Holographic spin fluctuation and Competing order

Sang-Jin Sin (HYU)

@GGI, Florence
2015.04.16

General comment: ads/cmt

- Try to get scaling exponents \rightarrow mean field theory value (due to analyticity).
- continuum theory: Details inside a cell are averaged out. \rightarrow Not a tool for seeking micropic pairing mechanism.
- In gravity limit, AdS/CFT is a mean field theory

A Goal OF AdS/CMT

quantitative understanding the phase diagram

To classify phases / To set up MFT

- we need order parameter although here Order is by interaction not by symmetry.
- Finite number of Phases \rightarrow finite number of order parameters (fields).
- For Pseudo Gap region : Not clear what kind of order. Scalar? Vector? or something else?

Order parameter.

- We need order parameter although it is NOT completely controlled by symmetry.
- What is the hint to characterize the order parameter of theoretically unknown region?
- If we have general results on the competition/collaboration of order parameters in general, it can give a guide.

Only two regions clear

AFM: real scalar; SC: complex scalar

Competing order in holography

- Conjecture (Basu et.al 1007.3480) Repulsive/attractive int. \rightarrow orders coexist/repel
- Ex1.

$$
\begin{aligned}
V(A, B) & =\eta A^{2} B^{2} \\
i) \eta>0 & \rightarrow \text { attraction } \rightarrow \text { repel } \\
i i) \eta<0 & \rightarrow \text { repulsion } \rightarrow \text { coexist }
\end{aligned}
$$

- Ex2. Holography without potential. SC : complex scalar, pick some order: Real scalar If they attract simply by gravity
\rightarrow Two orders repel each other. (corollary of conj.) Holography confirms!

Q: How about SC v.s vector order?

- 1211.1798 by Takaaki Ishii and SJS

Complex scalar+ extra vector 1211.1798

$$
\begin{aligned}
S=\int d^{4} x \sqrt{-g}(& -\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\left|\partial_{\mu} \Phi-i A_{\mu} \Phi\right|^{2}-M^{2} \Phi^{2} \\
& \left.-\frac{1}{4} G_{\mu \nu} G^{\mu \nu}-\frac{m^{2}}{2} B_{\mu} B^{\mu}-\frac{c}{2} F_{\mu \nu} G^{\mu \nu}\right),
\end{aligned}
$$

where $F=d A$ and $G=d B$. The scalar field Φ is charged only under A_{μ},
no direct coupling between Φ and B_{μ}
B_{μ}, represents impurities (in v2) or spin current (in v1)
Title
v1: A ferromagnetic superconductor in holography
v2: Impurity effect in a holographic superconductor

Results

- In the presence of SC condensation of CS, vector condensation (Bt) is actually induced by it \rightarrow coexists.
- The sign of Bt condensation is that of coupling c G.F
- As c goes up, SC gap goes like power rather than exponential.
- Without SC, no vector condensation in Bt.
(sign of c is immaterial for the existence of <Bt>)

Result: ac conductivity

Figure 5. Comparisons of the real part of the conductivity for $c=0$ (orange dotted lines) and $c=0.2,0.3,0.4,0.5$ (blue real lines) computed when $T / T_{C}=0.20$. The left panel is when $\Delta=1$, and the right panel is when $\Delta=2$. Exponential and power-law behaviors are interpolated by changing c.

Result: coexistence of sc \& vec

Overlapping phase diagram

Figure 6. A schematic description of the phase diagram expected. Here $\langle\mathcal{B}\rangle=0$ if $c=0$, while $\langle\mathcal{B}\rangle \neq 0$ once $c \neq 0$ and $T<T_{C}$. Gapped and ungapped phases would be interpolated smoothly. There may be some critical $c=c_{*}$ above which there is no mass gap. Figure 5 corresponds to looking at a horizontal slice of this diagram at $T / T_{C}=0.20$.

Result (spin susceptibility / impurity conductivity)

Implication to PG order parameter.

- If the PG phase is a phase of incoherent paired state(precursor of SC), we should use the vector order parameter for PS. Not a scalar! (Scalar with negative potential is also OK). We need to introduce two scales: One for SC and the other for PS which is of order T^{*}.
- If PG itself is an order competing with SC, its order parameter can be a real scalar. Possibly with attractive interaction.
- If PG is a spin Liquid: \rightarrow Not in this talk. (Top.O)

magnetism with axion

- Motivation.

We want to control the magnetism by changing the dopping parameter. Spin is not totally independent of charge. So we use the Chern-Simon / Axion term.

with

Yunseok Seo ^, Keun-Young Kim*, Kyung-Kyu Kim*

\wedge Hanyang univ. *GwangJu Institute of Science and technology

References: 1003.0010(Iqbal et.al); 1007.3480 Basu et.al

Action

$$
\begin{aligned}
S= & \frac{1}{16 \pi G} \int_{\mathcal{M}} d^{4} x \sqrt{-g}\left\{R+\frac{6}{L^{2}}-\frac{1}{4} F^{2}-\frac{1}{2}\left(\partial \chi_{I}\right)^{2}\right\}+\frac{q_{\chi}}{16 \pi G} \int_{\mathcal{M}}\left(\partial \chi_{I}\right)^{2} F \wedge F \\
& -\frac{1}{16 \pi G} \int_{\partial \mathcal{M}} d^{3} x \sqrt{-\gamma}\left(2 K+\frac{4}{L}+R[\gamma]-\frac{L}{2} \nabla \chi_{I} \cdot \nabla \chi_{I}\right)
\end{aligned}
$$

dyonic ansatz with linear axion

$$
\begin{aligned}
& d s^{2}=-U(r) d t^{2}+\frac{d r^{2}}{U(r)}+r^{2}\left(d x^{2}+d y^{2}\right) \\
& A=a(r) d t+\frac{1}{2} B(x d y-y d x) \\
& \chi_{I}=\beta \delta_{I i} x^{i} .
\end{aligned}
$$

