D physics (+t-phys.): SM & new physics potential

Gilad Perez

Weizmann Institute

Flavor Physics & CP Violation 2010

Outline

Brief Intro', the importance of uFCNC measurements.

• $D - \overline{D}$ mixing, tFCNC, theory+data.

Covariant formalism => immune bounds; show also generic.

Implications for general minimal flavor violation & SUSY+RS.

SM way to induce flavor conversion & CPV is unique.

SM way to induce flavor conversion & CPV is unique.

SM way to induce flavor conversion & CPV is unique.

SM way to induce flavor conversion & CPV is unique.

Absence (?) of deviation from SM predictions implies severe bound on new physics (NP).

• Most of precise information involves K, B mesons, linked to down type FCNC.

Output the severe hierarchy problem is induced by the top sector, which is indeed extended in most of natural NP models.

Up flavor violation is interesting

Ironically, top sector, which also dominates CPV & custodial

breaking, is poorly probed (also charm till recently).

Up flavor violation is interesting

Ironically, top sector, which also dominates CPV & custodial breaking, is poorly probed (also charm till recently).

Down type flavor violation can be shut off via *alignment*,

MR GILAD PEREZ

where anarchic NP is diagonal in the down mass basis.

Holiday Inn Express Reservations <holidayinnexpress@reservations.ihg.com< td=""> Mon, Feb 15, 2010 at 2:35 Reply-To: HolidayInnExpress@reservations.ihg.com Thank you for choosing Holiday Inn Express To: jasgilperez@gmail.com Thank you for choosing Holiday Inn Express Here is your reservation information. Image: Committee Committe</holidayinnexpress@reservations.ihg.com<>	DO, ITALY: 67	42015
Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here	ess Reservations <holida nnExpress@reservations. nail.com</holida 	rInnExpress@reservations.ihg.com> Mon, Feb 15, 2010 at 2:35 PM g.com
Reservation Resources Add to Calendar	Tha Holiday Inn Express Res	k you for choosing Holiday Inn Express. Here is your reservation information.
Modify/Cancel Reservation Priority Club Rewards: View All Reservations Your Priority Club Rewards number applies to this reservation.	sources You Plea Reservation Price You	confirmation number is 67442015 we use your confirmation number to reference your fight domino alignme ity Club Rewards: Priority Club Rewards number applies to this reservation.

Yasmin & Gilad Perez <iasqilperez@qmail.com>

Up flavor violation is interesting

Ironically, top sector, which also dominates CPV & custodial breaking, is poorly probed (also charm till recently).

Down type flavor violation can be shut off via *alignment*,

MR GILAD PEREZ

where anarchic NP is diagonal in the down mass basis.

Holiday Inn Express Reservations <holidayinnexpress@reservations.ihg.com< td=""> Mon, Feb 15, 2010 at 2:35 Reply-To: HolidayInnExpress@reservations.ihg.com Thank you for choosing Holiday Inn Express To: jasgilperez@gmail.com Thank you for choosing Holiday Inn Express Here is your reservation information. Image: Committee Committe</holidayinnexpress@reservations.ihg.com<>	DO, ITALY: 67	42015
Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation information. Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here is your reservation Questions: 180 945 3716 Thank you for choosing Holiday Inn Express. Here	ess Reservations <holida nnExpress@reservations. nail.com</holida 	rInnExpress@reservations.ihg.com> Mon, Feb 15, 2010 at 2:35 PM g.com
Reservation Resources Add to Calendar	Tha Holiday Inn Express Res	k you for choosing Holiday Inn Express. Here is your reservation information.
Modify/Cancel Reservation Priority Club Rewards: View All Reservations Your Priority Club Rewards number applies to this reservation.	sources You Plea Reservation Price You	confirmation number is 67442015 we use your confirmation number to reference your fight domino alignme ity Club Rewards: Priority Club Rewards number applies to this reservation.

Yasmin & Gilad Perez <iasqilperez@qmail.com>

Up sector

Huge recent progress in measurement of mass splitting & CP violation (CPV) in the *D* system:

System parameters roughly determined (HFAG):

$$x = (1.00 \pm 0.25) \times 10^{-2},$$

$$y = (0.77 \pm 0.18) \times 10^{-2},$$

$$1 - |q/p| = +0.06 \pm 0.14,$$

$$\phi = -0.05 \pm 0.09,$$

Huge recent progress in measurement of mass splitting & CP violation (CPV) in the *D* system:

System parameters roughly determined (HFAG):

$$x = (1.00 \pm 0.25) \times 10^{-2},$$

$$y = (0.77 \pm 0.18) \times 10^{-2},$$

$$1 - |q/p| = +0.06 \pm 0.14,$$

$$\phi = -0.05 \pm 0.09,$$

$$m \equiv \frac{m_1 + m_2}{2}, \qquad \Gamma \equiv \frac{\Gamma_1 + \Gamma_2}{2}$$
$$x \equiv \frac{m_2 - m_1}{\Gamma}, \qquad y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma}.$$

SM: D system is controlled by 2 gen' physics \Rightarrow CP conserving

> Bottom contribution is down by: $\mathcal{O}\left(\frac{m_c^2}{m_b^2} \times \frac{V_{ub}V_{cb}^*}{V_{us}V_{cs}^*}\right) = 10^{-4}$

Huge recent progress in measurement of mass splitting & CP violation (CPV) in the *D* system:

System parameters roughly determined (HFAG):

$$x = (1.00 \pm 0.25) \times 10^{-2},$$

$$y = (0.77 \pm 0.18) \times 10^{-2},$$

$$1 - |q/p| = +0.06 \pm 0.14,$$

$$\phi = -0.05 \pm 0.09,$$

Absence of *D* CPV
a SM victory!

SM: D system is controlled by 2 gen' physics \Rightarrow CP conserving

> Bottom contribution is down by: $\mathcal{O}\left(\frac{m_c^2}{m_b^2} \times \frac{V_{ub}V_{cb}^*}{V_{us}V_{cs}^*}\right) = 10^{-4}$

The power of CPV in the D system

The power of CPV in the D system

$$\begin{split} y_{12} &\equiv |\Gamma_{12}|/\Gamma, \qquad x_{12} \equiv 2|M_{12}|/\Gamma, \qquad \phi_{12} \equiv \arg(M_{12}/\Gamma_{12}). \\ x_{12}^{\text{NP}} &\lesssim x_{12}^{\text{exp}} \sim 0.012, \qquad x_{12}^{\text{NP}} \sin \phi_{12}^{\text{NP}} \lesssim x_{12}^{\text{exp}} \sin \phi_{12}^{\text{exp}} \sim 0.0022, \end{split}$$

If x is due to NP then it missed a chance to revealed itself in $\mathcal{O}(1)$ CPV. $|x_{12}^{NP}/\mathbf{x}|$ Gedalia, et. al (09). 1.0 0.8 Nocen No Cp, 0.6 0.4 0.2

