

We have decided to start evaluating some parallel
computing environment with «an exercise»:
parallelize a well known algorithm.

One of the selected tasks was sorting, to be
developed with a serial paradigm and then
parallelized via OpenMP and on GPU HW with CUDA

Performance measurements of the developed code
allow to make some considerations on different
technologies and also to gain a better understanding
of technology internal mechanisms

2/20 S. Longo – SuperB Computing Workshop – Ferrara

Algorithm selection is obviously the first step in this
exercice. The algorithm have to

 Be parallelizable

 Be scalable to a large number of nodes

It should also have good performances even if not
necessary the best on the market

The choice was to employ a sorting network
implementing the «Bitonic Sorting» algorithm

[Knuth – The Art of Computer Programming Vol. 3]

3/20 S. Longo – SuperB Computing Workshop – Ferrara

Fundamental element of the sorting network is the
comparator-exchanger:

The network is composed by indipendent C.E.,
sorting is due to connections among its elements.

C.E. at the same depth can run in parallel

4/20 S. Longo – SuperB Computing Workshop – Ferrara

C.E.
a

b

(a < b) ? a : b

(a < b) ? b : a

The sorting network is built iteratively (i.e. by
induction) with a tipical divide-and-conquer
approach.

Base of the induction is a k-order bitonic sorter: a
network able to sort a k-length bitonic sequence.

Two k-lenght ordered sequences can be merged to
form a new bitonic sequence that can be sorted by a
(2k)-order bitonic sorter.

Proceeding with the iteraction it’s possible to
construct a network able to sort a sequence of any
length (power of two)

[Proof: use 0-1 principle and proceed by induction]

5/20 S. Longo – SuperB Computing Workshop – Ferrara

An example of sorting network for 16 inputs

Number of C.E. = 𝑂 𝑁
2

log2 𝑁
 - Network delay = 𝑂 (

2
log2 𝑁

)

6/20 S. Longo – SuperB Computing Workshop – Ferrara

Measurements were done with the following system:

SuperMicro GPGPU SuperServer

 MB: SuperMicro X8DTG-DF (Intel 5520 chipset)

 CPU: 1xIntel Xeon E5630 (4 cores @ 2.53GHz, 2 HT
per core)

 RAM: 12 GB DDR3@ 1333MHz

 GPU: NVidia Tesla M2050 (448 CUDA cores, 3GB
RAM @ 1.55GHz, 1.03TFlops/515GFlops)

 S.O.: RHEL 6 (gcc 4.4.5, OpenMP 3.0, CUDA 3.2)

 7/20 S. Longo – SuperB Computing Workshop – Ferrara

The following is a pseudo-implementation of the sorting network

bitonicSortSerial(theArray)

 for step from 0 to MaxStep // Outer block loop

 for substep from 0 to step // Inner block loop

 // Calculate Indexes for comparison

 // and block parameters

 for i from 0 to theArray.length / 2

 // C.E. execution loop

 if (i is part of the ascending network)

 CompareAndExchange(Ascending Order)

 else

 CompareAndExchange(Descending Order)

8/20 S. Longo – SuperB Computing Workshop – Ferrara

Three nested loops allow to fork parallel threads at different
depths of the code.

1. At the C.E. level – inside the inner loop: a thread is forked for
each C.E.. Each thread execute a C.E. code and then exit
(interesting for comparison with CUDA code but in general a
very bad idea)

2. At the sub-block level – middle loop: in this case a thread
executes several C.E. inside sub-blocks at the same depth
(threads are «recycled» - cpu cycles used for effective
computing, not only to span threads – C.E. executed are
independent)

3. At the block level – in the outer loop: OpenMP manage the
spanning of several threads (one per HT unit) to execute
portions of the code inside the three loops (OpenMP can
«recycle» threads, but C.E. aren’t always indipendent: require
explicit synchronization)

9/20 S. Longo – SuperB Computing Workshop – Ferrara

The 3 solutions correspond to instruct OpenMP to parallelize (with
omp parallel directive) the following sections of the pseudo-code

bitonicSortSerial(theArray)

 for step from 0 to MaxStep // Outer block loop

 for substep from 0 to step // Inner block loop

 // Calculate Indexes for comparison

 // and block parameters

 for i from 0 to theArray.length / 2

 // C.E. execution loop

 if (i is part of the ascending network)

