New Physics Searches with $b \rightarrow s \ell^+ \ell^-$ Transitions and Rare Decays at LHCb

Kristof De Bruyn On behalf of the LHCb Collaboration

XXXI Rencontres de Physique de la Vallée d'Aoste La Thuile – March 8th, 2017

Kristof De Bruyn (CPPM)

$B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

 $B \rightarrow \mu^+ \mu^-$

$b \rightarrow s \ell^+ \ell^-$ Transitions and Rare Decays

Standard Model

- Flavour Changing Neutral Current
- ► Forbidden at Tree level
- ⇒ Loop suppressed
 - Sensitive to new physics contributions

Beyond the SM Theories

$B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

 $B \rightarrow \mu^+ \mu^-$

Puzzling Tensions in $b \rightarrow s \ell^+ \ell^-$ Transitions

 $B^+ \rightarrow K^+ \ell^+ \ell^-$

 $B^+ \rightarrow K^+ \mu^+ \mu^-$

$$\blacktriangleright R_{\mathcal{K}} = \frac{\mathcal{B}(B^+ \to \mathcal{K}^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to \mathcal{K}^+ e^+ e^-)}$$

LHCb, PRL 113 (2014) 151601, arxiv:1406.6482

 $B^0
ightarrow K^{*0} \mu^+ \mu^-$

► Angular Observable P'_5

$B^+ \to K^+ \mu^+ \mu^-$

 $B \rightarrow \mu^+ \mu^-$

Hints for New Physics?

- Model-independent approach: Effective Hamiltonian
- ► Best fit model has Wilson coefficient $C_9^{\text{NP}} \approx -1$ (4 to 5σ)
- What can explain this?
 - 1 Statistical fluctuations
 - 2 Not-yet-understood SM effects
 - 3 New Physics

<u>This Talk</u>

- 1 Phase difference in $B^+ \to K^+ \mu^+ \mu^-$
- 2 Search for $B_s^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- 3 $\mathcal{B}(B^0_s \to \mu^+ \mu^-)$ & Lifetime \leftarrow New!
- 4 Search for $B_s^0 \rightarrow \tau^+ \tau^- \leftarrow \text{New!}$

In Addition

- Talk on LFU tests at LHCb [Stefanie Reichert, Wednesday 16h50]
- ▶ YSF talk on $\Lambda_b^0 \to p\pi^-\mu^+\mu^-$ [Eluned Smith, Tuesday 18h05] Kristof De Bruyn (CPPM) $b \to s\ell^+\ell^-$ and Rare Decays at LHCb

La Thuile 2017

4 / 31

Phase Difference in $B^+ \rightarrow K^+ \mu^+ \mu^-$ Decays

How Large are the $c\bar{c}$ Contributions?

q^2 Spectrum ($B^0 ightarrow K^{*0} \mu^+ \mu^-$)

- Short-distance effects: Electroweak penguins
- Long-distance effects from intermediate resonances: J/ψ , $\psi(2S)$, higher $c\bar{c}$ states \rightarrow Associated with large uncertainties: usually avoided
- Contribution from J/ψ can potentially extent all the way to $q^2 = 0$

Goal

- ▶ Provide additional insights using the ground-state system $B^+ \to K^+ \mu^+ \mu^-$
 - \rightarrow Allows precise Lattice calculations
 - $\rightarrow\,$ Can still use branching fraction to constrain Wilson coefficients

$B^+ \to K^+ \mu^+ \mu^- \qquad \qquad B \to \mu^+ \mu^- \mu^+ \mu^- \qquad \qquad B \to \mu^+ \mu^- \qquad \qquad B \to \mu^+ \mu^- \qquad \qquad B \to \tau^+ \tau^-$

Study of $B^+ \rightarrow K^+ \mu^+ \mu^-$

LHCb-PAPER-2016-045, to appear in EPJC, arxiv:1612.06764

Objectives

- Phase difference between J/ψ , $\psi(2S)$ and the penguin contribution
- Wilson coefficients C_9 and C_{10}
- $\blacktriangleright \ \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$

