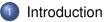
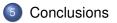
Synchronous Phase Shift at LHC Simulations and Diagnostics I

Juan F. Esteban Müller

P. Baudrenghien, T. Mastoridis, G. Papotti, E. Shaposhnikova, D. Valuch

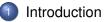
BE Department CERN


La Biodola, Isola d'Elba 8th June, 2012


Synchronous Phase Shift at LHC

(日) (종) (종) (종) (종)

Outline



- 2 Mesurement method
- Average phase error
- 4
- Bunch-by-bunch phase error

Outline

- 2 Mesurement method
- 3 Average phase error
- Bunch-by-bunch phase error

• Particle energy loss compensated by the RF:

$$\sin \phi_{s} = \frac{W}{eV} \quad \Rightarrow \quad \langle W \rangle = \frac{e V}{N_{Tot}} \sum_{k=1}^{K} N_{k} \sin \phi_{sk},$$

- Main beam energy loss mechanisms:
 - Synchrotron Radiation
 - Resistive Impedance
 - Interaction between the beam and the e-cloud

• Particle energy loss compensated by the RF:

$$\sin \phi_{s} = \frac{W}{eV} \quad \Rightarrow \quad \langle W \rangle = \frac{e V}{N_{Tot}} \sum_{k=1}^{K} N_{k} \sin \phi_{sk},$$

- Main beam energy loss mechanisms:
 - Synchrotron Radiation
 - Same for all the particles ⇒ Introduces a phase offset
 - Resistive Impedance
 - Interaction between the beam and the e-cloud

• Particle energy loss compensated by the RF:

$$\sin \phi_{s} = \frac{W}{eV} \quad \Rightarrow \quad \langle W \rangle = \frac{e V}{N_{Tot}} \sum_{k=1}^{K} N_{k} \sin \phi_{sk},$$

- Main beam energy loss mechanisms:
 - Synchrotron Radiation
 - Same for all the particles \Rightarrow Introduces a phase offset
 - Resistive Impedance
 - Depends on bunch intensity and length
 - Interaction between the beam and the e-cloud

• Particle energy loss compensated by the RF:

$$\sin \phi_{s} = \frac{W}{eV} \quad \Rightarrow \quad \langle W \rangle = \frac{e V}{N_{Tot}} \sum_{k=1}^{K} N_{k} \sin \phi_{sk},$$

- Main beam energy loss mechanisms:
 - Synchrotron Radiation
 - Same for all the particles \Rightarrow Introduces a phase offset
 - Resistive Impedance
 - Depends on bunch intensity and length
 - Interaction between the beam and the e-cloud
 - Depends on bunch intensity and length, total intensity, bunch spacing, filling pattern, ...

• Particle energy loss compensated by the RF:

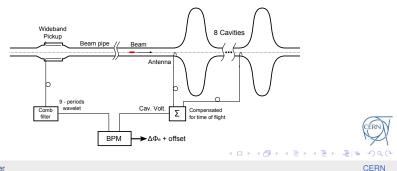
$$\sin \phi_{s} = \frac{W}{eV} \quad \Rightarrow \quad \langle W \rangle = \frac{e V}{N_{Tot}} \sum_{k=1}^{K} N_{k} \sin \phi_{sk},$$

- Main beam energy loss mechanisms:
 - Synchrotron Radiation
 - Same for all the particles \Rightarrow Introduces a phase offset
 - Resistive Impedance
 - Depends on bunch intensity and length
 - Interaction between the beam and the e-cloud
 - Depends on bunch intensity and length, total intensity, bunch spacing, filling pattern, ...
- For beams with small spread in bunch intensities and lengths ⇒ It is possible to measure the energy loss due to e-cloud

Outline

2 Mesurement method

3 Average phase error


4 Bunch-by-bunch phase error

5 Conclusions

Mesurement method

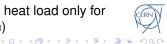
- Beam Phase Module (BPM):
 - measures phase error as the difference between:
 - bunch phase from a 3 GHz bandwidth pickup
 - phase of the vector sum of voltage from 8 cavities
 - eliminates the beam loading effect
 - provides individual bunch phase error measurements

Outline

- Mesurement method
- Average phase error
 - 4 Bunch-by-bunch phase error

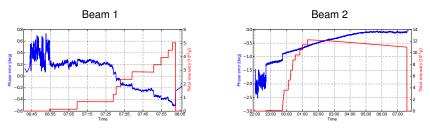
5 Conclusions

Juan F. Esteban Müller


Synchronous Phase Shift at LHC

Average phase error measurements

• Average phase error of all the bunches in the ring

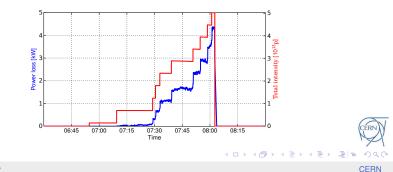

$$\langle \phi_{s}
angle = rac{1}{K} \sum_{k=1}^{K} \phi_{sk}$$

- All measurements were done at the LHC flat bottom (450 GeV)
- Phase error is measured with respect to the total intensity
- The module precision is of about 0.1 degrees:
 - Average over 40 measurements (25 s) after injections
- Voltage program was changed from 3.5 MV in 2010 to 6 MV in 2011 and 2012 (Flat Bottom)
- Bunch lengths and filling pattern have influence on the e-cloud:
 - The phase error is proportional to the heat load only for uniform bunches (intensity and length)

