

HEAVY FLAVOR RESULTS FROM CMS

M. GALANTI
(UNIVERSITY OF CYPRUS)

ON BEHALF OF THE CMS COLLABORATION

Introduction

low p_ double muon

dimuon mass [GeV]

- CMS heavy flavor program is taking great advantage from the excellent performance of the CMS detector
- Excellent vertex and p_r resolution
- Very low rate of hadrons mis-identified as muons (O(%) for π , K and p)
- Flexible HLT which allows to have many specialized di-µ triggers with high efficiency and high purity

CMS-PAS-TRK-10-004/5 Eur.Phys.J C70 (2010) p. 1165

10⁴

CMS √s = 7 TeV

Topics covered in this talk:

10

- Inclusive b and bb production
- Exclusive B decays
- Properties of cc states

DISCLAIMER: I will NOT talk about the rare $B_{s,d} \rightarrow \mu\mu$ decay → Seminar at CERN with new results this week (28/2/2012)!

Inclusive b cross section with jets

arXiv:1202.4617

- Use jets b-tagged with highpurity discriminator based on secondary vertex
- Sample composition well described by simulation

- Pythia overestimates the cross section at low $p_{_{\!\scriptscriptstyle T}}$
- MC@NLO prediction lower than data at low |y|, higher at high |y| and high $p_{\scriptscriptstyle T}$

Inclusive b cross section with muons and jets

arXiv:1202.4617

- Use b-tagged jets containing muons
- b fraction found with a fit on the muon p_T with respect to the jet axis (p_T Rel)

 $p_{_{T}}^{_{jet}} > 30$ GeV, $|y^{_{jet}}| < 2.4$, $p_{_{T}}^{_{\mu}} > 9$ GeV, $|\eta^{\mu}| < 2.4$

$$\sigma$$
 = 0.113 ± 0.001 ± 0.014 ± 0.005 µb $\sigma_{MC@NLO}$ = 0.113 $^{+0.04}_{-0.023}$ ±0.003 ± 0.005 µb

Extr. to full μ phase space and corr. for BR(b \rightarrow μ X)

$$\sigma$$
 = 2.25 ± 0.01 ± 0.31 ± 0.09 µb
 $\sigma_{MC@NLO}$ = 1.83 +0.64 ± 0.05 ± 0.08 µb

Summary of inclusive b cross section measurements

arXiv:1202.4617

- Muon-based results
 extrapolated to match the
 same visible phase space of the
 jet-based analysis (|y|<2.2)
- CMS results in good agreement with the ATLAS measurements
- Results consistent with the NLO predictions

Fraction of b-jets

arXiv:1202.4617

- Fraction of b-jets increasing as a function of p_T by up to a factor 2
- NLO prediction
 - MC@NLO for b-jets
 - FastNLO for inclusive jet sample
- NLO fraction
 - lower than data in the central region
 - Higher than data for $p_T > 100 \text{ GeV}$ and |y| > 2
- Pythia in agreement with data in the full kinematical region

Inclusive bb cross section with muon pairs

CMS-PAS-BPH-10-015

- Fraction of bb→μμ events in data extracted with a 2D template fit to the di-μ impact parameter
 - Distributions for B (bottom), C (charm) and D (decays in flight) taken from simulation
 - Distribution for P (prompt) from $\Upsilon(1s) \rightarrow \mu^+ \mu^-$ decays in data
- **Total uncertainty ~10%**

Fraction of $b\bar{b}$ candidates (p_T>4GeV, | η |<2.1) = 65.1±0.3% coming from the fit $(p_{\tau}>6GeV, |\eta|<2.1) = 69.0\pm0.4\%$

0.1

Projection of the 2D fit

```
\sigma(pp \rightarrow b\overline{b} \rightarrow \mu\mu X, p_{\tau} > 4GeV, |\eta| < 2.1) = 25.70 \pm 0.14(stat) \pm 2.20(syst) \pm 1.03(lumi) nb
            \sigma_{MC@NLO}(p_T > 4GeV, |\eta| < 2.1) = 19.66 \pm 0.29(stat) + 6.5 - 4.1(syst) nb
```

```
\sigma(pp \to b\overline{b} \to \mu\mu X, p_{\tau} > 6 \text{GeV}, |\eta| < 2.1) = 5.03 \pm 0.05 (\text{stat}) \pm 0.46 (\text{syst}) \pm 0.20 (\text{lumi}) \text{ nb}
              \sigma_{MC@NLO}(p_T > 6GeV, |\eta| < 2.1) = 4.40 \pm 0.14(stat) + 1.05 - 0.84(syst) nb
```

d_{xv} [cm]

Reconstruction of $\Lambda_b \rightarrow J/\psi \Lambda$

CMS-PAS-BPH-11-007

- $\Lambda_b \to J/\psi \Lambda$ decay reconstructed in the channels $J/\psi \to \mu^t \mu^t$, $\Lambda \to \pi^t p$
- Events triggered by μ pairs compatible with displaced $J/\psi \rightarrow \mu^{\dagger}\mu^{\dagger}$ decays
- $\Lambda \rightarrow \pi p$ reconstructed from displaced 2-track vertices
- Very low combinatorial background