Strategy

- ▶ Select $B^+ \to K^+ \mu^+ \mu^-$ candidates with $m_{K\mu\mu}$ in 80 MeV/ c^2 window around B^+
- Model $m_{\mu\mu}$ over full range, including the resonance regions
 - $ightarrow J/\psi$ and $\psi(2S)$ are modelled using a Breit-Wigner
 - $\rightarrow\,$ Penguin is modelled using Wilson coefficients and form factors

 $B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

Main Results

LHCb-PAPER-2016-045, to appear in EPJC, arxiv:1612.06764

▶ 4-fold degenerate solution: phases of J/ψ and $\psi(2S)$ can be + or -

Kristof De Bruyn (CPPM)

 $b \rightarrow s \ell^+ \ell^-$ and Rare Decays at LHCb

Search for $B^0_s \to \mu^+ \mu^- \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^- \mu^+ \mu^-$

Search for the Rare Decays $B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

4 Muon Final State:

1 Intermediate J/ψ , $\psi(2S)$ and ϕ resonances

 \rightarrow Most abundant: $B_s^0 \rightarrow J/\psi \phi$ with $\mathcal{B}(B_s^0 \rightarrow J/\psi \phi) = (1.83 \pm 0.18) \times 10^{-8}$

- Non-resonant component (Signal)
 - → SM expectation: $\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-) \stackrel{\text{SM}}{\longrightarrow} 3.5 \times 10^{-11}$ Y. Dincer and L. Sehgal, PLB 556 (2003) 169, arxiv:hep-ph/0301056

New physics contributions

- \rightarrow For example, MSSM model with scalar (S) +pseudo-scalar (P) sgoldstino interactions
- \rightarrow Motivated by excess seen by HyperCP collaboration: $\Sigma^+ \rightarrow P(\rightarrow \mu^+ \mu^-)p$

HyperCP, PRL 94 (2005) 021801, arxiv:hep-ex/0501014

Analysis Strategy

LHCb-PAPER-2016-043, to appear in JHEP, arxiv:1611.07704

Selection

- **I** Resonant components: Veto ϕ , J/ψ and $\psi(2S)$ mass windows in all $\mu^+\mu^-$ comb.
- Combinatorial background: Selection is based on a MatrixNet [JMLR Proc. 14 (2011) 63]
- **B** Background from $\pi \rightarrow \mu$ misidentification: Particle identification requirements

Event Yield

- Split data into Far Sideband, Near Sideband and Signal regions
- PID and MatrixNet cuts optimised using Near Sideband region
- ► Background yield in *Signal* region extrapolated from fit to Far Sideband

 $B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

Main Results

LHCb-PAPER-2016-043, to appear in JHEP, arxiv:1611.07704

No events found in Signal region LHCb Set limit on braching ratio 95% CL Exclusion — observed $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) = \alpha^s \times N_{\mu^+ \mu^- \mu^+ \mu^-}^{obs}$ expected $\pm 1 \sigma$ ••••• expected $\pm 2 \sigma$ • with normalisation mode $B^+ \rightarrow J/\psi K^+$ $\alpha^{s} \equiv \frac{\epsilon^{J/\psi K^{+}} \times \mathcal{B}(B^{+} \to J/\psi K^{+})}{\epsilon^{4\mu} \times \mathcal{N}_{U/\psi K^{+}}} \times \frac{f_{u}}{f_{e}}$ 0.6 Single event sensitivity: 0.4 0.2 $\alpha^{s} = (2.29 \pm 0.16) \times 10^{-10}$ 2 0 $\alpha^{d} = (8.65 \pm 0.80) \times 10^{-10}$ $B(B^0_s \to \mu^+ \mu^- \mu^+ \mu^-) ~[\times 10^{-9}]$

Branching Fraction Limits (CL_s Method)

$$\begin{array}{ll} \mathcal{B}(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 6.9 \times 10^{-10} & @ 95 \ \% \ \text{C.L.} \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \mu^+ \mu^-) < 2.5 \times 10^{-9} & @ 95 \ \% \ \text{C.L.} \end{array}$$

