

Nuclear data and Astrophysics

Data for *s process* from n_TOF

Cristian Massimi for the n_TOF Collaboration

Outline

The n_TOF project

Objectives, basic parameters, instrumentation

• Examples of measurements and their impact on *s-process nucleosynthesis*

Branch-point isotopes, neutron sources, *s-only* isotopes, *s-process* bottleneck, weak component

Future program

Facility upgrade 2019-2021, measurements 2021-2030

- 1. Atominstitut, Technische Universität Wien, Austria
- 2. University of Vienna, Faculty of Physics, Austria
- 3. European Commission JRC, Institute for Reference Materials and Measurements (IRMM)
- 4. Department of Physics, Faculty of Science, University of Zagreb, Croatia
- 5. Charles University, Prague, Czech Republic
- 6. Centre National de la Recherche Scientifique/IN2P3 IPN, Orsay, France
- 7. Commissariat à l'Énergie Atomique (CEA) Saclay Irfu, Gif-sur-Yvette, France
- 8. Johann-Wolfgang-Goethe Universität, Frankfurt, Germany
- 9. Karlsruhe Institute of Technology, Campus Nord, Institut für Kernphysik, Karlsruhe, Germany
- 10. National Technical University of Athens (NTUA), Greece
- 11. Aristotle University of Thessaloniki, Thessaloniki, Greece
- 12. Bhabha Atomic Research Centre (BARC), Mumbai, India
- 13. ENEA Bologna e
- 14. Dipartimento di Fisica, e Astronomia, Università di Bologna
- 15. Sezione INFN di Bologna, INFN Bari, Bologna, LNL, Perugia, Trieste, LNS
- 16. Uniwersytet Łódzki, Lodz, Poland
- 17. Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal
- 18. Horia Hulubei National Institute of Physics and Nuclear Engineering Bucharest, Romania
- 19. Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- 20. Instituto de Fìsica Corpuscular, CSIC-Universidad de Valencia, Spain
- 21. Universitat Politecnica de Catalunya, Barcelona, Spain
- 22. Universidad de Sevilla, Spain
- 23. Universidade de Santiago de Compostela, Spain
- 24. Department of Physics and Astronomy University of Basel, Basel, Switzerland
- 25. European Organization for Nuclear Research (CERN), Geneva, Switzerland
- 26. Paul Scherrer Institut, Villigen PSI, Switzerland
- 27. University of Manchester, Oxford Road, Manchester, UK
- 28. University of York, Heslington, York, UK

Objective: to provide Nuclear Data for Science (and Technology)

How the elements are synthesized in the Universe?

Objective: to provide Nuclear Data for Science (and Technology)

How the elements are synthesized in the Universe?

s process:

 Neutron induced reactions in Astrophysics, by <u>C.</u> <u>Lederer</u>, Wednesday 27 12:00

Posters

- ➤ The neutron capture cross section measurement of the thallium isotopes ²⁰³TI, ²⁰⁴TI and ²⁰⁵TI at the n_TOF facility at CERN, <u>A.</u> Casanovas
- Measurement of the
 ¹⁶O(n, α)¹³C reaction crosssection at the CERN
 n_TOF facility S. Urlass
- The Stellar ⁷²Ge(n, γ) Cross Section: A First Measurement at n_TOF, M. Dietz

BBN:

→ ⁷Be(n,p) cross section measurement for the Cosmological Lithium Problem at the n_TOF facility at CERN, L. Damone Wednesday 27, 10:00

s-process (slow process):

- Capture times long relative to decay time
- Involves mostly stable isotopes
- $N_n = 10^8 \text{ n/cm}^3$, $E_n = 0.3 300 \text{ keV}$

r-process (rapid process):

- Capture times short relative to decay times
- Produces unstable isotopes (neutron-rich)
- $N_n = 10^{20-30} \text{ n/cm}^3$

s-process nucleosynthesis proceeds through **neutron capture** reactions and successive β **decay.**

The abundance of elements in the Universe depends on:

- thermodinamic conditions (temperture and neutron density);
- \triangleright β -decay rate;

Need of **accurate** (n,γ) cross-sections:

- refine models of stellar nucleosynthesis in the Universe;
- obtain information on the stellar environment and evolution

Along the β -stability valley

Stellar spectra: AGB (8, 23 keV) and Massive stars (25, 90 keV)

Stellar spectra: AGB (8, 23 keV) and Massive stars (25, 90 keV)

Stellar spectra: AGB (8, 23 keV) and Massive stars (25, 90 keV)

For Astrophysical applications it is important to determine Maxwellian Averaged Cross-Sections (MACS), for various temperatures (kT depends on stellar site).