GMFV

0.5

LMFV

1.0

 $\sin 2\sigma_D \qquad \phi_{12}^{\rm NP} = 2\sigma_D$

Thursday, May 27, 2010

-1.0

-0.5

The power of CPV in the D system

$$\begin{split} y_{12} &\equiv |\Gamma_{12}|/\Gamma, \qquad x_{12} \equiv 2|M_{12}|/\Gamma, \qquad \phi_{12} \equiv \arg(M_{12}/\Gamma_{12}). \\ x_{12}^{\text{NP}} &\lesssim x_{12}^{\text{exp}} \sim 0.012, \qquad x_{12}^{\text{NP}} \sin \phi_{12}^{\text{NP}} \lesssim x_{12}^{\text{exp}} \sin \phi_{12}^{\text{exp}} \sim 0.0022, \end{split}$$

If x is due to NP then it missed a chance to revealed itself in $\mathcal{O}(1)$ CPV.

What do we know about the NP flavor sector, model independently?

$\Delta F = 2 \text{ status}$ Isidori, Nir, GP (10)

Operator	Bounds on A	$\Lambda \text{ in TeV } (c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L\gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	$1.0 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	$3.6 imes 10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	1	$.1 \times 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3	$.7 \times 10^2$	1.3	$\times 10^{-5}$	Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$					

$\Delta F = 2 \, \mathrm{status}$ Isidori, Nir, GP (10)

6	Operator	Bounds on Λ	in TeV $(c_{ij} = 1)$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
		Re	Im	Re	Im	
X	$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
	$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
	$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
	$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
	$(ar{b}_L\gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
	$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	$3.6 imes 10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
	$(ar{b}_L \gamma^\mu s_L)^2$	1.1	1×10^2	7.6	$\times 10^{-5}$	Δm_{B_s}
	$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7	7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}
	$(\bar{t}_L \gamma^\mu u_L)^2$					

$\Delta F = 2 \, \mathrm{status}$ Isidori, Nir, GP (10)

	Operator	Bounds on	$\overline{\Lambda \text{ in TeV } (c_{ij} = 1)}$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
		Re	Im	Re	Im	
	$(\bar{s}_L \gamma^\mu d_L)^2$	$9.8 imes 10^2$	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
	$(ar{s}_Rd_L)(ar{s}_Ld_R)$	$1.8 imes 10^4$	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
	$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
*	$(ar{c}_R u_L)(ar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
	$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
S	$(\bar{b}_R d_L)(\bar{b}_L d_R)$	$1.9 imes 10^3$	3.6×10^3	$5.6 imes 10^{-7}$	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
	$(ar{b}_L \gamma^\mu s_L)^2$	1	1×10^2	7.6	$\times 10^{-5}$	Δm_{B_s}
	$(\bar{b}_R s_L) (\bar{b}_L s_R)$	د. و	3.7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}
	$(\bar{t}_L \gamma^\mu u_L)^2$					

D-system falls only behind the K-one

$\Delta F = 2 \, \mathrm{status}$ Isidori, Nir, GP (10)

	Operator	Bounds on Λ	in TeV $(c_{ij} = 1)$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables	
<u> </u>		Re	Im	Re	Im		
7	$(\bar{s}_L \gamma^\mu d_L)^2$	$9.8 imes 10^2$	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$	
	$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$	
	$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$	
The second	$(ar{c}_R u_L)(ar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$	
	$(ar{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes 10^2$	3.3×10^{-6}	$1.0 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$	
	$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$	
	$(ar{b}_L \gamma^\mu s_L)^2$	1.1	1×10^2	7.6	$\times 10^{-5}$	Δm_{B_s}	
	$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7	7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}	
	$(\bar{t}_L \gamma^\mu u_L)^2$?		?	?	
D-system fall t-FCNC stay tuned!							

Thursday, May 27, 2010

ACOUNER 2010

Operator	Bounds on	$\Lambda \text{ in TeV } (c_{ij} = 1)$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$\overline{(ar{s}_L \gamma^\mu d_L)^2}$	$9.8 imes 10^2$	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L\gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L\gamma^\mu s_L)^2$	1	$.1 imes 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
$(ar{b}_Rs_L)(ar{b}_L s_R)$	3	$8.7 imes 10^2$	1.3	$\times 10^{-5}$	Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$					

What if down alignment is at work ?

Operator	Bounds on .	$\Lambda \text{ in TeV } (c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(ar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L\gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L\gamma^\mu s_L)^2$	1	$.1 imes 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
$(ar{b}_Rs_L)(ar{b}_L s_R)$	3	$.7 imes 10^2$	1.3	$\times 10^{-5}$	Δm_{B_s}
$(\overline{t}_L \gamma^\mu u_L)^2$					

What if down alignment is at work ?

Operator	Bounds on Λ	a in TeV $(c_{ij} = 1)$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(s_L\gamma, \omega_L)$	0.0×10^2	1.6×10^{4}	$9.0 imes 10^{-7}$	$3/1 \times 10^{-9}$	$\underline{-}_{K}, \epsilon_{K}$
	1.0 X 10*	3.2×10^5	6.9×10^{-9}	2.6×10	
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
	5.1×10^{2}	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta_d, \mathcal{S}_{\psi}K_S$
$(\overline{b}, d)(\overline{b}, \overline{b})$	1.0 / 10	3.6×10^{3}	5.6×10^{-1}	1.7 × 10	
	1	1×10^2	7.6	$\times 10^{-5}$	D_s
$(\overline{b}, \alpha)(\overline{b}, \alpha)$	J.	1×10^2	1.3	X 10	Ame
$(ar{t}_L \gamma^\mu u_L)^2$					

What if down alignment is at work ?

Operator	Bounds on A	Λ in TeV $(c_{ij} = 1)$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(s_L\gamma - a_L)$	$2.0 - 10^{2}$	1.6×10^{4}	$9.0 imes 10^{-7}$	$3/1 \times 10^{-9}$	$\underline{\neg}_{K}, \epsilon_{K}$
$(\overline{}, \underline{})(\overline{}, \underline{})$	1.0×10^{11}	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10	
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	$5.6 imes 10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$\left(\begin{array}{c} U \\ U \\ \end{array} \right) \left(\begin{array}{c} U \\ \end{array} \right) $	5.1×10^{2}	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta_d, \tilde{\sim}_{\psi} K_S$
$(\overline{b}, d)(\overline{l}, \overline{b})$	1.0 / 10	$3.6 imes 10^3$	5.6×10^{-1}	1.7×10^{-7}	
	1.	1×10^{2}	7.6	$\times 10^{-5}$	•••• <i>D</i> _s
$(\overline{h}_{-}, 0)(\overline{L}_{-}, 0)$	J.	7×10^{2}	1.3	X 10	Amp
$(ar{t}_L \gamma^\mu u_L)^2$					

u-FCNC data remove immunities!

