Nuclear data and Astrophysics # Data for *s process* from n_TOF Cristian Massimi for the n_TOF Collaboration #### Outline The n_TOF project Objectives, basic parameters, instrumentation • Examples of measurements and their impact on *s-process nucleosynthesis* Branch-point isotopes, neutron sources, *s-only* isotopes, *s-process* bottleneck, weak component Future program Facility upgrade 2019-2021, measurements 2021-2030 - 1. Atominstitut, Technische Universität Wien, Austria - 2. University of Vienna, Faculty of Physics, Austria - 3. European Commission JRC, Institute for Reference Materials and Measurements (IRMM) - 4. Department of Physics, Faculty of Science, University of Zagreb, Croatia - 5. Charles University, Prague, Czech Republic - 6. Centre National de la Recherche Scientifique/IN2P3 IPN, Orsay, France - 7. Commissariat à l'Énergie Atomique (CEA) Saclay Irfu, Gif-sur-Yvette, France - 8. Johann-Wolfgang-Goethe Universität, Frankfurt, Germany - 9. Karlsruhe Institute of Technology, Campus Nord, Institut für Kernphysik, Karlsruhe, Germany - 10. National Technical University of Athens (NTUA), Greece - 11. Aristotle University of Thessaloniki, Thessaloniki, Greece - 12. Bhabha Atomic Research Centre (BARC), Mumbai, India - 13. ENEA Bologna e - 14. Dipartimento di Fisica, e Astronomia, Università di Bologna - 15. Sezione INFN di Bologna, INFN Bari, Bologna, LNL, Perugia, Trieste, LNS - 16. Uniwersytet Łódzki, Lodz, Poland - 17. Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal - 18. Horia Hulubei National Institute of Physics and Nuclear Engineering Bucharest, Romania - 19. Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain - 20. Instituto de Fìsica Corpuscular, CSIC-Universidad de Valencia, Spain - 21. Universitat Politecnica de Catalunya, Barcelona, Spain - 22. Universidad de Sevilla, Spain - 23. Universidade de Santiago de Compostela, Spain - 24. Department of Physics and Astronomy University of Basel, Basel, Switzerland - 25. European Organization for Nuclear Research (CERN), Geneva, Switzerland - 26. Paul Scherrer Institut, Villigen PSI, Switzerland - 27. University of Manchester, Oxford Road, Manchester, UK - 28. University of York, Heslington, York, UK #### Objective: to provide Nuclear Data for Science (and Technology) How the elements are synthesized in the Universe? #### Objective: to provide Nuclear Data for Science (and Technology) How the elements are synthesized in the Universe? #### s process: Neutron induced reactions in Astrophysics, by <u>C.</u> <u>Lederer</u>, Wednesday 27 12:00 #### **Posters** - ➤ The neutron capture cross section measurement of the thallium isotopes ²⁰³TI, ²⁰⁴TI and ²⁰⁵TI at the n_TOF facility at CERN, <u>A.</u> Casanovas - Measurement of the ¹⁶O(n, α)¹³C reaction crosssection at the CERN n_TOF facility S. Urlass - The Stellar ⁷²Ge(n, γ) Cross Section: A First Measurement at n_TOF, M. Dietz #### **BBN**: → ⁷Be(n,p) cross section measurement for the Cosmological Lithium Problem at the n_TOF facility at CERN, L. Damone Wednesday 27, 10:00 #### **s-process** (slow process): - Capture times long relative to decay time - Involves mostly stable isotopes - $N_n = 10^8 \text{ n/cm}^3$, $E_n = 0.3 300 \text{ keV}$ #### *r-process* (rapid process): - Capture times short relative to decay times - Produces unstable isotopes (neutron-rich) - $N_n = 10^{20-30} \text{ n/cm}^3$ s-process nucleosynthesis proceeds through **neutron capture** reactions and successive β **decay.