Reaction rate (cm⁻³s⁻¹):
$$r = N_A N_n v \sigma(v)$$

$$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi} (kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$

For Astrophysical applications it is important to determine Maxwellian Averaged Cross-Sections (MACS), for various temperatures (kT depends on stellar site).

Reaction rate (cm⁻³s⁻¹): $r = N_A N_n v \sigma(v)$

$$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi} (kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$

Two methods are used to determine MACS:

For Astrophysical applications it is important to determine Maxwellian Averaged Cross-Sections (MACS), for various temperatures (kT depends on stellar site).

Reaction rate (cm⁻³s⁻¹): $r = N_A N_n v \sigma(v)$

$$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi} (kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$

Two methods are used to determine MACS:

1. measurement of **energy dependent** neutron capture cross-sections;

For Astrophysical applications it is important to determine Maxwellian Averaged Cross-Sections (MACS), for various temperatures (kT depends on stellar site).

Reaction rate (cm⁻³s⁻¹): $r = N_A N_n v \sigma(v)$

$$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi} (kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$

Two methods are used to determine MACS:

- 1. measurement of **energy dependent** neutron capture cross-sections;
- integral measurement (energy integrated) using neutron beams with suitable energy spectrum.

4.5

For Astrophysical applications it is important to determine Maxwellian Averaged Cross-Sections (MACS), for various temperatures (kT depends on stellar site).

Reaction rate (cm⁻³s⁻¹): $r = N_A N_n v \sigma(v)$

$$r = N_A N_n \langle \sigma \cdot v \rangle$$

$$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi} (kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$

Two methods are used to determine MACS:

1. measurement of **energy dependent** neutron capture cross-sections;

20 40 60 80 100 Temperature (keV)

n_TOF @ CERN

Neutron Time-Of- Flight facility: **n_TOF**

Tube Collimator

70.2

0.35 m

136.7

145.4

134.9

The n_TOF project

200

Válve Φ=400 mm

178 180.5

5 m

Detectors for (n,γ) reaction

Capture reactions are measured by detecting γ-rays emitted in the de-excitation process. **Two different systems**, to minimize different types of background

Detectors: (n,p) and (n,α) reactions

Gas and solid state detectors are used for detecting charged particles, depending on the energy region of interest and the Q-value of the reaction

Silicon detectors Silicon sandwich Diamond detector ΔE-E Telescopes

Micromegas chamber

• low-noice, high-gain, radiation-hard detector

Data for s process

Cross sections measured in 2001 - 2018

Branching point isotopes:

```
<sup>151</sup>Sm, <sup>63</sup>Ni, <sup>147</sup>Pm, <sup>171</sup>Tm, <sup>203</sup>TI
```

Abundances in presolar grains:

```
91,92,93,94,96Zr
```

Magic Nuclei and end-point:

```
<sup>139</sup>La, <sup>140</sup>Ce, <sup>90</sup>Zr, <sup>89</sup>Y, <sup>88</sup>Sr, <sup>204,206,207,208</sup>Pb, <sup>209</sup>Bi
```

Seeds isotopes:

```
^{54,56,57}Fe, ^{58,60,62}Ni, ^{59}Ni(n,\alpha)
```

Isotopes of special interest:

```
<sup>186,187,188</sup>Os (cosmochronometer), <sup>197</sup>Au (reference cross section), <sup>24,25,26</sup>Mg, <sup>33</sup>S(n,α), <sup>14</sup>N(n,p), <sup>35</sup>Cl(n,p), <sup>26</sup>Al(n,p), <sup>26</sup>Al(n,α) (neutron poison), <sup>154</sup>Gd (s-only isotope), <sup>68</sup>Zn, <sup>69,71</sup>Ga, <sup>70,72,73,74,76</sup>Ge, <sup>77,78,80</sup>Se (weak component)
```