Average phase error measurements

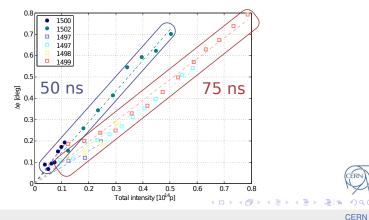
• Examples:

- Beam 1: Phase error shifts at each batch injection
- Beam 2: Phase error drifts probably due to thermal effects

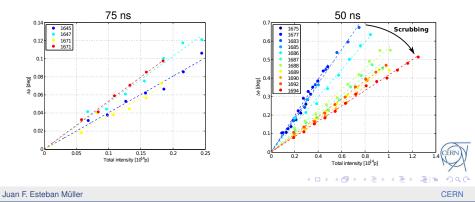

Power loss estimation

50 ns bunch spacing beam

• The total beam power loss can be approximated by:

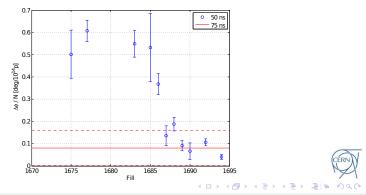

$$\mathsf{P}_{\mathsf{L}} pprox \mathsf{N}_{\mathsf{Tot}} \, \mathsf{e} \, \mathsf{V} \, \mathsf{f}_{\mathsf{rev}} \, \langle \phi_{\mathsf{s}}
angle$$

If bunch intensities are similar and phase error shift is small

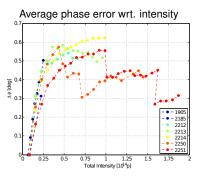

Observations from 2010. 75 ns and 50 ns bunch spacing beams

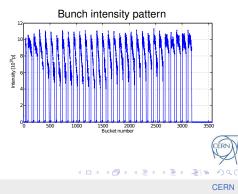
- Phase error shift increases with total intensity in the ring
- Phase error shift is larger for the 50 ns than for the 75 ns beam

Observations from 2011. 75 ns and 50 ns bunch spacing beam.


- 75 ns: Phase error shift is small and similar for different fills
- 50 ns: Phase error shift decreases from fill to fill ⇒ scrubbing

Synchronous Phase Shift at LHC


Scrubbing run (April, 2011). 50 ns bunch spacing beam


- Phase error shift per particle decreased during the scrubbing run
- After the scrubbing run the phase error shift is similar for the 75 ns and the 50 ns beams

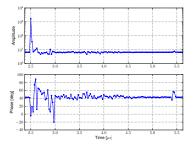
Observations from 2011. 25 ns bunch spacing beam

- Electron cloud reaches saturation after a few batch injections
- Instabilities and transverse emittance growth ⇒ Particle losses
 ⇒ Reduced electron cloud density

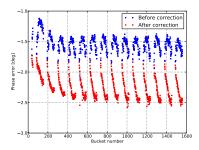
Outline

- Mesurement method
- Average phase error
- 4 Bunch-by-bunch phase error

5 Conclusions


Measurements correction

- Single bunch phase error measurements are distorted by:
 - non ideal Beam Phase Module response
 - reflections in the connectors
 - localized mismatches in the cables (400 m long)
- Assuming linearity of the system response:
 - It is possible to extract the impulse response
 - Data are deconvolved with the impulse response
- Impulse response was measured with a single bunch



Measurements correction

Impulse response

Results of correction

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

CERN

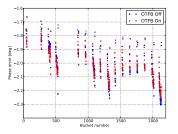
Э

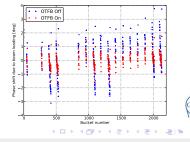
Juan F. Esteban Müller

Synchronous Phase Shift at LHC

Measurements correction

• This distortion does not have a significant effect on the average phase error measurements (0.1 deg offset)


Beam loading effect

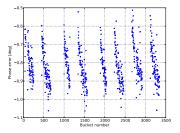

• The effect of the beam loading was checked:

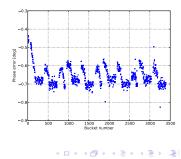
- Phase error measured with the One Turn Feedback ON and OFF (it reduces beam loading)
- Comparison with the bunch positions from the Beam Quality Monitor (BQM)