$B ightarrow \mu^+ \mu^- \mu^+ \mu^-$

 $B \rightarrow \mu^+ \mu^-$

 $B \rightarrow \tau^+ \tau^-$

Search for the Rare Decays $B \rightarrow \mu^+ \mu^-$

 \blacktriangleright Theoretically clean quantity \rightarrow accurate SM prediction

$$\begin{split} \mathcal{B}(B^0 &\to \mu^+ \mu^-) \stackrel{\text{SM}}{=} (1.06 \pm 0.09) \times 10^{-10} \\ \mathcal{B}(B^0_s &\to \mu^+ \mu^-) \stackrel{\text{SM}}{=} (3.66 \pm 0.23) \times 10^{-9} \end{split}$$

Bobeth et al., PRL 96 (2006) 241802, arxiv:hep-ex/0511015

Current Status

ATLAS, EPJC 76 (2016) 513, arxiv:1604.04263

CMS+LHCb, Nature 522 (2015) 68, arxiv:1411.4413

 $b \rightarrow s \ell^+ \ell^-$ and Rare Decays at LHCb

Analysis Strategy

LHCb-PAPER-2017-001

In a Nutshell

- ▶ Same strategy as for the Run 1 CMS+LHCb analysis
- Selection based on: BDT + particle identification (PID)
 - $\rightarrow\,$ BDT output is flat for signal, calibrated on $B^0 \rightarrow K^+ \pi^-$
 - $\rightarrow\,$ BDT output peaks towards zero for background, calibrated on mass sidebands
- Fit the $m_{\mu^+\mu^-}$ mass in bins of BDT output

Improvements

- Larger data sample: $3 \text{ fb}^{-1} \text{ Run } 1 + 1.4 \text{ fb}^{-1} \text{ of Run } 2$
- New and improved signal isolation
- ▶ New and improved BDT: 50% better background rejection
- ▶ Improved PID requirements: 50% less $B \rightarrow h^+ h^-$ background

Normalisation

IHCK

- ▶ Two control channels: $B^+ \to J/\psi K^+$ and $B^0 \to K^+ \pi^-$
- ► Dependence of hadronisation fraction f_s/f_d on \sqrt{s} evaluated comparing $B^+ \rightarrow J/\psi K^+$ and $B_s^0 \rightarrow J/\psi \phi$

Analysis Strategy

LHCb-PAPER-2017-001

<u>Mass Fit</u>

- Unbinned maximum likelihood fit in 4 bins of BDT output
- $m_{\mu^+\mu^-} \in$ [4900, 6000] MeV $/c^2$
- Exclude BDT < 0.25 (background dominated)
- Simultaneous fit of Run 1 and Run 2 data
- ▶ Free parameters: $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$, $\mathcal{B}(B^0 \to \mu^+ \mu^-)$ and comb. bkg.
- Exclusive background yields are constrained in fit

Exclusive Backgrounds

- Decays with two real muons
 - $\blacktriangleright B_c^+ \to J/\psi \mu^+ \nu_\mu$
 - $B^{0(+)} \to \pi^{0(+)} \mu^+ \mu^-$

- Decays with hadrons misidentified as muons
 - $B \rightarrow h^+ h^-$ (peaking in signal region)

$$B^{0} \rightarrow \pi^{-} \mu^{+} \nu_{\mu}$$
$$B^{0}_{s} \rightarrow K^{-} \mu^{+} \nu_{\mu}$$
$$\Lambda^{0}_{b} \rightarrow p \mu^{+} \nu_{\mu}$$

 $B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

 $B \rightarrow \mu^+ \mu^-$

A Nice Peak!

LHCb-PAPER-2017-001

Branching Fraction Limit (CL_s Method)

Kristof De Bruyn (CPPM)

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10}$

@ 95 % C.L.