** The abundance of elements in the Universe depends on: - thermodinamic conditions (temperture and neutron density); - \triangleright β -decay rate; #### Need of **accurate** (n,γ) cross-sections: - refine models of stellar nucleosynthesis in the Universe; - obtain information on the stellar environment and evolution Along the β -stability valley Stellar spectra: AGB (8, 23 keV) and Massive stars (25, 90 keV) Stellar spectra: AGB (8, 23 keV) and Massive stars (25, 90 keV) Stellar spectra: AGB (8, 23 keV) and Massive stars (25, 90 keV) For Astrophysical applications it is important to determine Maxwellian Averaged Cross-Sections (MACS), for various temperatures (kT depends on stellar site). Reaction rate (cm⁻³s⁻¹): $$r = N_A N_n v \sigma(v)$$ $$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi} (kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$ For Astrophysical applications it is important to determine Maxwellian Averaged Cross-Sections (MACS), for various temperatures (kT depends on stellar site). Reaction rate (cm⁻³s⁻¹): $r = N_A N_n v \sigma(v)$ $$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi} (kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$ Two methods are used to determine MACS: For Astrophysical applications it is important to determine Maxwellian Averaged Cross-Sections (MACS), for various temperatures (kT depends on stellar site). Reaction rate (cm⁻³s⁻¹): $r = N_A N_n v \sigma(v)$ $$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi} (kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$ # Two methods are used to determine MACS: 1. measurement of **energy dependent** neutron capture cross-sections; For Astrophysical applications it is important to determine Maxwellian Averaged Cross-Sections (MACS), for various temperatures (kT depends on stellar site). Reaction rate (cm⁻³s⁻¹): $r = N_A N_n v \sigma(v)$ $$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi} (kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$ # Two methods are used to determine MACS: - 1. measurement of **energy dependent** neutron capture cross-sections; - integral measurement (energy integrated) using neutron beams with suitable energy spectrum. 4.5 For Astrophysical applications it is important to determine Maxwellian Averaged Cross-Sections (MACS), for various temperatures (kT depends on stellar site). Reaction rate (cm⁻³s⁻¹): $r = N_A N_n v \sigma(v)$ $$r = N_A N_n \langle \sigma \cdot v \rangle$$ $$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi} (kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$ # Two methods are used to determine MACS: 1. measurement of **energy dependent** neutron capture cross-sections; 20 40 60 80 100 Temperature (keV) n_TOF @ CERN Neutron Time-Of- Flight facility: **n_TOF** Tube Collimator 70.2 0.35 m 136.7 145.4 134.9 ### The n_TOF project 200 Válve Φ=400 mm 178 180.5 5 m #### Detectors for (n,γ) reaction Capture reactions are measured by detecting γ-rays emitted in the de-excitation process. **Two different systems**, to minimize different types of background #### Detectors: (n,p) and (n,α) reactions Gas and solid state detectors are used for detecting charged particles, depending on the energy region of interest and the Q-value of the reaction Silicon detectors Silicon sandwich Diamond detector ΔE-E Telescopes #### Micromegas chamber • low-noice, high-gain, radiation-hard detector #### Data for s process #### Cross sections measured in 2001 - 2018 Branching point isotopes: ``` ¹⁵¹Sm, ⁶³Ni, ¹⁴⁷Pm, ¹⁷¹Tm, ²⁰³TI ``` Abundances in presolar grains: ``` 91,92,93,94,96Zr ``` Magic Nuclei and end-point: ``` ¹³⁹La, ¹⁴⁰Ce, ⁹⁰Zr, ⁸⁹Y, ⁸⁸Sr, ^{204,206,207,208}Pb, ²⁰⁹Bi ``` Seeds isotopes: ``` ^{54,56,57}Fe, ^{58,60,62}Ni, ^{59}Ni(n,\alpha) ``` Isotopes