• Neutron Sources 22 Ne $(\alpha,n)^{25}$ Mg and 13 C $(\alpha,n)^{16}$ O:

```
n+25Mg, n+16O
```


Data for s process

Cross sections measured in 2001 - 2018

Branching point isotopes:

Abundances in presolar grains:

Magic Nuclei and end-point:

Seeds isotopes:

```
^{54,56,57}Fe, ^{58,60,62}Ni, ^{59}Ni(n,\alpha)
```

Isotopes of special interest:

Section: A First Measurement at n_TOF, M. Dietz

^{186,187,188}Os (cosmochronometer), ¹⁹⁷At (reference cross section), ^{24,25,26}Mg, ³³S(n, α),

¹⁴N(n,p), ³⁵Cl(n,p), ²⁶Al(p,p), ²⁶Al(n,α) (neutron poison), ¹⁵⁴Gd (s-only isotope), ⁶⁸Zn, ^{69,71}Ga, ^{70,72,73,74,76}Ge, ^{77,78,80}Se (weak component)

• Neutron Sources ²²Ne(α ,n)²⁵Mg and ¹³C(α ,n)¹⁶O:

Measurement of the ¹⁶O(n,α)¹³C reaction crosssection at the CERN n_TOF facility – <u>S. Urlass</u>

The neutron capture cross section measurement of the thallium isotopes ²⁰³Tl, ²⁰⁴Tl and ²⁰⁵Tl at the n_TOF facility at CERN, <u>A. Casanovas</u>

The Stellar 72 Ge(n, γ) Cross

Branching point isotopes

Branching point isotopes

■ STABLE
■ Unstable against β⁻
→ (n,γ) reaction
β decay

s-process
branching point

¹⁵¹Sm: s process in AGB

Branching point isotopes

REVIEWS OF MODERN PHYSICS The s process: Nuclear physics, stellar models, and observations, Vol. 83, 2011

Sample	Half-life (yr)	Q value (MeV)	Comment
⁶³ Ni	100.1	$\beta^-, 0.066$	TOF work in progress (Couture, 2009), sample with low enrichment PRL 110, 022501 (201
⁷⁹ Se	2.95×10^{5}	$\beta^-, 0.159$	Important branching, constrains s-process temperature in massive stars
81 Kr	2.29×10^{5}	EC, 0.322	Part of ⁷⁹ Se branching
85 Kr	10.73	$\beta^-, 0.687$	Important branching, constrains neutron density in massive stars
⁹⁵ Zr	64.02 d	β^{-} , 1.125	Not feasible in near future, but important for neutron density low-mass AGB stars
¹³⁴ Cs	2.0652	$\beta^-, 2.059$	Important branching at $A = 134, 135$, sensitive to s-process temperature in low-mass AGB stars, measurement not feasible in near future
¹³⁵ Cs	2.3×10^{6}	$\beta^{-}, 0.269$	So far only activation measurement at $kT = 25$ keV by Patronis <i>et al.</i> (2004)
¹⁴⁷ Nd	10.981 d	β^{-} , 0.896	Important branching at $A = 147/148$, constrains neutron density in low-mass AGB stars
¹⁴ /Pm	2.6234	$\beta^-, 0.225$	Part of branching at $A = 147/148$
148 Pm	5.368 d	B ⁻ 2.464	Not feasible in the near future
¹⁵¹ Sm	90	$\beta^-, 0.076$	Existing TOF measurements, full set of MACS data available (Abbondanno et al., 2004a; Wisshak et al., 2006c)
¹⁵⁴ Eu	8.593	β^{-} , 1.978	Complex branching at $A = 154$, 155, sensitive to temperature and density PRL 93, 161103 (200-
¹⁵⁵ Eu	4.753	$\beta^-, 0.246$	So far only activation measurement at $kT = 25 \text{ keV}$ by Jaag and Käppeler (1995)
¹⁵³ Gd	0.658	EC, 0.244	Part of branching at $A = 154, 155$
¹⁶⁰ Tb	0.198	$\beta^{-}, 1.833$	Weak temperature-sensitive branching, very challenging experiment
¹⁶³ Ho	4570	EC, 0.0026	Branching at $A = 163$ sensitive to mass density during s process, so far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1996b)
¹⁷⁰ Tm	0.352	B^{-} . 0.968	Important branching, constrains neutron density in low-mass AGB stars
¹⁷¹ Tm	1.921	B ⁻ . 0.098	Part of branching at $A = 170.171$
¹⁷⁹ Ta	1.82	EC, 0.115	Crucial for s-process contribution to ¹⁸⁰ Ta, nature's rarest stable isotope
¹⁸⁵ W	0.206	β^{-} , 0.432	Important branching, sensitive to neutron density and s-process temperature in low-mass AGR stars
²⁰⁴ Tl	3.78	$\beta^{-}, 0.763$	Determines ²⁰⁵ Pb/ ²⁰⁵ Tl clock for dating of early Solar System

