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Context: QCD phase diagram/ Quark Gluon Plasma

Complete QCD phase diagram far from being con�rmed:

T ̸= 0, µ = 0 well-established from lattice: no sharp phase transition,
continuous crossover at Tc ≃ 154± 9 MeV

Goal: more analytical approximations, ultimately in regions not much
accessible on the lattice: large density (chemical potential) due to the
(in)famous �sign problem�



Introduction/Motivations
Context: (unconventional) resummation of perturbative expansions

Very general: relevant both at T = 0 or T ̸= 0 (and �nite density)
→ addresses well-known problems of unstable +badly scale-dependent
thermal perturbative expansions:
Illustrate here T ̸= 0 σ model, + (preliminary) QCD (pure glue)

NB Previous results (T = 0):
estimate with our RGOPT approach the order parameter
Fπ(mq = 0)/ΛQCD

MS
:

Fπ ≃ 92.2MeV → Fπ(mq = 0) → Λ
nf =3

MS
→ αMS

S (µ = mZ ).

N3LO: F
mq=0

π /Λ
nf =3

MS
≃ 0.25± .01 → αS(mZ ) ≃ 0.1174± .001± .001

(JLK, A.Neveu, PRD88 (2013))

(compares well with latest (2016) αS lattice and world average values

[PDG2016])

Also applied to ⟨q̄q⟩ at N3LO (using spectral density of Dirac operator):

⟨q̄q⟩1/3mq=0
(2GeV) ≃ −(0.84± 0.01)ΛMS (JLK, A.Neveu, PRD 92 (2015))

(compares well with latest most precise lattice value.)



(Variationally) Optimized Perturbation (OPT)

Trick (T = 0): add and subtract a mass, consider m δ as interaction:

LQCD(g ,m) → LQCD(δ g ,m(1− δ)) (e.g. in QCD g ≡ 4παS)

where 0 < δ < 1 interpolates between Lfree and massless Lint ;
e.g. (quark) mass mq → m: arbitrary trial parameter

• Take any standard (renormalized) QCD pert. series, expand in δ after:

mq → m (1− δ); g → δ g
then take δ → 1 (to recover original massless theory):

BUT a m-dependence remains at any �nite δk -order:
�xed typically by stationarity prescription: optimization (OPT):
∂
∂m (physical quantity) = 0 for m = m̄opt(αS) ̸= 0:

•T = 0: exhibits dimensional transmutation: m̄opt(g) ∼ µ e−const./g

•At T ̸= 0, same idea dubbed �screened perturbation� (SPT), or �hard
thermal loop (HTLpt) resummation�, etc.
But does this 'cheap trick' always work? and why?



Expected behaviour (Ideally...)
Physical quantity

OPT 1st order

2d order

3rd order etc...

m0

Exact result
(non−perturbative)

O(Λ )

But not quite what happens... except in simple models:
•Convergence proof of this procedure for D = 1 gϕ4 oscillator
(cancels large pert. order factorial divergences!) Guida et al '95

particular case of 'order-dependent mapping' Seznec, Zinn-Justin '79

•But in QFT: multi-loop calculations (specially T ̸= 0) (very) di�cult
beyond �rst order:
→ what about convergence? not much apparent in fact

•Main pb at higher order: OPT: ∂m(...) = 0 has multi-solutions (some
complex!), how to choose right one, if no nonperturbative �insight�??



RG compatible OPT (≡ RGOPT)

Our main additional ingredient to OPT (JLK, A. Neveu 2010):

Consider a physical quantity (i.e. perturbatively RG invariant)
( in present context, will be the pressure P(m, g ,T )):

in addition to OPT Eq: ∂
∂mP

(k)(m, g , δ = 1)|m≡m̃ ≡ 0,
Require (δ-modi�ed!) series at order δk to satisfy a standard
(perturbative) Renormalization Group (RG) equation:

RG
(
P(k)(m, g , δ = 1)

)
= 0

with standard RG operator (g = 4παS for QCD):

RG ≡ µ
d

d µ
= µ

∂

∂µ
+ β(g)

∂

∂g
− γm(g)m

∂

∂m

β(g) ≡ −b0g
2 − b1g

3 + · · · , γm(g) ≡ γ0g + γ1g
2 + · · ·

→ Additional nontrivial constraint (even if started from RG invariant
standard perturbation): contains a priori more consistent RG
'information' than simple ∂mP(m) optimization.