2-gen' effective theory for $\Delta F = 2$

Robust model independent bounds:

(*i*) robust (*ii*) LLRR - stronger, but model dependent.

Robust model independent bounds:

(*i*) robust (*ii*) LLRR - stronger, but model dependent.

 $\frac{1}{\Lambda_{\rm NP}^2} \left[z_1^K (\overline{d_L} \gamma_\mu s_L) (\overline{d_L} \gamma^\mu s_L) + z_1^D (\overline{u_L} \gamma_\mu c_L) (\overline{u_L} \gamma^\mu c_L) + z_4^D (\overline{u_L} c_R) (\overline{u_R} c_L) \right].$

[More info' in Δc =1, Golowich, et. al (09), Kagan & Sokolof (09)]

2-gen' effective theory for $\Delta F = 2$

Robust model independent bounds:

[More info' in $\Delta c=1$, Golowich, et. al (09), Kagan & Sokolof (09)]

2-gen' effective theory for $\Delta F = 2$

Robust model independent bounds:

[More info' in $\Delta c=1$, Golowich, et. al (09), Kagan & Sokolof (09)]

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^\mu Q_{Lj}),$$

One cannot eliminate the constraint from K & D systems simultaneously! Nir (07); Blum et. al. (09).

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^\mu Q_{Lj}),$$

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^\mu Q_{Lj}),$$

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^\mu Q_{Lj}),$$

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^\mu Q_{Lj}),$$

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^\mu Q_{Lj}),$$

Covariant, basis independent, description of flavor violation

2 x [Gedalia, Mannelli, GP (10)]

Can be understood in a covariant, basis independent manner (needed for 3gen')

Two generation case:

- Any Hermitian $2x^2$ matrix => expressed as sum of Pauli matrices.
- A matrix corresponds to a vector in SU(2) space.
- Can define set of operations, like scalar product and cross product: $|\vec{A}| \equiv \sqrt{\frac{1}{2} \operatorname{tr}(A^2)}, \quad \vec{A} \cdot \vec{B} \equiv \frac{1}{2} \operatorname{tr}(AB), \quad \vec{A} \times \vec{B} \equiv -\frac{i}{2} [A, B],$ $\cos(\theta_{AB}) \equiv \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} = \frac{\operatorname{tr}(AB)}{\sqrt{\operatorname{tr}(A^2)\operatorname{tr}(B^2)}}.$
- The SM basic vectors: $\mathcal{A}_u \equiv (Y_u Y_u^\dagger)_{tr}, \qquad \mathcal{A}_d \equiv (Y_d Y_d^\dagger)_{tr}.$

Covariant basis, 2 gen'

Define a covariant, physical, basis using the SM basis vectors:

$$\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}, \quad \hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}, \quad \hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}.$$

Up,down flavor violation is misalignment between SM mass basis unit vector & new sources of flavor breaking:

$$\left|z_1^{D,K}
ight| = \left|X_Q imes \hat{\mathcal{A}}_{u,d}
ight|^2$$
. (say in $rac{z_1}{\Lambda_{\mathrm{NP}}^2}O_1 = rac{1}{\Lambda_{\mathrm{NP}}^2} \left(\overline{Q}_i(X_Q)_{ij}\gamma_\mu Q_j\right) \left(\overline{Q}_i(X_Q)_{ij}\gamma^\mu Q_j\right)$

Covariant basis, 2 gen'

Define a covariant, physical, basis using the SM basis vectors:

$$\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}, \quad \hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}, \quad \hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}.$$

Up,down flavor violation is misalignment between SM mass basis unit vector & new sources of flavor breaking:

$$\begin{vmatrix} z_1^{D,K} \end{vmatrix} = \begin{vmatrix} X_Q \times \hat{\mathcal{A}}_{u,d} \end{vmatrix}^2 . \text{ (say in } \frac{z_1}{\Lambda_{NP}^2} O_1 = \frac{1}{\Lambda_{NP}^2} (\overline{Q}_i(X_Q)_{ij}\gamma_\mu Q_j) (\overline{Q}_i(X_Q)_{ij}\gamma^\mu Q_j) \text{)} \\ \text{contribution of } X_Q \text{ to } K^0 - \overline{K^0} \text{ mixing, } \Delta m_K, \end{cases} \stackrel{\hat{J}(\sigma_2)}{\uparrow} \stackrel{\hat{J}_d(\sigma_1)}{\downarrow} \stackrel{\hat{J}_d(\sigma_1)}{\downarrow} \frac{\hat{J}_d(\sigma_1)}{\sqrt{|z_1^K|}}$$

 $\mathcal{A}_{d}(\sigma_{2}$

Covariant basis, CPV (strongest bounds) CPV in $\Delta F = 2$: Im $(z_1^{K,D}) = 2(X_Q \cdot \hat{J})(X_Q \cdot \hat{J}_{u,d})$.

 $\operatorname{Im}(z_1^K)$ is twice the product of the two solid orange lines.

Note that the angle between \mathcal{A}_d and \mathcal{A}_u is twice the Cabibbo angle

Covariant basis, CPV (strongest bounds) CPV in $\Delta F = 2$: Im $(z_1^{K,D}) = 2(X_Q \cdot \hat{J})(X_Q \cdot \hat{J}_{u,d})$. Im (z_1^K) is twice the product of the two solid orange lines. Note that the angle between \mathcal{A}_d and \mathcal{A}_u is twice the Cabibbo angle Im (z_1^K)

• Deriving a robust bound: In the covariant bases $-X_Q = X^{u,d} \hat{A}_{u,d} + X^J \hat{J} + X^{J_{u,d}} \hat{J}_{u,d}$,

and the two bases are related through

$$X^u = \cos 2\theta_{\rm C} X^d - \sin 2\theta_{\rm C} X^{J_d}, \quad X^{J_u} = -\sin 2\theta_{\rm C} X^d - \cos 2\theta_{\rm C} X^{J_d},$$

Covariant basis - physical interpretation

The axis \hat{J} is the 2-gen' "Jarlskog": $X^J \propto \operatorname{tr}(X_Q[\mathcal{A}_d, \mathcal{A}_u]) \neq 0$,

Covariant basis - physical interpretation

The axis \hat{J} is the 2-gen' "Jarlskog": $X^J \propto \operatorname{tr}(X_Q[\mathcal{A}_d, \mathcal{A}_u]) \neq 0$,

Note that - $A_{u,d} \cdot \hat{J} = 0 \Leftrightarrow$ no CPV within SM.

