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General	  comment:	  ads/cmt	  	  

•  Try	  to	  get	  scaling	  exponents	  àmean	  field	  
theory	  value	  (due	  to	  analy1city).	  
	  	  

•  con1nuum	  theory:	  Details	  inside	  a	  cell	  are	  
averaged	  out.	  à	  Not	  a	  tool	  for	  seeking	  micropic	  
pairing	  mechanism.	  

•  In	  gravity	  limit,	  	  AdS/CFT	  is	  a	  	  mean	  field	  theory	  



3	  

A	  Goal	  OF	  AdS/CMT	  	  

	  quan1ta1ve	  	  understanding	  	  the	  	  phase	  diagram	  

Based	  on	  Royal	  Society	  publishing,	  D.	  Galanakis	  et.al	  	  

NFL	  

FL	  



To	  classify	  phases	  /	  To	  set	  up	  MFT	  	  	  

•  we	  need	  order	  parameter	  although	  here	  
Order	  is	  by	  interac1on	  not	  by	  symmetry.	  	  

•  Finite	  number	  of	  Phasesà	  
	  	  	  finite	  number	  of	  order	  parameters	  (fields).	  
•  For	  Pseudo	  Gap	  region	  :	  Not	  clear	  what	  kind	  of	  
order.	  Scalar?	  Vector?	  or	  something	  else?	  



Order	  parameter.	  

•  We	  need	  order	  parameter	  although	  it	  is	  NOT	  
completely	  controlled	  by	  symmetry.	  

•  What	  is	  the	  hint	  to	  characterize	  the	  order	  
parameter	  of	  theore1cally	  unknown	  region?	  	  

•  If	  we	  have	  general	  results	  on	  the	  	  
compe11on/collabora1on	  of	  order	  
parameters	  in	  general,	  it	  can	  give	  a	  guide.	  	  



6	  

Only	  two	  regions	  clear	  

	  AFM:	  real	  scalar;	  	  	  	  	  	  	  SC:	  complex	  scalar	  

à	  Spin	  fluc.	  	  /	  ß	  Charge	  fluc.	  	  

NFL	  

FL	  



Compe1ng	  order	  in	  holography	  
•  Conjecture	  (Basu	  et.al	  1007.3480)	  
	  	  	  	  Repulsive/agrac1ve	  int.à	  orders	  coexist/repel	  	  
•  Ex1.	  	  

	  

•  Ex2.	  Holography	  without	  poten1al.	  	  
	  	  	  SC	  :	  complex	  scalar,	  	  	  pick	  some	  order	  :	  Real	  scalar	  	  	  	  
	  	  	  If	  they	  agract	  simply	  by	  gravity	  	  
à	  Two	  orders	  repel	  	  each	  other.	  (corollary	  of	  conj.)	  

	  Holography	  confirms!	  

V (A,B) = ⌘A

2
B

2

i)⌘ > 0 ! attraction ! repel

ii)⌘ < 0 ! repulsion ! coexist



Q:	  How	  about	  SC	  v.s	  vector	  order?	  	  

•  1211.1798	  by	  Takaaki	  Ishii	  	  and	  	  	  SJS	  

	  



	  	   Complex	  scalar+	  extra	  vector 	  	  
1211.1798	  

while the other is massive and dual to impurities. More concretely, we assume that the

impurities have another type of charge carriers like a hole, for instance, where the hole

number is not necessarily conserved due to the capturing of conduction electrons. So we

assume that the latter is dual to the massive gauge field Bµ. We postulate a gauge invariant

coupling term to describe the interaction between the two species.

The model we consider was mentioned in [17], where the massive vector field could

be introduced as impurities, but it was integrated out assuming that the impurities were

infinitely heavy. If the mass is finite, the field at the asymptotic AdS boundary decays not

exponentially but by a power law. Therefore, we do not integrate out the massive field, and

solve the model explicitly in order to focus on the dynamics in the presence of the massive

vector field. Our result will show that the mass gap of the superconductor disappears due

to the interaction.

The rest of this paper is organized as follows. In section 2, we study the model. The

action and setups for numerical computations are provided in section 2.1. Numerical results

are shown in section 2.2. Some further possibilities of the model are discussed in section 2.3.

