Position reconstruction of acoustic sources with the AMADEUS Detector

Carsten Richardt Arena 08, Rome June 27th, 2008

Erlangen-Ntirnherg

Outline

- AMADEUS
- Direction reconstruction
- Beam forming
- Time difference method
- Position reconstruction

AMADEUS in ANTARES

Direction reconstruction

Local clusters allow for quick direction reconstruction.

Methods:

- Beam forming:
- requires synchronized data only
- can be applied to random data
- Time difference method:
-requires signal arrival times -minimum of 4 triggered hydrophones

Beam forming

Beam forming (Example 1)

Beam forming (Example 2)

Beam forming (Online Filter Application ??)

- Further studies required!

Time difference method

Time difference method

$\min \left(\sum_{i}\left(t_{i_{M}}-t_{i_{E}}(\theta, \phi)\right)^{2}\right)$

Source direction distribution

Pingers of ANTARES lines clearly visible (data from one story on the Instrumentation Line)

Position Reconstruction

Minimize distance of source to all reconstructed straight lines

$$
\begin{aligned}
& \frac{\partial}{\partial \vec{s}}\left(\sum^{N}\left(\vec{s}-\left(\vec{a}_{i}+n_{i} \cdot \vec{k}_{i}\right)\right)^{2}\right)=\overrightarrow{0} \\
& \vec{s}=\text { source } \\
& \vec{a}=\text { story position } \\
& \vec{k}=\text { reconstructed direction }
\end{aligned}
$$

Position Reconstruction

ANTARES in UTM coordinates

Position Reconstruction (Zoom)

Summary

- Storys used for direction reconstruction
- Beam forming algorithm works very well (but slow)
- Time difference method more efficient
- Dependent on threshold
- Full calibration not yet included
- Position reconstruction is on its way

Funded by:

15 Carsten Richardt, Arena 08, Rome, June 2008