Phase error

Phase error shift due to beam loading

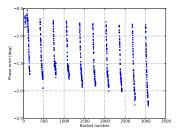
Juan F. Esteban Müller

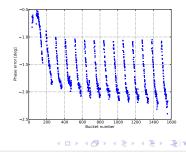

CERN


Observations with 50 ns bunch spacing beam

- Measurements started after the scrubbing run
 - Electron cloud is very small for the 50 ns beam, but visible
- Scrubbing effect during 2011 from physics fills

Fill 1798. 21-05-2011



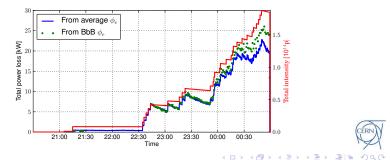

CÉRN D Q C

Observations with 25 ns bunch spacing beam

- Electron cloud density is higher than for the 50 ns beam
- Effect of the batch spacing:
 - Electron cloud is reduced for large batch spacing

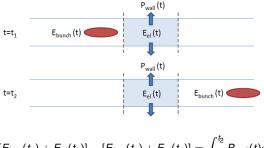
Fill 2212. 14-10-2011 6.325 µs spacing Fill 2214. 14-10-2011 925 ns spacing

Juan F. Esteban Müller


CERN

Power loss estimation

• Total beam power loss:


$$P_L = \sum_k N_k e V f_{rev} \phi_{sk}$$

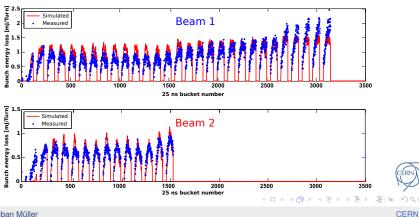
 Power loss from bunch by bunch phase error is more accurate than using the average phase error

Comparison with simulations (G. ladarola and G. Rumolo)

• Energy loss calculated from energy balance:

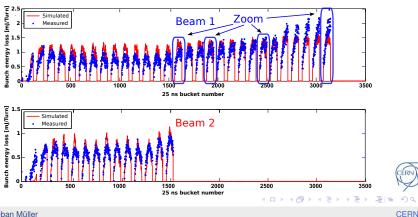
$$\begin{split} & [E_{bun}(t_2) + E_{el}(t_2)] - [E_{bun}(t_1) + E_{el}(t_1)] = \int_{t_1}^{t_2} P_{wall}(t) dt \\ & [E_{bun}(t_2) - E_{bun}(t_1)] = [E_{el}(t_2) - E_{el}(t_1)] + \int_{t_1}^{t_2} P_{wall}(t) dt \end{split}$$

CERN

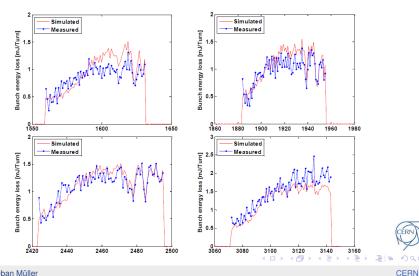

-2

Juan F. Esteban Müller

Synchronous Phase Shift at LHC


Comparison with simulations (G. ladarola and G. Rumolo)

- Bunch lengths and intensities are measured and taken into account in the simulations for both the build-up and energy loss
- $\delta_{max} = 1.5$, R = 0.7 and some uncaptured beam



Comparison with simulations (G. ladarola and G. Rumolo)

- Bunch lengths and intensities are measured and taken into account in the simulations for both the build-up and energy loss
- $\delta_{max} = 1.5$, R = 0.7 and some uncaptured beam

Comparison with simulations (G. ladarola and G. Rumolo)

Outline

Introduction

- Mesurement method
- 3 Average phase error
- Bunch-by-bunch phase error

Conclusions

- Accurate phase error measurements are possible in the LHC thanks to the Beam Phase Module high resolution
- Phase error shift measurements could be used as a novel electron cloud diagnostics
- Average phase error shift is useful to see the total energy loss due to the electron cloud
- Bunch by bunch phase error provides information about the electron cloud build up
 - Benchmark allows to define parameters (δ_{max} and R) for simulations
- Next steps:
 - Take into account the effect of the resistive impedance
 - Calibrate with the new Beam phase module installed in the cavern (UX45)

References

E. Shaposhnikova

Stable phase shift for beam with 50 ns and 75 ns bunch spacing Talk at LHC-Beam Commissioning Working Group meeting, 23/11/2010.

J.F. Esteban Müller et al.

Electron cloud observations through synchronous phase measurements CERN-ATS-Note-2012-036 PERF

D. Valuch and P. Baudrenghien

Beam phase measurement and transverse position measurement module for the LHC LLRF07 Workshop, Knoxville TN, USA, October 2007.

G. Rumolo et al.

Electron Cloud Effects in the LHC LHC Beam Operation workshop, Evian 2011.

T. Mastoridis et al.

The LHC One-Turn feedback CERN-ATS-Note-2012-025 PERF

G. Papotti et al.

Longitudinal beam measurements at the LHC: The LHC Beam Quality Monitor IPAC'11, San Sebastian, September 2011.