Comments on normal phase are given in section 3. In section 4, we reexamine the strategy

of [17], and discuss relations to ours. We conclude this paper with future perspectives in

section 5.

2 Impurity degrees of freedom by a massive vector field

We consider a holographic superconductor where an extra massive vector field is introduced

as impurities.

2.1 The model

We consider a model where a massive vector field is introduced into the minimal Abelian-

Higgs model of the s-wave holographic superconductor [12]. The action is2

S =

∫
d4x

√
−g

(
−

1

4
FµνF

µν − |∂µΦ− iAµΦ|2 −M2Φ2

−
1

4
GµνG

µν −
m2

2
BµB

µ −
c

2
FµνG

µν

)
, (2.1)

where F = dA and G = dB. The scalar field Φ is charged only under Aµ, and there is

no direct coupling between Φ and Bµ. Here m2 is the mass of Bµ. It might be possible

to consider to generate this mass by some Higgs mechanism, but here we would like to

start from the Proca action for simplicity. The scalar mass is chosen to be M2 = −2 for

convenience in analysis.

The action (2.1) has an interaction term between Fµν and Gµν . These vector fields are

dual to two currents with different dimensionality, and this interaction represents a coupling

of the two currents [17]. One current is conserved fermion number, and Aµ is identified

as the gauge field of the weakly-gauged U(1) electromagnetic symmetry in the context

2We set the gauge coupling of Aµ as e = 1.
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(in	  v2)	  or	  spin	  current	  (in	  v1)	  of superconductors. The other, Bµ, represents impurities. If we allow the difference in

anomalous dimensions of the two current operators, the vector field dual to the impurities

can be massive and associated with the Proca field.

We work in a limit in which the matter fields do not give back-reactions on the back-

ground metric.3 This limit is called a probe limit. The gravity background we consider is

the AdS-Schwarzschild black hole,

ds2 =
1

z2

(
−f(z)dt2 +

dz2

f(z)
+ dx2 + dy2

)
, f(z) = 1− z3, (2.2)

where we use units in which the AdS radius is unity, and the location of the black hole

horizon is at z = 1. Such parameter fixings are possible thanks to the isometry of the AdS

space, and can be confirmed by examining the symmetry of the equations of motion.

The equations of motion of (2.1) are

∇λF
λµ + c∇λG

λµ − 2|Φ|2Aµ + i(Φ∗∂µΦ− ∂µΦ∗Φ) = 0, (2.3)

∇λG
λµ + c∇λF

λµ −m2Bµ = 0, (2.4)

1√
−g

(∂µ − iAµ)
(√

−ggµν(∂ν − iAν)Φ
)
−M2Φ = 0. (2.5)

The kinetic terms of Aµ and Bµ can be separated. From (2.3) and (2.4), we obtain

(1− c2)∇λF
λµ − 2|Φ|2Aµ + cm2Bµ + i(Φ∗∂µΦ− ∂µΦ∗Φ) = 0, (2.6)

(1− c2)∇λG
λµ − m2Bµ + 2c|Φ|2Aµ − ic(Φ∗∂µΦ− ∂µΦ∗Φ) = 0. (2.7)

We can realize an superconductor phase where the scalar operator dual to Φ acquires

nonzero condensate ⟨O⟩. The ansatz is A = At(z)dt,B = Bt(z)dt, and Φ = φ(z). The

equations of motion become

A′′
t −

2φ2At

(1− c2)z2f
+

c m̃2Bt

z2f
= 0, (2.8)

B′′
t −

m̃2Bt

z2f
+

2cφ2At

(1− c2)z2f
= 0, (2.9)

φ′′ +

(
f ′

f
−

2

z

)
φ′ +

(
2

z2f
+

A2
t

f2

)
φ = 0. (2.10)

The prime denotes the derivative with respect to z: A′
t = ∂zAt. We find it convenient to

define an effective mass of Bµ,

m̃2 ≡
m2

1− c2
. (2.11)

The system is not well-defined if c = 1. If we consider a small deformation from a

system without the impurity coupling, then 0 ≤ c < 1 would be reasonable.4 For the

