8.41×10^{22}	1.2	1.57×10^{8}	1.03×10^{44}	5×10^4	8.4×10^{-39}
This Work	$1.33 imes 10^{23}$	36.1	$1.83 imes 10^8$	$6.88 imes 10^{45}$	$1.64 imes 10^5$	$2.6 imes 10^{-39}$

Non-Pauli Transitions from Spacetime Noncommutativity

A. P. Balachandran,^{1,2} Anosh Joseph,¹ and Pramod Padmanabhan^{1,2} ¹Department of Physics, Syracuse University, Syracuse, New York 13244-1130, USA ²The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India 600 113 (Received 2 April 2010; published 26 July 2010)

The consideration of noncommutative spacetimes in quantum theory can be plausibly advocated from physics at the Planck scale. Typically, this noncommutativity is controlled by fixed "vectors" or "tensors" with numerical entries like $\theta_{\mu\nu}$ for the Moyal spacetime. In approaches enforcing Poincaré invariance, these deform or twist the method of (anti)symmetrization of identical particle state vectors. We argue that the Earth's rotation and movements in the cosmos are "sudden" events to Pauli-forbidden processes. This induces (twisted) bosonic components in state vectors of identical spinorial particles. These components induce non-Pauli transitions. From known limits on such transitions, we infer that the energy scale for noncommutativity is $\gtrsim 10^{24}$ TeV. This suggests a new energy scale beyond the Planck scale.

Experiment	Туре	Bound on χ (length scales)	Bound on χ (energy scales)
Borexino	Nuclear	≲10 ⁻⁴³ m	≥10 ²⁴ TeV
Kamiokande	Nuclear	10 ⁻⁴² m	10 ²³ TeV
NEMO	Atomic	10^{-15} m	10^8 eV
NEMO-2	Nuclear	10^{-41} m	10 ²² TeV
Maryland	Atomic	10 ⁻²² m	10 ³ TeV
VIP	Atomic	10 ⁻²³ m	10^4 TeV

TABLE I. Bounds on the noncommutativity parameter χ .

Assumption: Lifetime atomic process 10⁻¹⁶ s Lifetime nuclear 10⁻²³ s

Atomic transitions