

Introduction Transfer lines Diagnostics Magnets Conclusion Transport line for a multi-staged laser-plasma acceleration: DACTOMUS

A. Chancé 1 O. Delferrière 1 J. Schwindling 1 C. Bruni 2 N. Delerue 2 C. Rimbault 2 T. Vinatier 2 A. Specka 3

¹CEA Saclay DSM/IRFU

²LAL

³LLR

4th June 2013

A. Chancé

Introduction

- Transfer lines Diagnostics Magnets
- Conclusion

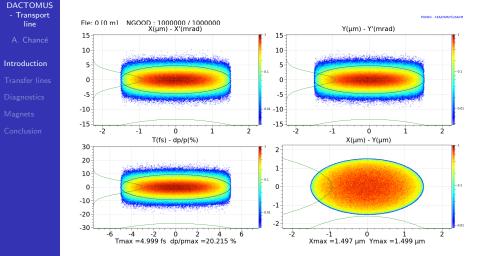
- DACTOMUS: Diagnostic And Compact beam Transport fOr MUltiStages laser plasma accelerators
- Collaboration between:
 - LPGP (B. Cros, G. Maynard, F. Desforges, B. Paradkar)
 - LULI (J. R. Marquès)
 - LLR (A. Specka)
 - LAL (C. Bruni, N. Delerue, C. Rimbault, T. Vinatier)
 - CEA IRAMIS (S. Dobosz)
 - CEA IRFU (A. Chancé, O. Delferrière, J. Schwindling)

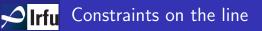
A. Chancé

Introduction

Transfer lines Diagnostics Magnets Conclusion

- The final goal is to inject and accelerate an electron beam by using the photo-ionizing trapping.
- An electron beam is extracted from a first plasma source, transported up to a capillary tube to be accelerated again.
- This transport line must keep the required properties (bunch length and size) to enable a proper re-acceleration.
- Some beam diagnostics are inserted to characterize the electron beam at the same time.
- The transport line will be built and tested on UHI100 at Saclay for middle 2014.


- DACTOMUS - Transport line
 - A. Chancé


Introduction

Transfer lines Diagnostics Magnets Conclusion

- The laser is UHI100:
 - Laser : $I_L = 4 \times 10^{18} W/{\rm cm}^2$, $T({\rm FWHM}) = 40$ fs , waist = $100 \mu {\rm m}$
 - Plasma density = 10^{17} cm⁻³.
- The beam is assumed to have the following properties at the entrance of the transfer line:
 - The total charge is 10 pC;
 - The distribution is uniform in the space (x, y, z).
 - The beam is a sphere of diameter 3 μ m;
 - The energy distribution is Gaussian and centered on 50 MeV. The full width at half-height (FWHM) is 10%.
 - The angular divergence distribution is Gaussian and centered on zero. The FWHM is 5 mrad.
 - There is no correlation between angle, position and energy.

A. Chancé

Introduction

Transfer lines Diagnostics Magnets

Conclusion

- The beam final size must be close to the initial size (3 μm) to inject in the capillary tube.
- The total length of the transport line must be about 1 meter (maximum: 1.20 m) to fit the experimental area.
- The beam line must be isochronous to avoid a bunch lengthening.
- Insertion locations must be foreseen to:
 - extract the laser;
 - insert screens for the transverse profile of the beam;
 - insert a dipole to measure the energy spectrum.
- Since the initial properties can vary from a shot to another shot, the final properties must not be sensitive to these variations.
- The beam line must be very energy accepting: about 10% around the reference energy (50 MeV).

✓ Irfu Preliminary remarks

DACTOMUS - Transport line

A. Chancé

Introduction

Transfer lines Diagnostics Magnets Conclusion

- The chosen solution is a symmetric beam line.
- The used coordinates are $(x, x', y, y', -ct, \delta)$.
- The simplest beam line is a triplet of quadrupoles.
- The constraints on the beam transfer are then:

$$\begin{aligned} |R_{11}| &\approx |R_{33}| \approx 1\\ |R_{22}| &\approx |R_{44}| \approx 1\\ R_{12} &= R_{34} = 0 \end{aligned}$$

• A more complicated beam line is an achromatic line in which sextupoles are inserted. The added constraints are:

$$R_{16} = R_{56} = 0$$
$$T_{126} = T_{346} = T_{166} = 0$$

✓ Irfu Constraints on the bunch length

DACTOMUS - Transport line

A. Chancé

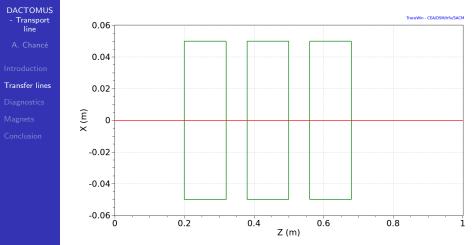
Introduction

- Transfer line
- Diagnostics
- Magnets
- Conclusion

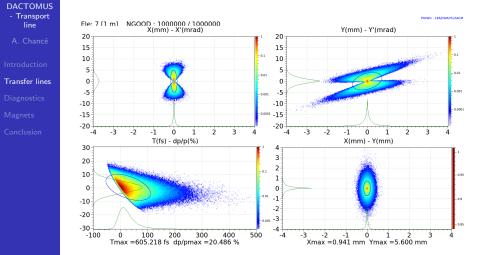
- The bunch length must be less than the plama period
 ⇒ a few tens of fs.
- There are 3 main lengthening sources for a *L*-long beam line. We assume $L \approx 1$ m, an angular divergence of
 - $\theta=5$ mrad and an energy spread of 10%.
 - Velocity dispersion of the beam.

$$dT = -rac{L}{eta^3\gamma^2 c}rac{d\gamma}{\gamma}pprox$$
 35 fs

• Path length difference due to the angular divergence.