3If we recover the gauge coupling e and rescale each field by a factor of 1/e, then there is a factor 1/e2

appearing in front of the right hand side of (2.1). Backreactions on the metric are suppressed in the limit

e2 → ∞ with the fields fixed. The result takes the same form as (2.1), where e = 1.
4If c is negative, solutions of Bµ flips the sign.
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Title	  
v1:	  A	  ferromagne1c	  superconductor	  in	  holography	  
v2:	  Impurity	  effect	  in	  a	  holographic	  superconductor	  
	  



Results	  

•  In	  the	  presence	  of	  SC	  condensa1on	  of	  CS,	  	  
vector	  condensa1on	  (Bt)	  is	  actually	  induced	  by	  
ità	  coexists.	  	  

•  The	  sign	  of	  Bt	  condensa1on	  is	  that	  of	  coupling	  c	  
G.F	  

•  As	  c	  goes	  up,	  SC	  gap	  goes	  like	  power	  rather	  than	  
exponen1al.	  	  

•  Without	  SC,	  no	  vector	  condensa1on	  in	  Bt.	  	  
	  (sign	  of	  c	  is	  immaterial	  for	  the	  existence	  of	  <Bt>)	  	  



Result:	  ac	  conduc1vity	  

Figure 5. Comparisons of the real part of the conductivity for c = 0 (orange dotted lines) and
c = 0.2, 0.3, 0.4, 0.5 (blue real lines) computed when T/TC = 0.20. The left panel is when ∆ = 1,
and the right panel is when ∆ = 2. Exponential and power-law behaviors are interpolated by
changing c.

It is expected that the effects of the coupling turn up gradually as the coupling is

increased from c = 0. To discuss this, we compare cases of different c. We compute the

conductivity for c = 0.2, 0.3, 0.4, 0.5, by fixing m̃2 for simplicity. We have to be careful

that this gives the results corresponding to different values of m2 in the action (2.1). For

instance, if m̃2 = 2 is fixed, the computations are for m2 = 1.92, 1.82, 1.68, 1.5 when

c = 0.2, 0.3, 0.4, 0.5, respectively.7 However, we see that comparing with fixed m̃2 can

give qualitatively reasonable understandings for the behaviors of the conductivity under

change of c. In particular, we can discuss the presence or absence of the mass gap.

Comparisons of the real part of the conductivity with respect to different c are given

in figure 5. The graphs are computed when T/TC = 0.20. We see that, as c is increased,

the conductivity gradually changes from exponential to power-law behaviors in the small

frequency region. It looks that the transition is continuous, and there would not be a clear

phase transition from gapped to ungapped phases under the increase of c.

In figure 6, we would like to present a schematic description of the phase diagram of

our model under the change of c. The strength of the coupling c might be interpreted as

the density of impurities. We expect that the regions of the gapped and ungapped phases

are smoothly connected under the change of the density. The boarder would not be given

by a clear phase transition. When c = 0, the gap starts to show up at about some Tg.

As c increases, the temperature for the appearance of the gap looks to be lowered. There

may be some critical c = c∗ above which there is no gapped phase even at T = 0, or c∗
may be located at c → 1. It will be interesting to look for such a quantum critical point.

However, to discuss the zero temperature limit, we will need to carry out precise analysis

by including back reactions on the gravity backgrounds [16].

We may consider to vary the mass m̃2. When this is heavier, we find that the effects

on the conductivity is smaller. Technically, this would be because α+ is larger and Bµ

decays faster at the boundary. Hence the effects on Ax from Bx would be smaller at the

boundary. If the mass is heavier, the massive vector field becomes more non-dynamical,

7If we fixed m2 = 1.5, the effective masses would be m̃2 = 1.56, 1.65, 1.79, 2 when c = 0.2, 0.3, 0.4, 0.5,

respectively. We would do computations by employing different asymptotic expansions with respect to

different values of m̃2.
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Result:	  coexistence	  of	  sc	  &	  vec	  

Figure 6. A schematic description of the phase diagram expected. Here ⟨B⟩ = 0 if c = 0, while
⟨B⟩ ̸= 0 once c ̸= 0 and T < TC . Gapped and ungapped phases would be interpolated smoothly.
There may be some critical c = c∗ above which there is no mass gap. Figure 5 corresponds to
looking at a horizontal slice of this diagram at T/TC = 0.20.

and thus the effects might be harder to appear.