Covariant basis - physical interpretation

The axis \hat{J} is the 2-gen' "Jarlskog": $X^J \propto \operatorname{tr}(X_Q[\mathcal{A}_d, \mathcal{A}_u]) \neq 0$,

Note that - $A_{u,d} \cdot \hat{J} = 0 \Leftrightarrow$ no CPV within SM.

 \diamondsuit The axes $\hat{J}_{u,d}$ dials CPV in $\Delta F=2$ (new model indep' condition):

$$X^{J_{u,d}} \propto \operatorname{tr} \left(X_Q \left[\mathcal{A}_{u,d}, \left[\mathcal{A}_d, \mathcal{A}_u \right] \right] \right) \neq 0$$

Gedalia, Mannelli, GP (10)

Implications of CPV in $D^0 - \bar{D}^0$ mixing

- (i) Model independent;
- (ii) General minimal flavor violation (GMFV);
- (iii) SUSY;
- (iv) Randall-Sundrum (RS).

Ciuchini, et al. (07); Csaki, et al. (08); Kagan, et al. (09); Gedalia, et al. (09,10,10); Blum, et al. (09); Buras et.al.; Csaki, et al. (09); Bauer, et al. (09); Bigi, et al. (09); Altmannshofer, et al. (09,10); Blanke, et al. (09); Crivellin & Davidkov (10).

Thursday, May 27, 2010

Robust (immune) bounds

 $L = |X_Q| = (X_Q^2 - X_Q^1)/2 \qquad (X^d)^2 + (X^J)^2 + (X^J)^2 + (X^J)^2 + (X^J)^2 + (X^J)^2 + (X^J)^2 = 1$

Constraining the eigenvalue difference of flavor violation source, indep' of it's direction!

Robust (immune) bounds

 $L = |X_Q| = (X_Q^2 - X_Q^1)/2 \qquad (X^d)^2 + (X^J)^2 + (X$

Constraining the eigenvalue difference of flavor violation source, indep' of it's direction!

Robust (immune) bounds

 $L = |X_Q| = (X_Q^2 - X_Q^1)/2 \qquad (X^d)^2 + (X^J)^2 + (X^J)^2 + (X^J)^2 + (X^J)^2 + (X^J)^2 + (X^J)^2 = 1$

Constraining the eigenvalue difference of flavor violation source, indep' of it's direction!

CPV in D: Model Dependent Implications

General MFV (GMFV) vs. Linear MFV (LMFV)

Kagan, et. al (09); Gedalia, et. al (09).

Comparable NP contributions from strange & bottom (unlike SM)

$$r_{sb} \equiv \frac{y_s^2}{y_b^2} \left| \frac{V_{us}^{\text{CKM}} V_{cs}^{\text{CKM}}}{V_{ub}^{\text{CKM}} V_{cb}^{\text{CKM}}} \right| \sim 0.5,$$

$$C_1^{cu} \propto \left[y_s^2 \left(V_{cs}^{\text{CKM}} \right)^* V_{us}^{\text{CKM}} + \left(1 + r_{\text{GMFV}} \right) y_b^2 \left(V_{cb}^{\text{CKM}} \right)^* V_{ub}^{\text{CKM}} \right]^2$$

$$r_{\text{GMFV} result of resummation \sum_n y_b^n}$$

General MFV (GMFV) vs. Linear MFV (LMFV)

Kagan, et. al (09); Gedalia, et. al (09).

Comparable NP contributions from strange & bottom (unlike SM)

 $r_{sb} \equiv \frac{y_s^2}{y_b^2} \left| \frac{V_{us}^{\text{CKM}} V_{cs}^{\text{CKM}}}{V_{ub}^{\text{CKM}} V_{cb}^{\text{CKM}}} \right| \sim 0.5 \,,$

General MFV (GMFV) vs. Linear MFV (LMFV)

Kagan, et. al (09); Gedalia, et. al (09).

Comparable NP contributions from strange & bottom (unlike SM)

SUSY+RS

SUSY (doom of alignment)

Robust

Generic

Gedalia, et. al (09).

 $\frac{m_{\tilde{Q}_2} - m_{\tilde{Q}_1}}{m_{\tilde{Q}_2} + m_{\tilde{Q}_1}} \le \begin{cases} 0.034 & \text{maximal phases} \\ 0.27 & \text{vanishing phases} \end{cases}$

 $\frac{m_{\tilde{u}_2} - m_{\tilde{u}_1}}{m_{\tilde{u}_2} + m_{\tilde{u}_1}} \lesssim 0.02 - 0.04.$

squark doublets, 1TeV;

average of the doublet & singlet mass splitting.

Possible correlation with EDM's: $d_n \gtrsim 10^{-(28-29)} e \text{ cm}$ Altmannshofer, et. al (09).

(constraining alignment) RS Generic Robust $m_{\rm KK} > \frac{4.9\,(2.4)}{y_{5D}}\,{
m TeV}$ IR (bulk) Higgs $m_{\rm KK} > 2.1 f_{Q_3}^2 \,{\rm TeV}$, $\frac{1}{2} \lesssim y_{5D} \lesssim \frac{2\pi}{N_{\rm KK}}$ for brane Higgs; $\frac{1}{2} \lesssim y_{5D} \lesssim \frac{4\pi}{\sqrt{N_{\rm FV}}}$ for bulk Higgs, f_{Q_3} is typically in the range of 0.4- $\sqrt{2}$.

Thursday, May 27, 2010

3rd gen' Phys. @ the LHC

Top FCNC (tFCNC), $\Delta t = 1$

• LHC: study int' $\sim 10^{6-7} t\bar{t}/yr$

• Top FCNC: $t \to q, Z, \gamma, G$. (q = u + c)(also $t \to qh$ & single top production)

• SM: $BR(t \rightarrow qZ, \gamma, G) \sim 10^{-12}$. (Díaz-Cruz (89); Eilam, Hewett & Soni (90))

6 LHC (100fb⁻¹): $BR(t \rightarrow qZ, \gamma) \gtrsim 10^{-5}$. (Carvalho, et. al (05))

Fox, et. al (07).