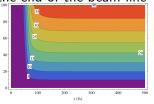

$$dT = \frac{L}{\beta c} \left(\frac{1}{\cos \theta} - 1\right) \approx 42 \text{ fs}$$

• Path length difference due to the energy (true if dipoles are used in the beam line).

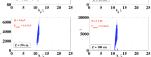

- The 1st order is corrected ($R_{56} = 0$).
- The bunch lengthening is then quadratic with energy.

Total length: 1 m

Pirfu Final distribution Triplet

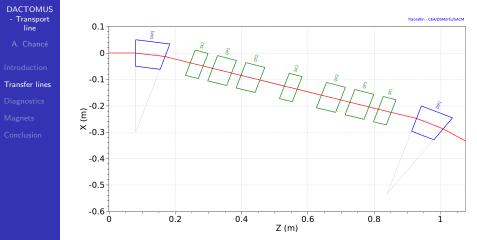


✓Irfu Beam profile Triplet


r (µm)

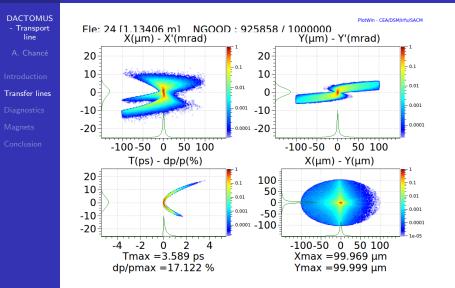
Diagnostics Magnets Conclusion Integrated distribution at the end of the beam line

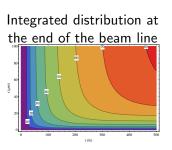
Acceleration in the capillary tube $\frac{120}{100}$ $\frac{150}{2\times 100}$ $\frac{150}{20}$ $\frac{$

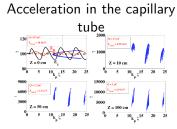


Courtesy: B. S. Paradkar

see Paradkar's presentation on 5th June

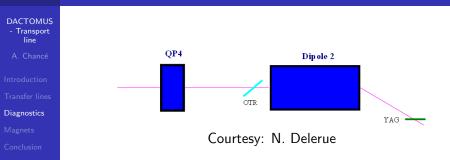

- The final bunch length is about 60 fs.
- The main drawback is the large beam size due to the chromatic aberrations.
- Only 10% of the beam are in a radius of less than 20μ m.


Total length: 1.13 m.


PIrfu Final distribution Achromatic line

PIrfu Beam profile Achromatic line

Courtesy: B. S. Paradkar


- The final bunch size is a few 10 μ m.
- The final bunch length is several 100 fs.
- The main drawback is the bunch lengthening due to the dipoles.

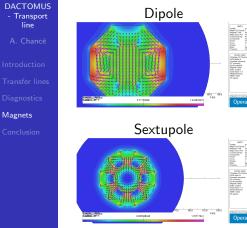
- The first dipole is used as an energy spectrometer.
- A large screen (lanex) is put before the first quadrupole and looked at with a camera.
- The beam position must be known before the dipole
- \Rightarrow Another lanex is put before the dipole.

- The aim is to measure the final beam size.
- A YAG is put at the end of the transfer line.
- The energy dispersion can be measured with an OTR before the last dipole.

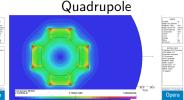
Permanent magnets vs Electromagnets

DACTOMUS - Transport line

A. Chancé

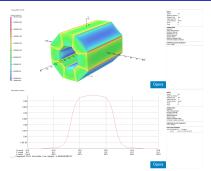

Introduction Transfer line Diagnostics Magnets

Conclusion


Permanent magnets	Electro-magnets
	 Variable fields: more flexible
Compactness	TIEXIDIE
O power supply	Seeded power supply
Occooling	Bigger
Possibility of very small	Inner radius larger
inner radius	Seeded cooling
Fixed field	🙁 Needed beam pipe
	(vacuum)
\Rightarrow We have chosen to use permanent magnets.	

A Halbach structure has been studied.

✓ Irfu Permanent magnets


Courtesy: O. Delferrière

- Inner radius: 20 mm.
- Dipole field: 0.7 T (we need 0.56 T)
- Sextupole gradient: 1600 T/m² (we need 690 T/m²)
- We have margin! The magnets are doable.

- Gradient integrate at 10 mm: 4.49 T
- The needed integrate is 1.7 T.
- The main problem is the fringe field (the quadrupoles are short compared to their aperture).
- Until now, the line parameters were chosen with the hard edge approximation.
- That is a rough approximation to have the order of magnitude of the needed fields.
- Tracking studies with realistic field maps must be performed.

- DACTOMUS - Transport line
 - A. Chancé
- Introduction Transfer lines Diagnostics Magnets Conclusion

- Two transfer line proposals were made.
- The first one (very simple) keeps the required bunch length but the beam size is too large (chromatic aberrations).
- The second one (more complicated) gives the required beam size. The price is a longer beam.
- Some studies must be done to have the best compromise.
- First magnet designs were made. The required fields are doable with permanent magnets.
- Tracking studies with realistic maps must be done to study the impact of the fringe field.
- Misalignment and field tolerances must be looked at.
- A more precise diagnostic study will be done.