Let us come back to the case that m̃2 = 2 and c = 0.5. The results of γ(ω) are

given in figures 7 and 8, corresponding to the real and imaginary parts, respectively. The

conductivity is zero at T = TC since Bx = 0 in the normal phase, although we do not plot

T = TC case in the figures. As the temperature is decreased from T = TC , the conductivity

starts to grow. There cannot be seen a gap in the small frequency region of the real part

as in the case of the electric conductivity. Hence, Re(γ) can be fitted with a power-law

function,

Re(γ)

Λi
−R0 ∝

(
ω

Λi

)2

, (2.42)

where Λ1 ≡ ⟨O1⟩ and Λ2 ≡
√
⟨O2⟩, and R0 ≡ limω→0Re(γ)/Λi is an intercept. In figure 7,

a peak can be found in Re(γ) at w1 ∼ 1.2 when ∆ = 1, and w2 ∼ 1 when ∆ = 2. The peak

becomes more apparent as the temperature is lowered, and it is expected that Re(γ)/Λi

converges to a finite height curve in the low temperature limit. The nonzero slope in the

large-ω region of Im(γ) is due to the direct contribution of the electric field.

Similar to the case of the electric conductivity, we compare the dependence of γ on c.

The results for the real part when T/TC = 0.20 are given in figure 9. Since Bµ is decoupled

from Aµ when c = 0, γ is not induced by the electric perturbations in this limit. From

this figure, it can be seen that the position of the peak slightly moves to larger ω as c is

increased. The magnitude of the peak looks to become larger as c is increased. However,

since Re(γ) is proportional to (1 − c2), the magnitude of γ would be suppressed if c is

sufficiently large. It is expected in the heavy mass limit of m̃2 that Bµ would be hard to

be excited, and this would mean suppression of γ in the c → 1 limit.
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Overlapping	  phase	  diagram	  	  



Result	  (spin	  suscep1bility	  /	  impurity	  
conduc1vity)	  	  

Figure 7. The real part of γ as a function of ω normalized by the condensate. The left panel
is when ∆ = 1, and the right panel is when ∆ = 2. Larger magnitude lines correspond to lower
temperatures.

Figure 8. The imaginary parts of γ as a function of ω normalized by the condensate. The left
panel is when ∆ = 1, and the right panel is when ∆ = 2. Larger magnitude lines correspond to
lower temperatures.

Figure 9. Comparisons of the real part of γ for c = 0 (orange dotted lines) and c = 0.2, 0.3, 0.4, 0.5
(blue real lines) computed when T/TC = 0.20. The left panel is when ∆ = 1, and the right panel
is when ∆ = 2. Lines with larger magnitude correspond to larger c.

2.3 The possibility of negative effective mass

In the previous section, we considered the case that 0 ≤ c < 1 and m̃2 = 2. However,

since the BF bound for the massive vector field is m2 = −1/4, it can be possible that the

effective mass of Bµ, m̃2 = m2/(1 − c2), is negative. One possibility is that the system is

in strong coupling: c > 1 with m2 > 0. The other possibility is that the mass squared is

negative m2 < 0 but 0 < c < 1. In the latter case, we obtain |m2| < |m̃2|. Therefore, m2

satisfies the BF and unitarity bounds, −1/4 < m2 < 3/4, if m̃2 does. We discuss these

– 12 –



Implica1on	  to	  PG	  order	  parameter.	  	  

•  If	  the	  PG	  phase	  is	  a	  phase	  of	  	  incoherent	  paired	  
state(precursor	  of	  SC),	  we	  should	  use	  the	  vector	  
order	  parameter	  for	  PS.	  Not	  a	  scalar!	  (Scalar	  with	  
nega1ve	  poten1al	  is	  also	  OK).	  We	  need	  to	  
introduce	  two	  scales:	  One	  for	  SC	  and	  the	  other	  
for	  PS	  which	  is	  of	  order	  T*.	  	  	  