RG compatible OPT (RGOPT)

→ Combined with OPT, RG Eq. reduces to massless form:[
µ

∂

∂µ
+ β(g)

∂

∂g

]
P(k)(m, g , δ = 1) = 0

Note: using OPT AND RG completely �x m ≡ m̄ and g ≡ ḡ .

But ΛMS(g) satis�es by def.:
[µ ∂

∂µ + β(g) ∂
∂g ] ΛMS ≡ 0 consistently at a given pert. order for β(g).

Thus equivalent to:

∂

∂m

(
Pk(m, g , δ = 1)

ΛMS(g)

)
= 0 ;

∂

∂ g

(
Pk(m, g , δ = 1)

ΛMS(g)

)
= 0 for m̄, ḡ

Optimal m̄, ḡ = 4πᾱS unphysical: �nal (physical) result from P(m̄, ḡ ,T )

At T = 0 reproduces at �rst order exact nonperturbative results in
simpler models [e.g. Gross-Neveu model]



OPT + RG = RGOPT main new features

•Standard OPT: embarrassing freedom (a priori) in interpolating form:
e.g. why not m → m (1− δ)a ?
Most previous works: linear case a = 1 for simplicity
but generally (we have shown) a = 1 spoils RG invariance!

•OPT,RG Eqs: many solutions at increasing δk -orders

→ Our approach restores RG, +requires OPT, RG sol. to match
standard perturbation (e.g. Asymptotic Freedom for QCD (T = 0)):
αS → 0, µ → ∞: ḡ = 4πᾱS ∼ 1

2b0 ln
µ
m̄
+ · · ·

→ At arbitrary order, AF-compatible RG + OPT branch, often unique,
only appear for a critical universal a:

m → m (1− δ)
γ0
b0 (e.g. γ0

b0
(QCD, nf = 3) = 4

9
)

→ Goes beyond simple �add and subtract� trick
+ It removes spurious solutions incompatible with AF
− But does not always avoid complex solutions
(if those (perturbative artifacts) occur, are possibly cured by
renormalization scheme change [JLK, Neveu '13])



Problems of thermal perturbation (QCD and generic)

Main culprit: mix up of hard p ∼ T and soft p ∼ αST modes.

Thermal 'Debye' screening mass m2

D ∼ αST
2 gives IR cuto�,

BUT ⇒ perturbative expansion in
√
αS in QCD

→ advocated reason for slower convergence

Yet many interesting QGP physics features happen at not that large
αS( >∼ 2πTc) ≃ .5 or lower values.

Many e�orts to improve this (review e.g. Blaizot, Iancu, Rebhan '03):

Screened PT (SPT) (Karsh et al '97), ∼ Hard Thermal Loop (HTL)

resummation (Andersen, Braaten, Strickland '99); Functional RG, 2-particle

irreducible (2PI) formalism (Blaizot, Iancu, Rebhan '01; Berges, Borsanyi,

Reinosa, J. Serreau '05)

RGOPT T ̸= 0: essentially treats thermal mass 'RG consistently':
→ UV divergences also induce its anomalous dimension.

(NB some qualitative connections with 2PI results, also with recent �massive

scheme� approach (Blaizot, Wschebor '14)



Previous T ̸= 0: two-loop RGOPT(gϕ4) vs standard PT and SPT

[JLK, M.B Pinto, PRL 116 (2016) [1507.03508]; PRD92 (2015)]

•De�nite scale-dependence improvement (a factor ∼ 3) w.r.t. SPT
[J.O. Andersen et al '01]

•Improvement should be more drastic at 3-loops, where SPT scale
dependence strongly increases.