of special interest: ``` ^{186,187,188}Os (cosmochronometer), ¹⁹⁷Au (reference cross section), ^{24,25,26}Mg, ³³S(n,α), ¹⁴N(n,p), ³⁵Cl(n,p), ²⁶Al(n,p), ²⁶Al(n,α) (neutron poison), ¹⁵⁴Gd (s-only isotope), ⁶⁸Zn, ^{69,71}Ga, ^{70,72,73,74,76}Ge, ^{77,78,80}Se (weak component) ``` • Neutron Sources 22 Ne $(\alpha,n)^{25}$ Mg and 13 C $(\alpha,n)^{16}$ O: ``` n+25Mg, n+16O ``` #### Data for s process #### Cross sections measured in 2001 - 2018 Branching point isotopes: Abundances in presolar grains: Magic Nuclei and end-point: Seeds isotopes: ``` ^{54,56,57}Fe, ^{58,60,62}Ni, ^{59}Ni(n,\alpha) ``` Isotopes of special interest: Section: A First Measurement at n_TOF, M. Dietz ^{186,187,188}Os (cosmochronometer), ¹⁹⁷At (reference cross section), ^{24,25,26}Mg, ³³S(n, α), ¹⁴N(n,p), ³⁵Cl(n,p), ²⁶Al(p,p), ²⁶Al(n,α) (neutron poison), ¹⁵⁴Gd (s-only isotope), ⁶⁸Zn, ^{69,71}Ga, ^{70,72,73,74,76}Ge, ^{77,78,80}Se (weak component) • Neutron Sources ²²Ne(α ,n)²⁵Mg and ¹³C(α ,n)¹⁶O: Measurement of the ¹⁶O(n,α)¹³C reaction crosssection at the CERN n_TOF facility – <u>S. Urlass</u> The neutron capture cross section measurement of the thallium isotopes ²⁰³Tl, ²⁰⁴Tl and ²⁰⁵Tl at the n_TOF facility at CERN, <u>A. Casanovas</u> The Stellar 72 Ge(n, γ) Cross ### Branching point isotopes ### Branching point isotopes ■ STABLE ■ Unstable against β⁻ → (n,γ) reaction β decay s-process branching point # ¹⁵¹Sm: s process in AGB # Branching point isotopes REVIEWS OF MODERN PHYSICS The s process: Nuclear physics, stellar models, and observations, Vol. 83, 2011 | Sample | Half-life (yr) | Q value (MeV) | Comment | |-------------------|----------------------|------------------------|---| | ⁶³ Ni | 100.1 | $\beta^-, 0.066$ | TOF work in progress (Couture, 2009), sample with low enrichment PRL 110, 022501 (201 | | ⁷⁹ Se | 2.95×10^{5} | $\beta^-, 0.159$ | Important branching, constrains s-process temperature in massive stars | | 81 Kr | 2.29×10^{5} | EC, 0.322 | Part of ⁷⁹ Se branching | | 85 Kr | 10.73 | $\beta^-, 0.687$ | Important branching, constrains neutron density in massive stars | | ⁹⁵ Zr | 64.02 d | β^{-} , 1.125 | Not feasible in near future, but important for neutron density low-mass AGB stars | | ¹³⁴ Cs | 2.0652 | $\beta^-, 2.059$ | Important branching at $A = 134, 135$, sensitive to s-process temperature in low-mass AGB stars, measurement not feasible in near future | | ¹³⁵ Cs | 2.3×10^{6} | $\beta^{-}, 0.269$ | So far only activation measurement at $kT = 25$ keV by Patronis <i>et al.</i> (2004) | | ¹⁴⁷ Nd | 10.981 d | β^{-} , 0.896 | Important branching at $A = 147/148$, constrains neutron density in low-mass AGB stars | | ¹⁴ /Pm | 2.6234 | $\beta^-, 0.225$ | Part of branching at $A = 147/148$ | | 148 Pm | 5.368 d | B ⁻ 2.464 | Not feasible in the near future | | ¹⁵¹ Sm | 90 | $\beta^-, 0.076$ | Existing TOF measurements, full set of MACS data available (Abbondanno et al., 2004a; Wisshak et al., 2006c) | | ¹⁵⁴ Eu | 8.593 | β^{-} , 1.978 | Complex branching at $A = 154$, 155, sensitive to temperature and density PRL 93, 161103 (200- | | ¹⁵⁵ Eu | 4.753 | $\beta^-, 0.246$ | So far only activation measurement at $kT = 25 \text{ keV}$ by Jaag and Käppeler (1995) | | ¹⁵³ Gd | 0.658 | EC, 0.244 | Part of branching at $A = 154, 155$ | | ¹⁶⁰ Tb | 0.198 | $\beta^{-}, 1.833$ | Weak temperature-sensitive branching, very challenging experiment | | ¹⁶³ Ho | 4570 | EC, 0.0026 | Branching at $A = 163$ sensitive to mass density during s process, so far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1996b) | | ¹⁷⁰ Tm | 0.352 | B^{-} . 