 $B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

 $B \rightarrow \mu^+ \mu^-$

 $B \rightarrow \tau^+ \tau^-$

2D Contours

LHCb-PAPER-2017-001

$B ightarrow \mu^+ \mu^- \mu^+ \mu^-$

$B \rightarrow \mu^+ \mu^-$

 $B \rightarrow \tau^+ \tau^-$

$B_s^0 ightarrow \mu^+ \mu^-$ Effective Lifetime

- ▶ Even if $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \mathcal{B}(B_s^0 \to \mu^+ \mu^-)_{SM}$, NP can still hide in this decay
- ► Need a second, complementary observable to find it: either CP asymmetry parameter A^{μ+μ−}_{ΔΓ} or effective lifetime τ_{μ+μ−}

$B_s^0 ightarrow \mu^+ \mu^-$ Effective Lifetime

LHCb-PAPER-2017-001

Analysis Strategy

- Apply same selection, but looser cuts
- ▶ Reduces mass window m_{µ⁺µ⁻} ∈ [5320, 6000] MeV/c²
- Step 1: Mass fit to derive weights (sPlot technique)
- Step 2: Fit to weighted decay time distribution
- Strategy validated on $B^0 o K^+ \pi^-$

 $au_{B^0} = 1.52 \pm 0.03$ (stat) ps

Compare to

$$au_{B^0}^{ ext{PDG}} = 1.520 \pm 0.004 ext{ ps}$$

5

10

La Thuile 2017

$B_s^0 \rightarrow \mu^+ \mu^-$ Effective Lifetime

LHCb-PAPER-2017-001

Results

$$au(B_s^0 o \mu^+ \mu^-) = 2.04 \pm 0.44~{
m (stat)} \pm 0.05~{
m (syst)}~{
m ps}$$

• Consistent with both $\mathcal{A}_{\Delta\Gamma}^{\mu^+\mu^-} = 1$ (1 σ) and $\mathcal{A}_{\Delta\Gamma}^{\mu^+\mu^-} = -1$ (1.4 σ)

Does not yet constrain any NP models

$B^+ \rightarrow K^+ \mu^+ \mu^ B \rightarrow \mu^+ \mu^- \mu^+ \mu^ B \rightarrow \mu^+ \mu^-$

Search for the Rare Decays $B \rightarrow \tau^+ \tau^-$

- ▶ In the SM, only difference between $B_s^0 \rightarrow \tau^+ \tau^-$ and $B_s^0 \rightarrow \mu^+ \mu^-$ is due to helicity suppression (lepton mass)
- \blacktriangleright Theoretically clean quantity \rightarrow accurate SM prediction

$$\begin{split} \mathcal{B}(B^0 &\to \tau^+ \tau^-) \stackrel{\text{SM}}{=} (2.22 \pm 0.19) \times 10^{-8} \\ \mathcal{B}(B^0_s &\to \tau^+ \tau^-) \stackrel{\text{SM}}{=} (7.73 \pm 0.49) \times 10^{-7} \end{split}$$

Bobeth et al., PRL 96 (2006) 241802, arxiv:hep-ex/0511015

► Current best limit: $\mathcal{B}(B^0 \rightarrow \tau^+ \tau^-) < 4.1 \times 10^{-3}$ @ 90% C.L.

BaBar, PLB 687 (2010) 139, arxiv:1001.3221

LHCb Analysis for $B^0_s ightarrow au^+ au^-$

- ► Reconstructed in hadronic $\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$ mode (both τ s) → Low efficiency: $\mathcal{B}(\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau) = (9.31 \pm 0.05)\%$
- ▶ Normalisation mode: $B^0 \rightarrow D^+ (\rightarrow \pi^+ K^- \pi^+) D^-_s (\rightarrow K^- K^+ \pi^-)$

Experimental Signature

Challenges

- 1 2 missing neutrinos
 - No narrow (mass) peak to fit
 - Cannot differentiate B⁰_s from B⁰
- **2** 6 pions = large combinatorial background
 - Use isolation variables to suppress background
 - \blacktriangleright Use decay geometry to approximately reconstruct the B and τ properties

$B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

$B \rightarrow \mu^+ \mu^-$

$B \rightarrow \tau^+ \tau^-$

Intermediate Resonances

Predominantly proceeds through

$$au^- o a_1^-$$
(1260) $u_ au o
ho^0$ (770) $\pi^-
u_ au$.