How this is obtained: details next for the nonlinear σ model



One step closer to QGP: O(N) nonlinear σ model (NLSM)
[G. Ferreri, JLK, M.B. Pinto, R.0 Ramos, to appear on arXiv very soon]

(1+1)D NLSM shares many properties with QCD: asymptotic freedom,
mass gap, T ̸= 0 pressure, trace anomaly have QCD-similar shape
Other nonperturbative T ̸= 0 results available for comparison
(lattice [Giacosa et al '12], 1/N expansion [Andersen et al '04], others)

L0 =
1

2
(∂πi )

2 +
g(πi∂πi )

2

2(1− gπ2

i )
− m2

g

[(
1− gπ2

i

)1/2 − 1
]

two-loop pressure from:

•Advantage w.r.t. QCD: exact T -dependence at 2-loops:

Ppert.2loop = − (N − 1)

2

[
I r0(m,T ) +

(N − 3)

4
m2gI r1(m,T )2

]
+ E0,

I0(m,T ) = T
∑∫
n,p

ln
[
(2πnT )2 + p2 +m2

]
=

1

2π

(
m2(1− ln

m

µ
) + 4T 2J0(

m

T
)

)
J0(x) =

∫∞
0

dz ln
(
1− e−

√
z2+x2

)
, I1(m,T ) = ∂I0(m,T )/∂m2



First crucial step: standard perturbative RG invariance

E0 in P2−loop: �nite (T -independent) vacuum energy contribution:

E0(g ,m) = −m2

(
s0
g
+ s1 + s2g + · · ·

)
such that µ d

d µE0 cancels the

remnant M dependence:

s0 =
(N−1)

4π(b0−2γ0)
= 1 , s1 = (b1 − 2γ1)

s0
2γ0

= 0 (NB: accident of NLSM)

•Next step: m2 → m2(1− δ)a ; g → δg ;
expand in δ; then δ → 1:

•RG only consistent for a = 2γ0/b0 = (N − 3)/(N − 2)/2 for NLSM
(̸= 1 as in SPT/HTLpt)

•Extra bonus from RG: non-trivial OPT mass gap m̃(g ,T ) already at
one-loop

•Aim: illustrate in NLSM the scale dependence (and other)
improvements wrt former SPT∼ HTLpt



One-loop RGOPT (O(δ0)) for NLSM pressure

Exact (arbitrary T ) OPT �thermal mass gap� m̄ from ∂mP(m) = 0:

ln
m̄

µ
= − 1

b0 g(µ)
− 2J1(

m̄

T
), (bnlsm0 =

N − 2

2π
)

or more explicitly, for T = 0: m̄ = µe
− 1

b0 g(µ) = Λ1−loop
MS

and for T ≫ m:

m̄

T
=

π b0 g

1− b0 g LT
≃ π b0 g(µ) +O(g2), (LT ≡ ln

µ eγE

4πT
)

PRGOPT
1L = − (N − 1)

π
T 2

[
J0(x̄) +

x̄2

8
(1+ 4J1(x̄) )

]
, (x̄ ≡ m̄/T )

• Standard one-loop running: g−1(µ) = g−1(M0) + b0 ln
µ
M0

⇒ m̄,P(m̄) are explicitly 'exactly' (one-loop) scale-invariant

•+ It reproduces exact (all orders) known large N (LN) results
(Andersen et al '04)



RGOPT NLSM mass and pressure: two-loop order

P/PSB(N = 4, g(M0) = 1) vs standard perturbation (PT), large N (LN),
and SPT ≡ ignoring RG-induced subtraction; m2 → m2(1− δ):
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(shaded range: scale-dependence πT < µ ≡ M < 4πT )
→ A moderate scale-dependence reappears, from unperfectly matched
2-loop T = 0 standard running coupling.
NB for 2-loop NLSM, alternative ḡ(µ) from combining RG+OPT
accidentally gives g = 0... (traced to 2-loop subtraction s1 = 0)
(not expected in other models, and nontrivial NLSM ḡ(µ) appears at 3-loop)



High T: pressure shape more comparable to QCD HTLpt
P
2−loop

PT
PSB

≃ P
2−loop

SPT
PSB

= 1− 3

2

(N−3)
8π g(µ) +O(g2)

(NB: RGOPT 1,2L reach SB limit for T → ∞ but more slowly than PT)

HTLpt (beyond 1-loop only T ≫ m approximation): QCD (pure glue)
[Andersen, Strickland, Su '10]:



RGOPT(NLSM) lattice comparison
•NLSM T ̸= lattice simulations: (apparently) only available for N = 3 [E.