Solution

$$
\begin{aligned}
& U(r)=r^{2}-\frac{\beta^{2}}{2}-\frac{m_{0}}{r}+\frac{q^{2}+B^{2}}{4 r^{2}}+\frac{64 \beta^{4} B^{2} q_{\chi}^{2}}{5 r^{6}}+\frac{8 \beta^{2} B q q_{\chi}}{3 r^{4}} \\
& a(r)=\mu-\frac{q}{r}-\frac{16 \beta^{2} B q_{\chi}}{3 r^{3}}
\end{aligned}
$$

In terms of the horizon radius r 0 ,

$$
\begin{aligned}
& q=r_{0} \mu-\frac{16 \beta^{2} B q_{\chi}}{3 r_{0}^{2}} \\
& m_{0}=r_{0}^{3}\left(1+\frac{\mu^{2}+B^{2}}{4 r_{0}^{2}}-\frac{\beta^{2}}{2 r_{0}^{2}}\right)+\frac{256 \beta^{4} B^{2} q_{\chi}^{2}}{45 r_{0}^{5}}
\end{aligned}
$$

Thermodynamics

$$
\begin{aligned}
& 4 \pi T=U^{\prime}\left(r_{0}\right)=3 r_{0}-\frac{r_{0}^{2} \mu^{2}+B^{2}+2 r_{0}^{2} \beta^{2}}{4 r_{0}^{3}}-\frac{\beta^{2} B q_{\chi}}{3 r_{0}^{4}}\left(16 \mu+\frac{256 \beta^{2} B q_{\chi}}{3 r_{0}^{3}}\right) \\
& s=4 \pi r_{0}^{2} \quad S^{E} \equiv \frac{\mathcal{V}_{2}}{T} \mathcal{W} \equiv \frac{\Omega}{T} \quad \mathcal{V}_{2}=\int \mathrm{d} x \mathrm{~d} y \\
& \mathcal{W}=\frac{\Omega}{\mathcal{V}_{2}}=-r_{0}^{3}-\frac{r_{0}}{4}\left(\mu^{2}+2 \beta^{2}-3 \frac{B^{2}}{r_{0}^{2}}\right)+\frac{32 B \beta^{2} q_{\chi}}{45 r_{0}^{5}}\left(56 B \beta^{2} q_{\chi}+15 r_{0}^{3} \mu\right) \\
& \\
& =\varepsilon-s T-\mu q \\
& \varepsilon=2 m_{0}
\end{aligned}
$$

Magnetization

$$
\begin{aligned}
M & =-\left.\frac{1}{\mathcal{V}_{2}} \frac{\delta S}{\delta B}\right|_{\partial \mathcal{M}} \\
& =-\frac{15 B r_{0}^{4}+80 r_{0}^{2} q q_{\chi} \beta^{2}+768 B q_{\chi}^{2} \beta^{4}}{5 r_{0}^{2}\left(3 q r_{0}^{2}+16 B q_{\chi} \beta^{2}\right)} \cdot \frac{q}{r_{0}}
\end{aligned}
$$

$$
B=0: \text { Spontaneous Magnetization }
$$

$$
\begin{aligned}
\left.M\right|_{B \rightarrow 0}=-\frac{16 \mu q_{\chi} \beta^{2}}{3 r_{0}^{2}} & =-\frac{108 \mu q_{\chi} \beta^{2}}{\left(2 \pi T+\sqrt{4 \pi^{2} T^{2}+\frac{3}{4}\left(\mu^{2}+2 \beta^{2}\right)}\right)} \\
& \sim-\frac{3}{4 \pi} \cdot \frac{B}{T} \quad \text { For large temperature }
\end{aligned}
$$

B dependence of M

Figure 1: B dependence of the magnetization for different temperature with $\mu=2, \beta=0.1$ and $q_{\chi}=1$. Red dashed line is $M=\frac{3 B}{4 \pi T}$.

Q: What about the antiferromagnetic spin fluctuation?

- Introduce a scalar field as a spin wave order parameter.
- With the same philosophy as before, introduce CS coupling :

$$
\begin{aligned}
S=\frac{1}{16 \pi G} \int_{\mathcal{M}} d^{4} x \sqrt{-g}\left\{R+\frac{6}{L^{2}}-\frac{1}{4}\right. & \left.F^{2}-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}\right\} \\
& +\frac{q_{h}}{16 \pi G} \int_{\mathcal{M}} \phi^{n} F \wedge F
\end{aligned}
$$

* scalar represent angular fluctuation in non-linear sigma model.

result

Interpretation

- Condensation of real scalar: new order is set by coupling it to $F^{\wedge} F$ term.
- This is not by a symmetry breaking. The gap was induced by dynamics.
- This may be a new order.

May be Relevant to

Story2 +Story3

- Chi is the master field of Magnetization
- x, y dependent part is the non-normalizable source term.
- x, y independent part is the magnetic charge/B-field term and is described by phi term is its fluctuation.

Conclusion

- Interaction between the order parameters are very useful guidelines to set up a model.
- In the presence of coupling to $\mathrm{F}^{\wedge} \mathrm{F}$ Momentum dissipating impurity induces a permanent magnetization.
- In the presence of coupling to $\mathrm{F}^{\wedge} \mathrm{F}$, real scalar
- Neither are not related to symmetry breaking.