Effective theory, dim' 6 operators:

$$\begin{split} O_{LL}^{u} &= i \left[\overline{Q}_{3} \tilde{H} \right] \left[\left(\mathcal{D} \tilde{H} \right)^{\dagger} Q_{2} \right] - i \left[\overline{Q}_{3} \left(\mathcal{D} \tilde{H} \right) \right] \left[\tilde{H}^{\dagger} Q_{2} \right] + \text{h.c.} \\ O_{LL}^{h} &= i \left[\overline{Q}_{3} \gamma^{\mu} Q_{2} \right] \left[H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H \right] + \text{h.c.} , \\ O_{RL}^{w} &= g_{2} \left[\overline{Q}_{2} \sigma^{\mu\nu} \sigma^{a} \tilde{H} \right] t_{R} W_{\mu\nu}^{a} + \text{h.c.} , \\ O_{RL}^{b} &= g_{1} \left[\overline{Q}_{2} \sigma^{\mu\nu} \tilde{H} \right] t_{R} B_{\mu\nu} + \text{h.c.} , \\ O_{LR}^{w} &= g_{2} \left[\overline{Q}_{3} \sigma^{\mu\nu} \sigma^{a} \tilde{H} \right] c_{R} W_{\mu\nu}^{a} + \text{h.c.} , \\ O_{LR}^{b} &= g_{1} \left[\overline{Q}_{3} \sigma^{\mu\nu} \tilde{H} \right] c_{R} B_{\mu\nu} + \text{h.c.} , \\ O_{LR}^{b} &= g_{1} \left[\overline{Q}_{3} \sigma^{\mu\nu} \tilde{H} \right] c_{R} B_{\mu\nu} + \text{h.c.} , \\ O_{LR}^{u} &= i \overline{t}_{R} \gamma^{\mu} c_{R} \left[H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H \right] + \text{h.c.} . \end{split}$$

Fox, et. al (07).

Fox, et. al (07).

	C_{LL}^u	C_{LL}^h	C_{RL}^w	C^b_{RL}	C_{LR}^w	C^b_{LR}	C_{RR}^u
direct bound	9.0	9.0	6.3	6.3	6.3	6.3	9.0
LHC sensitivity	0.20	0.20	0.15	0.15	0.15	0.15	0.20
$B \to X_s \gamma, \ X_s \ell^+ \ell^-$	[-0.07, 0.036]	[-0.017, -0.01] [-0.005, 0.003]	[-0.09, 0.18]	[-0.12, 0.24]	[-14, 7]	[-10, 19]	—
$\Delta F = 2$	0.07	0.014	0.14		_		-
semileptonic				· · · · ·	[0.3, 1.7]		-
best bound	0.07	0.014	0.15	0.24	1.7	6.3	9.0
Λ for $C_i = 1$ (min)	$3.9\mathrm{TeV}$	$8.3{ m TeV}$	$2.6\mathrm{TeV}$	$2.0\mathrm{TeV}$	$0.8{ m TeV}$	$0.4{ m TeV}$	$0.3{ m TeV}$
$\mathcal{B}(t \to cZ) \ (\max)$	$7.1 imes 10^{-6}$	$3.5\times\!10^{-7}$	3.4×10^{-5}	$8.4 imes 10^{-6}$	4.5×10^{-3}	$5.6\times\!10^{-3}$	0.14
$\mathcal{B}(t \to c \gamma) \;(\mathrm{max})$		2 <u></u>	1.8×10^{-5}	4.8×10^{-5}	$2.3 imes10^{-3}$	$3.2\!\times\!\!10^{-2}$	
LHC Window	Closed*	Closed*	Ajar	Ajar	Open	Open	Open

Fox, et. al (07).

	C_{LL}^u	C_{LL}^h	C_{RL}^w	C^b_{RL}	C_{LR}^w	C^b_{LR}	C_{RR}^u
direct bound	9.0	9.0	6.3	6.3	6.3	6.3	9.0
LHC sensitivity	0.20	0.20	0.15	0.15	0.15	0.15	0.20
$B \to X_s \gamma, \ X_s \ell^+ \ell^-$	[-0.07, 0.036]	[-0.017, -0.01] [-0.005, 0.003]	[-0.09, 0.18]	[-0.12, 0.24]	[-14, 7]	[-10, 19]	—
$\Delta F = 2$	0.07	0.014	0.14	10 			
semileptonic					[0.3, 1.7]		
best bound	0.07	0.014	0.15	0.24	1.7	6.3	9.0
Λ for $C_i = 1$ (min)	$3.9\mathrm{TeV}$	$8.3{ m TeV}$	$2.6\mathrm{TeV}$	$2.0{ m TeV}$	$0.8{ m TeV}$	$0.4{ m TeV}$	$0.3{ m TeV}$
$\mathcal{B}(t \to cZ) \ (\max)$	$7.1 imes 10^{-6}$	$3.5 imes 10^{-7}$	3.4×10^{-5}	$8.4 imes 10^{-6}$	4.5×10^{-3}	5.6×10^{-3}	0.14
$\mathcal{B}(t \to c \gamma) \;(\mathrm{max})$			1.8×10^{-5}	4.8×10^{-5}	$2.3 imes10^{-3}$	$3.2\!\times\!\!10^{-2}$	
LHC Window	Closed*	Closed*	Ajar	Ajar	Open	Open	Open
Looks as if B-phys. strongly constraint LH operators!							

Fox, et. al (07).

	C^u_{LL}	C_{LL}^h	C_{RL}^w	C^b_{RL}	C_{LR}^w	C^b_{LR}	C^u_{RR}
direct bound	9.0	9.0	6.3	6.3	6.3	6.3	9.0
LHC sensitivity	0.20	0.20	0.15	0.15	0.15	0.15	0.20
$B o X_s \gamma, \; X_s \ell^+ \ell^-$	[-0.07, 0.036]	[-0.017, -0.01] [-0.005, 0.003]	[-0.09, 0.18]	[-0.12, 0.24]	[-14, 7]	[-10, 19]	—
$\Delta F = 2$	0.07	0.014	0.14	· · · · ·	_		-
semileptonic				· · · · ·	[0.3, 1.7]		
best bound	0.07	0.014	0.15	0.24	1.7	6.3	9.0
Λ for $C_i = 1$ (min)	$3.9\mathrm{TeV}$	$8.3\mathrm{TeV}$	$2.6 \mathrm{TeV}$	$2.0\mathrm{TeV}$	$0.8{ m TeV}$	$0.4{ m TeV}$	$0.3\mathrm{TeV}$
$\mathcal{B}(t \to cZ) \ (\max)$	$7.1 imes 10^{-6}$	$3.5 imes10^{-7}$	3.4×10^{-5}	$8.4 imes 10^{-6}$	$4.5 imes 10^{-3}$	$5.6\times\!10^{-3}$	0.14
$\mathcal{B}(t \to c \gamma) \;(\mathrm{max})$			1.8×10^{-5}	4.8×10^{-5}	$2.3 imes 10^{-3}$	$3.2\!\times\!\!10^{-2}$	
LHC Window	Closed*	Closed*	Ajar	Ajar	Open	Open	Open

Looks as if B-physeline on straint LH operators!

Not valid if down alignment is at work

2x Gedalia, et al. (10).

Robust bounds for $\Delta t = 1$

3-gen' case the structure is much richer (8 Gell-Mann matrices), a covariant treatment is necessary. Simplification: @ LHC light quark jets look the same.