Exploit this in analysis

Subsamples:

- ▶ Signal Region [SR]: $(\tau^+ \in 5) \& (\tau^- \in 5)$
- ► Signal-Depleted Region: $(\tau^+ \in 1, 3, 7, 9) || (\tau^- \in 1, 3, 7, 9)$

► Control Region [CR]:
$$(\tau^{\pm} \in 4, 5, 8) \& (\tau^{\mp} \in 4, 8)$$

Selection:

- Cut-based loose selection
- Two-stage neural network

 $B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

Fit Strategy

LHCb-PAPER-2017-003, arxiv:1703.02508

- Perform a 1-dimensional histogram fit to the output of a neural network
- Output is remapped such that signal is flat
- The Signal templates are taken from simulation
- ► The Background template is taken from data control region

Fit Model

LHCb-PAPER-2017-003, arxiv:1703.02508

Events:

Signal: 16% $B_s^0 \rightarrow \tau^+ \tau^-$ Simulation versus 7% data Sig.-Depleted: 13% $B_s^0 \rightarrow \tau^+ \tau^-$ Simulation versus 37% data Control: 58% $B_s^0 \rightarrow \tau^+ \tau^-$ Simulation versus 47% data

• ... so the data control region might also contain signal.

Model:

$$\mathcal{N}_{data}^{SR} = \mathbf{s} \times \widehat{\mathcal{N}}_{sim}^{SR} + \mathbf{f}_{b} \times \left(\mathcal{N}_{data}^{CR} - \mathbf{s} \cdot \frac{\epsilon_{CR}}{\epsilon_{SR}} \times \widehat{\mathcal{N}}_{sim}^{CR} \right)$$

- ▶ s: signal yield (free parameter)
- ► *f_b*: scaling factor for background template (free parameter)
- ϵ_i : efficiencies, taken from simulation
- î: indicates normalised distributions

Fit to Data

LHCb-PAPER-2017-003, arxiv:1703.02508

- Compatible with the background-only hypothesis
- \rightarrow Set an upper limit

From Yield to Branching Ratio

LHCb-PAPER-2017-003, arxiv:1703.02508

$$\mathcal{B}(B^0_s \to \tau^+ \tau^-) = \alpha^s \times N^{\rm obs}_{\tau^+ \tau^-} ,$$

- ▶ Assume all signal comes from $B_s^0 \rightarrow \tau^+ \tau^-$, i.e. ignore $B^0 \rightarrow \tau^+ \tau^-$ completely
- ▶ Determine α^s using $B^0 \rightarrow D^- D_s^+$ normalisation mode

$$\alpha^{s} = \frac{\epsilon^{D^{-}D_{s}^{+}} \times \mathcal{B}(\mathcal{B}^{0} \to D^{-}D_{s}^{+}) \times \mathcal{B}(D^{+} \to \pi^{+}K^{-}\pi^{+}) \times \mathcal{B}(D_{s}^{+} \to K^{+}K^{-}\pi^{+})}{N_{D^{-}D_{s}^{+}}^{\text{obs}} \times \epsilon^{\tau^{+}\tau^{-}} \times \left[\mathcal{B}(\tau^{-} \to \pi^{-}\pi^{+}\pi^{-}\nu_{\tau})\right]^{2}} \times \frac{f_{d}}{f_{s}}$$

► Fit to data, Efficiencies from simulation, External Input

$$\begin{array}{lll} \alpha^{s} = (4.07 \pm 0.70) \times 10^{-5} & \rightarrow & N_{\tau^{+}\tau^{-}}^{\text{SM}} = 0.019 \\ \alpha^{d} = (1.16 \pm 0.19) \times 10^{-5} & \rightarrow & N_{\tau^{+}\tau^{-}}^{\text{SM}} = 0.002 \end{array}$$

Branching Fraction Limit

LHCb-PAPER-2017-003, arxiv:1703.02508

 $B_s^0 \rightarrow \tau^+ \tau^-$

 $B^0 \rightarrow \tau^+ \tau^-$

Branching Fraction Limit (CL_s Method)

$$\begin{array}{ll} \mathcal{B}(B^0_s \to \tau^+ \tau^-) < 6.8 \times 10^{-3} & @~95~\% \text{ C.L.} \\ \mathcal{B}(B^0 \to \tau^+ \tau^-) < 2.1 \times 10^{-3} & @~95~\% \text{ C.L.} \end{array}$$