•  If	  	  PG	  itself	  is	  an	  order	  compe1ng	  with	  SC,	  its	  
order	  parameter	  can	  be	  	  a	  real	  scalar.	  Possibly	  
with	  agrac1ve	  interac1on.	  	  

•  If	  PG	  is	  a	  spin	  Liquid:èNot	  in	  this	  talk.	  (Top.O)	  



magne1sm	  with	  axion	  

•  Mo1va1on.	  	  
We	  want	  to	  control	  the	  magne1sm	  by	  
changing	  the	  dopping	  parameter.	  	  
Spin	  is	  not	  totally	  independent	  of	  charge.	  	  
So	  we	  use	  the	  Chern-‐Simon	  /	  Axion	  term.	  	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ^	  Hanyang	  univ.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  *GwangJu	  Ins1tute	  of	  Science	  and	  technology	  
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Ac1on	  

1 Introduction

We want to construct a system which has magnetic properties like as ferromagnetism, anti-

ferromagnetism or paramagnetism holographically. In this work, we construct a system with

impurities which carry finite magnetization.

To construct a system with magnetic impurities, we start from Einstein-Maxwell-axion

system. The axion which is linear in {x, y} direction breaks translational symmetry and

hence gives an e↵ect of impurity [cite: works on linear axion]. We add Chern-Simons

interaction between the axion and gauge field. Due to this interaction, the system has

non-trivial magnetic property as we will discuss later.

...

2 Background solution

We start from the Einstein-Maxwell-axion action with Chern-Simons interaction;
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Solu1on	  
By plug in the ansatz (3) into (1), we find the solution which satisfy all the equations
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One can easily check that (4) becomes dyonic black hole solution with momentum relaxation

when q

�

! 0. q is interpreted as number density as usual AdS/CFT correspondence.

2.1 Thermodynamics

To obtain a thermodynamic potential for this black hole solution we compute the on-shell
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In	  terms	  of	  the	  horizon	  radius	  r0,	  	  



Thermodynamics	  
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One can easily check that (4) becomes dyonic black hole solution with momentum relaxation

when q
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! 0. q is interpreted as number density as usual AdS/CFT correspondence.
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where we choose the energy density " as

" = 2m0. (11)

Together with the energy density and parameters (5), the thermodynamic relation is satisfied

as the second line in (10).

One can directly check that dT/dr0 > 0 for positive r0, therefore, temperature is mono-

tonically increasing function of r0. It implies that the entropy is monotonically increasing

function of temperature.

3 Magnetization

To calculate magnetization, we turn on small fluctuation of magnetic field around the back-
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where one integral constant is chosen by requiring vanishing a1(r) at the black hole horizon.

�⇢ is another integral constant which the coe�cient of normalizable mode of the gauge field
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This value is determined by the vanishing u1(r) at the black hole horizon and it can be

understood as energy fluctuation by AdS/CFT dictionary. Now we are interested in the

system with fixed energy then the fluctuation of number density is fixed by (16);
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First order action from this linearised solution is
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where the contribution from the first term vanishes for �✏ = 0 condition. The magnetization

is defined as the response of system to the small fluctuation of the magnetic field(Sign ?);
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In the case of q
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! 0, the magnetization becomes
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which is consistent with the calculation in usual dyonic black hole. In this case, magneti-

zation is proportional to the external magnetic field and hence it vanishes in the absence of

the external B.

3.1 B = 0: Magnetization of impurities

With finite value of q
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Now, the magnetization with B = 0 becomes
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For given chemical potential, � and q

�

, magnetization M0 has maximum value at zero

temperature

M0(T = 0) = � 64µq
�
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µ

2 + 2�2
, (24)

and decreases as 1/T 2 for large value of temperature. When µ � �, (24) becomes[Our

conductivity paper]

M0(T = 0) ⇠ �64q
�
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µ

⇠ � q
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⌧

imp

, (25)

where ⌧

imp

is mean free time with impurity in field theory calculation. Inverse of the mean

free time is proportional to the impurity density and we speculate that the system has

impurities which has finite value of magnetization. The value of q
�

controls the strength of

the magnetization of each impurity. Is it reasonable?