Approximate U(2) Limit of Massless Light Quarks

The approximate U(2)

Oth order question for a 3x3 adjoint: Is a residual U(2) conserved? The approximate U(2)

Oth order question for a 3x3 adjoint: Is a residual U(2) conserved?

Covariant description of approx' U(2)

Without loss of generality:

$$\mathcal{A}_{d} = \frac{y_{b}^{2}}{3} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \qquad \mathcal{A}_{u} = y_{t}^{2} \begin{pmatrix} \blacklozenge & 0 & 0 \\ 0 & \blacklozenge & \blacklozenge \\ 0 & \blacklozenge & \blacklozenge \end{pmatrix}$$

CKM has a single phase:

$$\theta \cong \sqrt{\theta_{13}^2 + \theta_{23}^2} \,,$$

SM massless quarks are
 broken to active & sterile states:

$$U(1)_Q \times U(1)_B$$

$$\int V_{CKM}$$

$$U(2)_Q \times U(1)_{Q_3}$$

$$\int \mathcal{A}_{u,d} \ (V_{CKM} \to \mathbb{1}_3)$$

$$U(3)_Q$$

,

Start as in 2 gen':
$$\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}, \quad \hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}, \quad \hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}.$$

Add a Cartan: $\hat{\mathcal{A}}_{u,d}$ and $\hat{C}_{u,d} \equiv 2\hat{J} \times \hat{J}_{u,d} - \sqrt{3}\hat{\mathcal{A}}_{u,d}$,

$$\hat{\mathcal{A}}'_{u,d} \equiv \hat{J} \times \hat{J}_{u,d}$$
 and $\hat{J}_Q \equiv \sqrt{3}\hat{J} \times \hat{J}_{u,d} - 2\hat{\mathcal{A}}_{u,d}$.

 \hat{J}_Q corresponds to the conserved $U(1)_Q$ generator, $\left[\hat{J}_Q, \hat{\mathcal{A}}_{u,d}\right] = 0$

or

Start as in 2 gen':
$$\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}, \quad \hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}, \quad \hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}.$$

Add a Cartan: $\hat{\mathcal{A}}_{u,d}$ and $\hat{C}_{u,d} \equiv 2\hat{J} \times \hat{J}_{u,d} - \sqrt{3}\hat{\mathcal{A}}_{u,d}$,

 $\hat{\mathcal{A}}'_{u,d} \equiv \hat{J} \times \hat{J}_{u,d}$ and $\hat{J}_Q \equiv \sqrt{3}\hat{J} \times \hat{J}_{u,d} - 2\hat{\mathcal{A}}_{u,d}$.

 \hat{J}_Q corresponds to the conserved $U(1)_Q$ generator, $[\hat{J}_Q, \hat{\mathcal{A}}_{u,d}] = 0$

or

Any adjoint can decompose according to:

$$X_Q^{\Delta F=1} = X'^{u,d} \hat{\mathcal{A}}'_{u,d} + X^J \hat{J} + X^{J_{u,d}} \hat{J}_{u,d} + X^{J_Q} \hat{J}_Q + X^{\vec{D}} \hat{\vec{\mathcal{D}}} \,.$$

Start as in 2 gen':
$$\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}, \quad \hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}, \quad \hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}.$$

Add a Cartan:
$$\hat{\mathcal{A}}_{u,d}$$
 and $\hat{C}_{u,d} \equiv 2\hat{J} \times \hat{J}_{u,d} - \sqrt{3}\hat{\mathcal{A}}_{u,d}$,

$$\hat{\mathcal{A}}'_{u,d} \equiv \hat{J} \times \hat{J}_{u,d}$$
 and $\hat{J}_Q \equiv \sqrt{3}\hat{J} \times \hat{J}_{u,d} - 2\hat{\mathcal{A}}_{u,d}$.

or

 \hat{J}_Q corresponds to the conserved $U(1)_Q$ generator, $[J_Q, \hat{\mathcal{A}}_{u,d}] = 0$

Any adjoint can decompose according to:

$$X_Q^{\Delta F=1} = X'^{u,d} \hat{\mathcal{A}}'_{u,d} + X^J \hat{J} + X^{J_{u,d}} \hat{J}_{u,d} + X^{J_Q} \hat{J}_Q + X^{\vec{D}} \hat{\vec{\mathcal{D}}} .$$

"big" directions

Start as in 2 gen':
$$\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}, \quad \hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}, \quad \hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}.$$

Add a Cartan:
$$\hat{\mathcal{A}}_{u,d}$$
 and $\hat{C}_{u,d} \equiv 2\hat{J} \times \hat{J}_{u,d} - \sqrt{3}\hat{\mathcal{A}}_{u,d}$,

$$\hat{\mathcal{A}}'_{u,d} \equiv \hat{J} \times \hat{J}_{u,d}$$
 and $\hat{J}_Q \equiv \sqrt{3}\hat{J} \times \hat{J}_{u,d} - 2\hat{\mathcal{A}}_{u,d}$.

or

 \hat{J}_Q corresponds to the conserved $U(1)_Q$ generator, $[J_Q, \hat{\mathcal{A}}_{u,d}] = 0$

Any adjoint can decompose according to:

$$X_Q^{\Delta F=1} = \underbrace{X'^{u,d}\hat{\mathcal{A}}'_{u,d} + X^J\hat{J} + X^{J_{u,d}}\hat{J}_{u,d} + X^{J_Q}\hat{J}_Q}_{\text{"index}} + \underbrace{X^{\vec{D}}\vec{\mathcal{D}}}_{\text{"index}}$$

"big" directions ""small" ones, beyond U(2)

Robust projected bound (assuming no signal) & t/b flavor violation

Overall 3rd gen' flavor violation:
$$\frac{2}{\sqrt{3}} |X_Q \times \hat{\mathcal{A}}_{u,d}|$$
,

which extracts $\sqrt{|(X_Q)_{13}|^2 + |(X_Q)_{23}|^2}$ in each basis.