$B ightarrow \mu^+ \mu^- \mu^+ \mu^-$

 $B \rightarrow \mu^+ \mu^-$

 $B \rightarrow \tau^+ \tau^-$

Conclusion

► Study of the short and long-distance effects in $B^+ \rightarrow K^+ \mu^+ \mu^ \mathcal{B}(B^+ \rightarrow K^+ \mu^+ \mu^-) = (4.37 \pm 0.15 \text{ (stat)} \pm 23 \text{ (syst)}) \times 10^{-7}$

• Improved limits on the $B \to \mu^+ \mu^- \mu^+ \mu^-$ branching ratios

- $\mathcal{B}(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 6.9 \times 10^{-10}$ @ 95 % C.L.
- $\mathcal{B}(B_s^0 o \mu^+ \mu^- \mu^+ \mu^-) < 2.5 imes 10^{-9}$ @ 95 % C.L.

Improved measurement of B⁰_s → μ⁺μ[−] branching ratio
B(B⁰_s → μ⁺μ[−]) = (3.0 ± 0.6 (stat) ^{+0.3}_{-0.2} (syst)) × 10⁻⁹
B(B⁰ → μ⁺μ[−]) < 3.4 × 10⁻¹⁰
Ø 95 % C.L.
First measurement of the B⁰_s → μ⁺μ[−] effective lifetime
T(B⁰_s → μ⁺μ[−]) = 2.04 ± 0.44 (stat) ± 0.05 (syst) ps

► First limit on the $B_s^0 \to \tau^+ \tau^-$ branching ratio $\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3}$ @ 95 % C.L. $\mathcal{B}(B^0 \to \tau^+ \tau^-) < 2.1 \times 10^{-3}$ @ 95 % C.L. Kristof De Bruyn (CPPM) $b \to s\ell^+\ell^-$ and Rare Decays at LHCb La Thuile 2017 31/31

Supplementary Material

 $B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

 $B \rightarrow \mu^+ \mu^-$

The LHCb Detector

Forward arm spectrometer to study b- and c-hadron decays
▶ Pseudo-rapidity coverage: 2 < η < 5

JINST 3 (2008) S08005

- Good impact parameter resolution to identify secondary vertices: (15 + 29/p_T) μm
- ▶ Invariant mass resolution: 8 MeV/ c^2 ($B \rightarrow J/\psi X$) 22 MeV/ c^2 ($B \rightarrow hh$)
- Excellent particle identification:
 95 % K ID efficiency (5 % π → K mis-ID)
- Versatile & efficient trigger for b- and c-hadrons and forward EW signals