 CompareAndExchange(Ascending Order)

 else

 CompareAndExchange(Descending Order)

10/20 S. Longo – SuperB Computing Workshop – Ferrara

S
o
lu

ti
o
n
 1

S
o
lu

ti
o
n
 2

S
o
lu

ti
o
n
 3

Solution 3 requires explicit synchronization here (omp barrier)

Performances measured on the test system:

11/20 S. Longo – SuperB Computing Workshop – Ferrara

Focusing on the two last solutions

12/20 S. Longo – SuperB Computing Workshop – Ferrara

Speed-up
Theoretical: 4x
Solution 1 : ̴ 0.01x
Solution 2 : ̴ 3,67x
Solution 3 : ̴ 3,98x

Testing was done employing a NVidia Tesla M2050 GPU board

 Array of streaming processor with 448 CUDA cores

 SIMT (Single Instruction Multiple Thread) technology

 Threads are divided in warps (blocks of 32 threads). A processor
executes the same instruction on each thread of a warp.

 Execution is in order. No branch prediction or speculative
execution. When a processor encounters a branch inside a warp,
it serializes the execution of each path of the branch.

 Warp scheduling is done in hardware with two warp schedulers
able to issue one instruction per cycle.

 Execution context (IP, status registers, etc.) is maintained on-
chip during the execution of a warp: no context switching cost.

13/20 S. Longo – SuperB Computing Workshop – Ferrara

All the CUDA implementations of the Bitonic Sorting algorithm
have the following structure:

14/20 S. Longo – SuperB Computing Workshop – Ferrara

Get GPU properties

Initialize GPU RAM

Copy data from host to device

Execute sorting

Copy results back to host

Several types of implementation were developed to investigate :

 The impact of thread size/lifetime (parallelization at different
depths of the network)

 How thread grouping affects performances

 Execution time of part of the code on host and part on the
GPU v.s. execution of the code completely on the GPU

 Impact of different synchronizations techniques (thread
explicit synchronization on the GPU, submission of kernels
inside streams, etc.)

 Branching impact on the streaming processor architecture

15/20 S. Longo – SuperB Computing Workshop – Ferrara

In particular we have developed 3 versions with light kernels
implementing a single C.E. each. Auxiliary code (index
computation, etc.) was executed on the host. Measurement were
done with the following setup:

1. C.E. kernels grouped as N blocks of 1 thread (<<<N, 1>>>).
Implicit synchronization done on the host

2. C.E. kernel grouped as 1 block of N thread (<<<1, N>>>).
Implicit synchronization done on the host.

3. Kernel grouping as solution 2. Submission of all the threads at
once. Synchronization obtained with streams

We have also developed a version of the algorithm with an ‘heavier’
kernel, that executes more step of the sorting network (less
threads with longer lifetime – reduced scheduling overhead). In this
case all the network was executed on GPU (Solution 4)

16/20 S. Longo – SuperB Computing Workshop – Ferrara

Performances measured on the test system:

17/20 S. Longo – SuperB Computing Workshop – Ferrara

Speed-up
Solution 1: ̴̴ 1.70x
Solution 2: ̴ 0.46x
Solution 3: ̴ 1.80x
Solution 4: ̴ 7.64x

Solution 4 (full execution of the network on GPU with ‘persistent’
threads) was also employed to study the impact of branching,
implementing the following network

that with a different routing execute the same sorting algorithm
but employing only ascending C.E.

18/20 S. Longo – SuperB Computing Workshop – Ferrara

The following is the comparison of the code with ascending and
descending networks (Sol. 4) and with ascending networks only (Sol. 5)

19/20 S. Longo – SuperB Computing Workshop – Ferrara

Speed-up
Solution 4: ̴ 7.64x
Solution 5: ̴ 9.53x

Removing the need to
distinguish the
comparison direction
of C.E. translates in
a ̴25% speed-up gain

Exploiting the power of multi/many cores machines requires a
carefull design of the code.

Parallelization with OpenMP is quite straightforward. Good
performances can be obtained with a careful weighting of the
synchronization conditions and thread lifetime.

CUDA gives more options to the developer, on the other hand
different structures of the code may yield high variations in the
execution time (thread grouping, synchronization, etc.)

At the end the hardest part of the design is the Algorithm, but is
also the phase where the code can gain the higher speed up.

20/20 S. Longo – SuperB Computing Workshop – Ferrara