The bounds:
$$\operatorname{Br}(B \to X_{s}\ell^{+}\ell^{-}) \longrightarrow |C_{LL}^{h}|_{b} < 0.018 \left(\frac{\Lambda_{\mathrm{NP}}}{1 \,\mathrm{TeV}}\right)^{2},$$

$$\operatorname{Br}(t \to (c, u)Z) \longrightarrow |C_{LL}^{h}|_{t} < 0.18 \left(\frac{\Lambda_{\mathrm{NP}}}{1 \,\mathrm{TeV}}\right)^{2},$$

$$\frac{4}{3} \left| X_Q^{\Delta F=1} \times \hat{\mathcal{A}}_{u,d} \right|^2 = \left(X^J \right)^2 + \left(X^{J_{u,d}} \right)^2, \quad X^{J_u} = \cos 2\theta \, X^{J_d} + \sin 2\theta \, X'^d,$$

The bound

Thursday, May 27, 2010

 $\Delta F = 2, \left[(\bar{t}, \bar{b})_L X_Q(u, d)_L \right]^2$

Operator	Bounds on	Λ in TeV $(c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	$9.0 imes 10^{-7}$	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	$3.2 imes 10^5$	$6.9 imes 10^{-9}$	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	$5.6 imes10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	$5.7 imes 10^{-8}$	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes10^2$	$3.3 imes 10^{-6}$	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	$3.6 imes 10^3$	$5.6 imes10^{-7}$	$1.7 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	$1.1 imes 10^2$		$7.6 imes 10^{-5}$		Δm_{B_s}
$(\bar{b}_Rs_L)(\bar{b}_Ls_R)$	$3.7 imes 10^2$		$1.3 imes 10^{-5}$		Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$?			?	
$\Delta F = 2, \left[(\bar{t}, \bar{b})_L X_Q(u, d)_L \right]^2$

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on α	Observables		
	Re	Im	Re	Im		
$(ar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$	
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$	
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$	
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$	
$(ar{b}_L\gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$	
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$	
$(ar{b}_L\gamma^\mu s_L)^2$	$1.1 imes 10^2$		$7.6 imes 10^{-5}$		Δm_{B_s}	
$(ar{b}_Rs_L)(ar{b}_L s_R)$	$3.7 imes 10^2$		1.3×10^{-5}		Δm_{B_s}	
$(ar{t}_L\gamma^\mu u_L)^2$	12		7.1 10 ⁻³		$\boxed{uu \to tt}$	

However, CPV in D system is stronger

Despite
$$\mathcal{O}(\lambda_C^5)$$
 suppression:
 $\operatorname{Im}(z_1^D) < 1.1 \times 10^{-7} \left(\frac{\Lambda_{\mathrm{NP}}}{1 \,\mathrm{TeV}}\right)^2$,
 $L < 12 \left(\frac{\Lambda_{\mathrm{NP}}}{1 \,\mathrm{TeV}}\right)$; $\Lambda_{\mathrm{NP}} > 0.08 (1) \,\mathrm{TeV}$,
for $uu \to tt$ and
 $L < 1.8 \left(\frac{\Lambda_{\mathrm{NP}}}{1 \,\mathrm{TeV}}\right)$; $\Lambda_{\mathrm{NP}} > 0.57 (7.2) \,\mathrm{TeV}$,
for D mixing.

Also applied to SUSY & RS => weak but robust bounds.

Outlook, Flavor at the LHC Era

LHC era ~ up FCNC, however, regarding tFCNC, despite orders mag' improvement => constraints rather weak.

Flavor diagonal NP (spectrum or couplings, say KK gluon BRs) could be exciting, especially deviation from U(2).

LMFV vs. GMFV could be next decade question:

LMFV lies on \mathcal{A}_u - \mathcal{A}_d plane; GMFV lies on large-axes sub-manifold . {Since CPV in GMFV $\propto [\mathcal{A}_u, \mathcal{A}_d]$ }

Precision Measurements in D mixing

Huge recent progress in measurement of mass splitting
 & CP violation (CPV) in the *D* system:

Precision Measurements in D mixing

Huge recent progress in measurement of mass splitting
 & CP violation (CPV) in the *D* system:

$$\Delta m_D / m_D = (8.6 \pm 2.1) \times 10^{-15}$$

$$A_{\Gamma} = (1.2 \pm 2.5) \times 10^{-3}$$

$$A_{\Gamma} = \frac{\tau(\overline{D}^0 \to K^- K^+) - \tau(D^0 \to K^+ K^-)}{\tau(\overline{D}^0 \to K^- K^+) + \tau(D^0 \to K^+ K^-)};$$

$$A_{\Gamma} = \frac{1}{2}(|q/p| - |p/q|)y\cos\phi - \frac{1}{2}(|q/p| + |p/q|)x\sin\phi$$

$$\lambda_f = \frac{q\,\bar{A}_f}{p\,A_f}. \qquad \lambda_{K^+ K^-} = -|q/p|e^{i\phi},$$

Precision Measurements in D mixing

Huge recent progress in measurement of mass splitting & CP violation (CPV) in the *D* system:

$$\Delta m_D / m_D = (8.6 \pm 2.1) \times 10^{-15}$$

$$A_{\Gamma} = (1.2 \pm 2.5) \times 10^{-3}$$

$$A_{\Gamma} = \frac{\tau(\overline{D}^0 \to K^- K^+) - \tau(D^0 \to K^+ K^-)}{(\overline{D}^0 \to K^- K^+) + \tau(D^0 \to K^+ K^-)}$$

$$A_{\Gamma} = \frac{1}{2}(|q/p| - |p/q|)y\cos\phi - \frac{1}{2}(|q/p| + |p/q|)x\sin\phi$$

$$\lambda_f = \frac{q}{p}\frac{\bar{A}_f}{A_f}. \quad \lambda_{K^+ K^-} = -|q/p|e^{i\phi},$$

System parameters roughly determined (HFAG):

$$x = (1.00 \pm 0.25) \times 10^{-2},$$

$$y = (0.77 \pm 0.18) \times 10^{-2},$$

$$1 - |q/p| = +0.06 \pm 0.14,$$

$$\phi = -0.05 \pm 0.09,$$

$$m \equiv \frac{m_1 + m_2}{2}, \qquad \Gamma \equiv \frac{\Gamma_1 + \Gamma_2}{2},$$
$$x \equiv \frac{m_2 - m_1}{\Gamma}, \qquad y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma}.$$

Combining $K^0 - \overline{K^0} \& D^0 - \overline{D^0}$ mixings

Powerful model indep' bound.

 $\frac{1}{\Lambda_{\rm NP}^2} \underbrace{\left[z_1^K\right]}_{d_L} \overline{\gamma_{\mu}} s_L) (\overline{d_L} \gamma^{\mu} s_L) + \underbrace{z_1^D(\overline{u_L} \gamma_{\mu} c_L)(\overline{u_L} \gamma^{\mu} c_L) + z_4^D(\overline{u_L} c_R)(\overline{u_R} c_L)}_{|z_1^K| \le z_{\rm exp}^K} = \underbrace{8.8 \times 10^{-7}}_{5.9 \times 10^{-7}} \left(\frac{\Lambda_{\rm NP}}{1 \text{ TeV}}\right)^2 \\ \underbrace{\left|z_1^D\right| \le z_{\rm exp}^D}_{|z_1^D| \le z_{\rm exp}^D} = \underbrace{5.9 \times 10^{-7}}_{5.9 \times 10^{-7}} \left(\frac{\Lambda_{\rm NP}}{1 \text{ TeV}}\right)^2$

with
CPV
$$\mathcal{I}m(z_1^K) \le z_{\exp}^{IK} = 3.3 \times 10^{-9} \left(\frac{\Lambda_{\rm NP}}{1 \text{ TeV}}\right)^2$$

$$\mathcal{I}m(z_1^D) \le z_{\exp}^{ID} = 1.0 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \text{ TeV}}\right)^2$$

Flavor @ the LHC, spectrum/couplings very important

Grossman et al. (09); Gedalia & Perez (10)

The RS "little" CP problem

Contributions to EDM's are O(20) larger than bounds.