LHCD

$B o \mu^+ \mu^- \mu^+ \mu^-$

$B^+ \to K^+ \mu^+ \mu^-$

LHCb-PAPER-2016-045, to appear in EPJC, arxiv:1612.06764

▶ 4-fold degenerate solution: phases of J/ψ and $\psi(2S)$ can be + or -

$B ightarrow \mu^+ \mu^- \mu^+ \mu^-$

$B^+ \rightarrow K^+ \mu^+ \mu^-$

LHCb-PAPER-2016-045, to appear in EPJC, arxiv:1612.06764

					-
	J/ψ negat	ive/ $\psi(2S)$ negative	J/ψ negative $/\psi(2S)$ positive		
Resonance	Phase [rad]	Branching fraction	Phase [rad]	Branching fraction	
<i>ρ</i> (770)	-0.35 ± 0.54	$(1.71\pm0.25) imes10^{-10}$	-0.30 ± 0.54	$(1.71\pm0.25) imes10^{-10}$	_
$\omega(782)$	0.26 ± 0.39	$(4.93 \pm 0.59) \times 10^{-10}$	0.30 ± 0.38	$(4.93 \pm 0.58) \times 10^{-10}$	
$\phi(1020)$	0.47 ± 0.39	$(2.53 \pm 0.26) \times 10^{-9}$	0.51 ± 0.37	$(2.53 \pm 0.26) \times 10^{-9}$	
J/ψ	-1.66 ± 0.05	· – ´	-1.50 ± 0.05	· – ´	
$\psi(2S)$	-1.93 ± 0.10	$(4.64\pm0.20) imes10^{-6}$	2.08 ± 0.11	$(4.69 \pm 0.20) imes 10^{-6}$	
$\psi(3770)$	-2.13 ± 0.42	$(1.38 \pm 0.54) imes 10^{-9}$	-2.89 ± 0.19	$(1.67 \pm 0.61) imes 10^{-9}$	
ψ (4040)	-2.52 ± 0.66	$(4.17 \pm 2.72) \times 10^{-10}$	-2.69 ± 0.52	$(4.25 \pm 2.83) \times 10^{-10}$	
ψ (4160)	-1.90 ± 0.64	$(2.61 \pm 0.84) \times 10^{-9}$	-2.13 ± 0.33	$(2.67 \pm 0.85) \times 10^{-9}$	
ψ (4415)	-2.52 ± 0.36	$(6.04\pm 3.93)\times 10^{-10}$	-2.43 ± 0.43	$(7.10\pm 4.48)\times 10^{-10}$	
	J/ψ positive/ $\psi(2S)$ negative		J/ψ positive/ $\psi(2S)$ positive		
Resonance	Phase [rad]	Branching fraction	Phase [rad]	Branching fraction	
<i>ρ</i> (770)	-0.26 ± 0.54	$(1.71\pm0.25) imes10^{-10}$	-0.22 ± 0.54	$(1.71 \pm 0.25) imes 10^{-10}$	
$\omega(782)$	0.35 ± 0.39	$(4.93 \pm 0.58) \times 10^{-10}$	0.38 ± 0.38	$(4.93 \pm 0.58) \times 10^{-10}$	
$\phi(1020)$	0.58 ± 0.38	$(2.53 \pm 0.26) \times 10^{-9}$	0.62 ± 0.37	$(2.52 \pm 0.26) \times 10^{-9}$	
J/ψ	1.47 ± 0.05	_	1.63 ± 0.05	-	
$\psi(2S)$	-2.21 ± 0.11	$(4.63 \pm 0.20) imes 10^{-6}$	1.80 ± 0.10	$(4.68 \pm 0.20) imes 10^{-6}$	
$\psi(3770)$	-2.40 ± 0.39	$(1.39\pm0.54) imes10^{-9}$	-2.95 ± 0.14	$(1.68\pm0.61) imes10^{-9}$	
ψ (4040)	-2.64 ± 0.50	$(4.05 \pm 2.76) imes 10^{-10}$	-2.75 ± 0.48	$(4.30 \pm 2.86) \times 10^{-10}$	
ψ (4160)	-2.11 ± 0.38	$(2.62\pm0.82) imes10^{-9}$	-2.28 ± 0.24	$(2.68 \pm 0.81) imes 10^{-9}$	
$cb\psi(4415)$	-2.42 ± 0.46	$(6.13\pm 3.98)\times 10^{-10}$	-2.31 ± 0.48	$(7.12\pm 4.94)\times 10^{-10}$	
Kristof D	e Bruyn (CPPM)	$b ightarrow {\it s} \ell^+ \ell^-$ and Rare Decay	ys at LHCb	La Thuile 2017	

 $B o \mu^+ \mu^- \mu^+ \mu^-$

LHCb-PAPER-2016-043, to appear in JHEP, arxiv:1611.07704

HyperCP-inspired MSSM Scenario

Single event sensitivity:

$$\alpha^{s}(MSSM) = (2.01 \pm 0.14) \times 10^{-10}$$

$$\alpha^{d}(MSSM) = (7.75 \pm 0.72) \times 10^{-10}$$

Branching Fraction Limits (CL_s Method)

$$\begin{split} \mathcal{B}(B^0 \to S(\to \mu^+ \mu^-) P(\to \mu^+ \mu^-)) &< 6.9 \times 10^{-10} & @95\% \text{ C.L.} \\ \mathcal{B}(B^0_s \to S(\to \mu^+ \mu^-) P(\to \mu^+ \mu^-)) &< 2.5 \times 10^{-9} & @95\% \text{ C.L.} \end{split}$$