$\Lambda_b \rightarrow J/\psi \Lambda$ cross section

CMS-PAS-BPH-11-007

CMS preliminary

√s = 7 TeV

 $L = 1.8 \text{ fb}^{-1}$

b)

Branching ratio uncertainty σ ·BR binned as a function of p_{τ} and |y|not shown in the plots

- $d\sigma/dp_{\scriptscriptstyle T}$ falls faster in data than Pythia
- $d\sigma/dy$ shows no significant deviations

$\overline{\Lambda}_{\rm b}/\Lambda_{\rm b}$ ratio

CMS-PAS-BPH-11-007

• Ratio calculated as

$$\frac{N(\bar{\Lambda}_b)}{N(\Lambda_b)} = \frac{\sigma(\bar{\Lambda}_b)}{\sigma(\Lambda_b)}$$

- Constant vs. p_T and |y|
- Consistent with 1

Cross section measurements with exclusive B decays

- Several results on $b \rightarrow J/\psi + X$ processes (with $J/\psi \rightarrow \mu^{\dagger}\mu^{\dagger}$)
- $B^+ \longrightarrow J/\psi K^+$
- PRL 106, 112001 (2011)

- $B^0 \longrightarrow J/\psi K_s$
- PRL 106, 252001 (2011)

• $B_s \rightarrow J/\psi \phi$

PRD 84, 052008 (2011)

Summary of b \rightarrow J/ ψ + X exclusive results

- Integrated cross sections for B mesons decaying into J/ψ+X
- Values compatible with the NLO predictions within uncertainties
- Summary of all four CMS b-hadron cross section measurements vs. p_T
- Λ_b cross section falls faster than B^+ and B^0

Measurement of J/ ψ and ψ (2s) production

J/ψ and ψ(2s)
 reconstructed in the μ⁺μ⁻
 decay channel

Projections of the 2D fit to $\ell_{J/\psi}$ and $\ell_{\psi(2s)}$

• Prompt and non-prompt fractions of J/ψ and $\psi(2s)$ estimated with a 2D fit to the di- μ invariant mass and $\ell_{J/\psi}$ or $\ell_{\psi(2s)}$ (the Lorentz-corrected transverse distance between the $\mu\mu$ vertex and the primary vertex)

Non-prompt J/ ψ and ψ (2s)

JHEP02 (2012) 011

- J/ψ in agreement with FONLL for $p_T < 30$ GeV, below theory at larger p_T
- $\psi(2s)$ cross section systematically below FONLL expectations
- Extract BR[B $\rightarrow \psi(2s) + X$] from non-prompt cross-section ratio

BR[B \rightarrow ψ (2s) + X] = (3.08 ± 0.12 (stat-syst) ± 0.13 (theor) ± 0.42 (BR_{PDG})) · 10⁻³ 3 times more accurate than previous world average!

X(3872) and $\chi_{c1,2}$

CMS-PAS-BPH-10-018 CERN-CMS-DP-2011-009

CERN-CMS-DP-2011-011

Events per 10 MeV/c² 000 000 000 000 $\sqrt{s} = 7 \text{ Tev}$

3.2

Ldt = 1.1 fb⁻¹ $m_{\chi} = 3.502 \pm 0.001 \text{ GeV/c}^2$ $\Delta m_{\chi_{c_1,c_2}} = 45.6 \text{ MeV/c}^2$ |y_{u+u}-| < 1 $\Delta m_{\chi_{e0.e1}}$ = 95.9 MeV/c² $p_{\tau}^{\gamma} > 0.5 \text{ GeV}$

CMS Preliminary

 $\sigma = 9.6 \pm 0.2 \text{ MeV/c}^2$

$$R = 0.087 \pm 0.017(stat.) \pm 0.009(syst.)$$

Conclusions and outlook

- The CMS experiment is delivering many important flavor physics measurements
- Differential cross sections for inclusive b production with jets and muons in jets
- Accurate ($\sim 10\%$) measurement of the total correlated $b\overline{b}$ production with di-muons
- New results on $\Lambda_{\rm b}$ complementing the cross-section measurements in fully exclusive B hadron decays
 - Λ_b cross section vs. p_T falling faster than the B-meson ones and the shape is not described by Pythia
- Study of prompt and non-prompt J/ ψ and ψ (2s) production, with the most accurate measurement of BR[B $\rightarrow \psi$ (2s) + X] produced so far
 - Other charmonium studies progressing
- Several results published, others in the pipeline, exploiting the larger data samples available with 2011/2012 LHC runs
 - Rare decays (seminar at CERN with new $B_s(B^0) \rightarrow \mu\mu$ results yesterday!)
- CMS has shown to be competitive in Heavy Flavor physics and will continue to deliver high-quality results also in 2012!