Branching point isotopes

Ongoing studies

Short-lived branching isotopes (a few years) have either **never been measured before** or have been measured **only by activation** (a few tens of ng) at a fixed temperature.

 154 Gd = s-only isotope, it can be produced only via s process because they are shielded against the β-decay chains from the r-process region by the isobars samarium

- C. Trippella, et al., The Astrophysical Journal 787 (2014) 41
- S. Cristallo, et al., The Astrophysical Journal 801 (2015) 53

Disagreement of more than 20% between **observation** and **model calculation** of s-process abundances

THE ASTROPHYSICAL JOURNAL, 801:53 (14pp), 2015 March 1

Magic nuclei: s process peaks

Magic nuclei: s process peaks Istituto Nazionale di Fisica Nucleare

Straniero, Cristallo & Piersanti 2014

Abundances of elements in the s-process peak are well reproduced apart from Cerium.

Figure 11. Best fit of the average s-process chemical pattern of stars in M22.

The pollution of AGB stars with a mass ranging between 3 to 6 M_{SUN} may account for most of the features of the s-process enrichment of M4 and M22.

Figure 13. Best fit of the average s-process chemical pattern of stars in M4.

M5

M22

M4 - M5

Magic nuclei: s process peaks

The case of ²⁵Mg

Jπ

 0^+

 0^+

²²Ne

 α

Experimental evidence of natural spin parity states in the energy region of interest

	\mathbf{J}^{π}
²⁵ Mg	5/2+
n	1/2+

The case of ²⁵Mg

Neutron energy (keV)

Future 2021 - 2030

Upgrade: new spallation target ready by 2020

- T3 Project started early 2016
- Preliminary Design Review (PDR) June 2017 (EDMS 1837722)
- Intermediate Engineering Design Review (IEDR) 15th May 2018 (link)
- Production Readiness Review (PRR) Q4 2018
- Target Installation Review (TIR) Q1 2020
- Target installation foreseen Q2 2020 + Beam on target S1 2021

Future 2021 - 2030

Upgrade: new detector concept

Future 2021 - 2030

Upgrade: new detector concept

E₁, r₁

Nucl. Instr. Meth. A 825 (2016), CDP

The n_TOF effort to improve cross section data for s process

The n_TOF effort to improve cross section data for s process

In the future (~ 2021 – 2030) challenging measurements: upgrade of the n_TOF facility and instrumentations

The n_TOF effort to improve cross section data for s process

In the future (~ 2021 – 2030) challenging measurements: upgrade of the n_TOF facility

s process

"Easy" to be reproduced with an exponential distribution of neutron exposures.

Moreover, given that the *s*-process occurs in a relatively low neutron-density environment, the neutron flow reaches equilibrium between nuclei with magic neutron numbers, where the product of the Maxwellian averaged stellar (n, γ) cross section of a nuclide, $<\sigma>$, and its corresponding abundance, N_s , remains almost constant (the difference in the two product is much smaller than the magnitude of either one of them):

$$<\sigma>_A N_A \approx <\sigma>_{A+1} N_{A+1}$$

APPROXIMATION

r process

Cristian Massimi Dipartimento di Fisica e Astronomia massimi@bo.infn.it

www.unibo.it