3.2 B 6= 0

Now, let’s discuss magnetization for the case of B 6= 0. Together with (5), the magnetization

(19) can be written in terms of µ, �, q
�

, temperature T and the external magnetic field B.

The horizon radius r0 also depends on other parameters. We have to solve (7) to get the

dependence of other parameters. It is 8th order algebraic equation and there is no analytic

solution. But it can be solved numerically. The external magnetic field dependences of the

magnetization with di↵erent temperature are drawn in Figure 1.

At zero temperature, the magnetization has non-linear behavior of the external magnetic

field. See Figure 1 (a). In the absence of the external magnetic field, there is finite magne-

tization which indicates that the boundary system is described by ferromagnetic state and

the numerical value is consistent with (24). As temperature increases, the magnetic field

dependence of the magnetization becomes linear, see Figure 1 (b), (c) and (d). The value

of magnetization at zero external magnetic field also decrease following (23).

For large temperature, r0 linearly increasing function of the temperature from (7) and

it behaves
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(a) T = 0 (b) T = 0.1

(c) T = 0.5 (d) T = 1

Figure 1: B dependence of the magnetization for di↵erent temperature with µ = 2, � = 0.1
and q

�

= 1. Red dashed line is M = 3B
4⇡T .

Then, the magnetization becomes

M ⇠ � 3

4⇡
· B
T

, (27)

which is red dashed line in Figure 1 (c) and (d). As temperature increase, magnetization

line quickly approach to (27) and the system behaves like paramagnetism.

• Large � behavior:

When � increases, there is first oder phase transition.
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Q:	  What	  about	  the	  an1ferromagne1c	  
spin	  fluctua1on?	  

•  Introduce	  a	  scalar	  field	  as	  a	  spin	  wave	  order	  
parameter.	  	  

•  With	  the	  same	  philosophy	  as	  before,	  	  
introduce	  CS	  coupling	  :	  	  	  

1 Ferromagnetism

1.1 A model for Ferromagnetism
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We choose ✏0123 = ✏txyr = 1. The center term is for � = 2 case.
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1.2 Dyonic solution with q
h

= q
�

= 0

Dying BH with momentum relaxation and vanishing B
M

, q
h

and q
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*	  scalar	  represent	  angular	  fluctua1on	  in	  non-‐linear	  sigma	  model.	  
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Figure 1: Left:Condensation, Right: Magnetization ,,,,,
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Figure 2: Left:Condensation, Right: Magnetization with fixed chemical potential ,,,,,
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Interpreta1on	  

•  Condensa1on	  of	  real	  scalar:	  	  new	  order	  is	  set	  
by	  coupling	  it	  to	  F^F	  term.	  	  

•  This	  is	  not	  by	  a	  symmetry	  breaking.	  	  
The	  gap	  was	  induced	  by	  dynamics.	  	  

•  This	  may	  be	  a	  new	  order.	  	  
	  	  May	  be	  Relevant	  to	  	  



Story2	  +Story3	  

•  Chi	  is	  the	  master	  field	  of	  Magne1za1on	  
•  	  x,y	  dependent	  part	  is	  the	  non-‐normalizable	  
source	  term.	  	  

•  x,y	  independent	  part	  is	  the	  
	  	  	  	  magne1c	  charge/B-‐field	  term	  and	  is	  described	  	  	  	  
by	  phi	  term	  is	  its	  fluctua1on.	  	  



Conclusion	  

•  Interac1on	  between	  the	  order	  parameters	  are	  
very	  useful	  guidelines	  to	  set	  up	  a	  model.	  

•  In	  the	  presence	  of	  coupling	  to	  F^F	  
Momentum	  dissipa1ng	  impurity	  induces	  a	  
permanent	  magne1za1on.	  

•  In	  the	  presence	  of	  coupling	  to	  F^F,	  	  
real	  scalar	  	  

•  Neither	  are	  not	  related	  to	  symmetry	  breaking.	  	  