0.968 | Important branching, constrains neutron density in low-mass AGB stars | | ¹⁷¹ Tm | 1.921 | B ⁻ . 0.098 | Part of branching at $A = 170.171$ | | ¹⁷⁹ Ta | 1.82 | EC, 0.115 | Crucial for s-process contribution to ¹⁸⁰ Ta, nature's rarest stable isotope | | ¹⁸⁵ W | 0.206 | β^{-} , 0.432 | Important branching, sensitive to neutron density and s-process temperature in low-mass AGR stars | | ²⁰⁴ Tl | 3.78 | $\beta^{-}, 0.763$ | Determines ²⁰⁵ Pb/ ²⁰⁵ Tl clock for dating of early Solar System | ### Branching point isotopes #### **Ongoing studies** **Short-lived** branching isotopes (a few years) have either **never been measured before** or have been measured **only by activation** (a few tens of ng) at a fixed temperature. 154 Gd = s-only isotope, it can be produced only via s process because they are shielded against the β-decay chains from the r-process region by the isobars samarium - C. Trippella, et al., The Astrophysical Journal 787 (2014) 41 - S. Cristallo, et al., The Astrophysical Journal 801 (2015) 53 **Disagreement** of more than 20% between **observation** and **model calculation** of s-process abundances THE ASTROPHYSICAL JOURNAL, 801:53 (14pp), 2015 March 1 # Magic nuclei: s process peaks # Magic nuclei: s process peaks Istituto Nazionale di Fisica Nucleare #### Straniero, Cristallo & Piersanti 2014 Abundances of elements in the s-process peak are well reproduced apart from Cerium. Figure 11. Best fit of the average s-process chemical pattern of stars in M22. The pollution of AGB stars with a mass ranging between 3 to 6 M_{SUN} may account for most of the features of the s-process enrichment of M4 and M22. Figure 13. Best fit of the average s-process chemical pattern of stars in M4. M5 M22 M4 - M5 # Magic nuclei: s process peaks # The case of ²⁵Mg Jπ 0^+ 0^+ ²²Ne α Experimental evidence of natural spin parity states in the energy region of interest | | \mathbf{J}^{π} | |------------------|--------------------| | ²⁵ Mg | 5/2+ | | n | 1/2+ | ## The case of ²⁵Mg Neutron energy (keV) ### Future 2021 - 2030 Upgrade: new spallation target ready by 2020 - T3 Project started early 2016 - Preliminary Design Review (PDR) June 2017 (EDMS 1837722) - Intermediate Engineering Design Review (IEDR) 15th May 2018 (link) - Production Readiness Review (PRR) Q4 2018 - Target Installation Review (TIR) Q1 2020 - Target installation foreseen Q2 2020 + Beam on target S1 2021 ### Future 2021 - 2030 # Upgrade: new detector concept ### Future 2021 - 2030 # Upgrade: new detector concept E₁, r₁ Nucl. Instr. Meth. A 825 (2016), CDP The n_TOF effort to improve cross section data for s process The n_TOF effort to improve cross section data for s process In the future (~ 2021 – 2030) challenging measurements: upgrade of the n_TOF facility and instrumentations The n_TOF effort to improve cross section data for s process In the future (~ 2021 – 2030) challenging measurements: upgrade of the n_TOF facility #### s process "Easy" to be reproduced with an exponential distribution of neutron exposures. Moreover, given that the *s*-process occurs in a relatively low neutron-density environment, the neutron flow reaches equilibrium between nuclei with magic neutron numbers, where the product of the Maxwellian averaged stellar (n, γ) cross section of a nuclide, $<\sigma>$, and its corresponding abundance, N_s , remains almost constant (the difference in the two product is much smaller than the magnitude of either one of them): $$<\sigma>_A N_A \approx <\sigma>_{A+1} N_{A+1}$$ APPROXIMATION #### r process # Cristian Massimi Dipartimento di Fisica e Astronomia massimi@bo.infn.it www.unibo.it