Agashe, GP & Soni (04)

Warped Exra dimension

Randall Sundrum (RS)

The RS "little" CP problem

• Combination of $\epsilon_K \& \epsilon' / \epsilon_K \Rightarrow M_{\rm KK} = \mathcal{O}(10 \,{\rm TeV})$

UTFit; Davidson, Isidori & Uhlig (07); Blanke et al.; Casagrande et al.; Csaki, Falkowski & Weiler; Agashe, Azatov & Zhu (08)

Contributions to EDM's are O(20) larger than bounds.

Agashe, GP & Soni (04)

The RS "little" CP problem

• Combination of $\epsilon_K \& \epsilon' / \epsilon_K \Rightarrow M_{\rm KK} = \mathcal{O}(10 \,{\rm TeV})$

UTFit; Davidson, Isidori & Uhlig (07); Blanke et al.; Casagrande et al.; Csaki, Falkowski & Weiler; Agashe, Azatov & Zhu (08)

 \diamond Contributions to EDM's are O(20) larger than bounds.

Agashe, GP & Soni (04)

Severe tuning problem or fine tuning problem & null LHC pheno'.

Parametric solutions to the RS little CP problem & some LHC implications.

5D MFV & Shining

(either give up on solving the flavor puzzle, Rattazzi & Zaffaroni (00), Cacciapaglia, Csaki, Galloway, Marandella, Terning & Weiler (07) **Or**)

 $V_{u,d} =$ anarchic & the only source of flavor breaking. Fitzpatrick, GP & Randall (07)

Also, bulk masses are functions of same spurions:

 $C_{u,d} = Y_{u,d}^{\dagger} Y_{u,d} + \dots, \ C_Q = r Y_u Y_u^{\dagger} + Y_d Y_d^{\dagger} + \dots,$

Shining \Rightarrow down alignment in the $r \rightarrow 0$ limit.

Csaki. et al. (09)

U-anarchy - constrained by D phys.

Generic warped models (up-type anarchy): Agashe, et. al (04,06).

Observable	M_G^{\min}	[TeV]	$y_{5\mathrm{D}}^{\mathrm{min}} \text{ or } f_{Q_3}^{\mathrm{max}}$		
	IR Higgs	$\beta = 0$	IR Higgs	$\beta = 0$	
$ ext{CPV-}B_d^{LLLL}$	$12f_{Q_3}^2$	$12f_{Q_{3}}^{2}$	$f_{Q_3}^{\rm max} = 0.5$	$f_{Q_3}^{\max} = 0.5$	
$ ext{CPV-}B_d^{LLRR}$	$4.2/y_{5D}$	$2.4/y_{5D}$	$y_{5\mathrm{D}}^{\mathrm{min}} = 1.4$	$y_{\rm 5D}^{\rm min}=0.82$	
$CPV-D^{LLLL}$	$0.73 f_{Q_3}^2$	$0.73 f_{Q_3}^2$	no bound	no bound	
$CPV-D^{LLRR}$	$4.9/y_{5D}$	$2.4/y_{5D}$	$y_{5\mathrm{D}}^{\mathrm{min}} = 1.6$	$y_{5\mathrm{D}}^{\mathrm{min}}=0.8$	
ϵ_K^{LLLL}	$7.9f_{Q_3}^2$	$7.9f_{Q_3}^2$	$f_{Q_3}^{\max} = 0.62$	$f_{Q_3}^{\max} = 0.62$	
ϵ_{K}^{LLRR}	$49/y_{5D}$	$24/y_{5D}$	above (6.7)	$y_{5\mathrm{D}}^{\mathrm{min}} = 8$	

Gedalia, et. al (09); sidori, et. al (10).

U-anarchy - constrained by D phys.

Generic warped models (up-type anarchy): Agashe, et. al (04,06).

(09);(10).

Observable	$M_G^{\min}[\text{TeV}]$		$y_{5\mathrm{D}}^{\mathrm{min}}$ or $f_{Q_3}^{\mathrm{max}}$		
_	IR Higgs	$\beta = 0$	IR Higgs	$\beta = 0$	
$ ext{CPV-}B_d^{LLLL}$	$12f_{Q_{3}}^{2}$	$12f_{Q_{3}}^{2}$	$f_{Q_3}^{\rm max} = 0.5$	$f_{Q_3}^{\rm max} = 0.5$	
$ ext{CPV-}B_d^{LLRR}$	$4.2/y_{5D}$	$2.4/y_{5D}$	$y_{5\mathrm{D}}^{\mathrm{min}} = 1.4$	$y_{\rm 5D}^{\rm min}=0.82$	
$CPV-D^{LLLL}$	$0.73 f_{Q_3}^2$	$0.73 f_{Q_3}^2$	no bound	no bound	
$CPV-D^{LLRR}$	$4.9/y_{5D}$	$2.4/y_{5D}$	$y_{5\mathrm{D}}^{\mathrm{min}} = 1.6$	$y_{5\mathrm{D}}^{\mathrm{min}}=0.8$	J
ϵ_K^{LLLL}	$7.9 f_{Q_3}^2$	$7.9 f_{Q_3}^2$	$f_{Q_3}^{\max} = 0.62$	$f_{Q_3}^{\max} = 0.62$	Godalia et al
ϵ_K^{LLRR}	$49/y_{5D}$	$24/y_{5D}$	above (6.7)	$y_{5\mathrm{D}}^{\mathrm{min}}=8$	Isidori, et. al

RS alignment (via shining):
$$y_{5D}^d \gtrsim 3y_{5D}^u$$
_{Csaki, et. al (09).}
 $\frac{1}{2} \lesssim y_{5D} \lesssim \frac{2\pi}{N_{\text{KK}}}$ for brane Higgs; $\frac{1}{2} \lesssim y_{5D} \lesssim \frac{4\pi}{\sqrt{N_{\text{KK}}}}$ for bulk Higgs,

Factor of few improvement exclude models.

Radical solutions

Rattazzi-Zaffaroni's model: excellent protection but no solution for the little hierarchy problem.

 Is there a bulk version? Can one lower the KK scale? (Delaunay, Lee & GP, preliminary)
 Custodial sym': Non-universal oblique corrections & FCNC's are under control;
 Agashe, et al. (06)
 Universal oblique corrections are problematic.

New type of LHC pheno', flavor gauge bosons.

Csaki, Lee, Weiler, in progress.