Seel, D. Smith, S. Lottini, F. Giacosa '12]

•Remind: at 2-loop NLSM combined RG +OPT Eqs. gives no nontrivial
ḡ(m̄) by accident (traced to s1 = 0), yet one remarkable value:
g(M0) = 2π ⇒ m̄(g) = M0 (NB similar feature in Gross-Neveu model)

•Drawback: for such large coupling , 2-loop RGOPT remnant scale
dependence becomes much more sizable.
(at 3-loop order ḡ(m) would likely be more reasonable)
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(Notice: N = 3 lattice pressure appears very close to large-N for low T <∼ M0)



NLSM interaction measure (trace anomaly)
NB ∆2D NLSM ≡ E − P = S T − 2P ≡ T 3∂T (

P
T2 )
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N = 4, g(M0) = 1 (shaded regions: scale-dependence πT < µ = M < 4πT )

•2-loop SPT ∆ small, monotonic behaviour + sizeable scale dependence.

•RGOPT shape 'qualitatively' comparable to QCD, showing a peak
(but no spontaneous sym breaking/phase transition in 2D NLSM
(Mermin-Wagner-Coleman theorem): re�ects broken conformal
invariance (mass gap).



Thermal (pure glue) QCD: hard thermal loop perturbation
(HTLpt) (see J.O Andersen talk)

QCD generalization of OPT = HTLpt [Andersen, Braaten, Strickland '99]:

same �OPT� trick operates on a gluon �mass� term [Braaten-Pisarski '90]:

LQCD(gauge)−
m2

D

2
Tr

[
Gµα⟨

yαyβ

(y .D)2
⟩yGµ

β

]
, Dµ = ∂µ−ig Aµ, yµ = (1, ŷ)

(e�ective, gauge-invariant):

describes screening mass m2

D ∼ αST
2, but also many more 'hard thermal

loop' contributions [modi�es vertices and gluon propagators]

Other gluon �mass prescriptions� exist [e.g. Reinosa et al '15] but HTLpt
nice advantage: calculations up to 3-loop α2

S (NNLO) [Andersen et al

'99-'15]: highly nontrivial, available analytically as mD/T expansions,
neglecting consistently higher orders [e.g. m4

DαS = O(α3

S)].

e.g. PHTLpt

1-loop,MS

=

Pideal

[
1− 15

2
m̂2

D + 30m̂3

D + 45

4
m̂4

D(ln
µ

4πT + γE − 7

2
+ π2

3
)
]

m̂D ≡ m
2πT , Pideal = (N2

c − 1)π2 T
4

45



standard HTLpt results:

(pure glue) [Andersen, Strickland, Su '10]

Reasonable agreement with lattice simulations (Boyd et al '96) at NNLO
(3-loop), down to T ∼ 2− 3Tc , for low scale µ ∼ πT − 2πT .



RGOPT adaptation of HTLpt =RGOHTL
Main issue of HTLpt however: odd increasing scale dependence at higher
(NNLO) order

Our main RGOPT changes:

• Crucial RG-invariance restoring subtractions in Free energy: re�ects its
anomalous dimension.
• interpolate with m2

D(1− δ)
γ0
b0 , where gluon 'mass' anomalous

dimension de�ned (as it should) from its (available) counterterm.

RGOPT scale dependence should improve at higher orders from basically
consistent RG invariance:
both from subtraction terms (prior to interpolation), and from above
interpolation maintaining RG invariance.

• HTLpt does not include the subtractions: yet scale dependence
moderate up to 2-loops,
because the (leading order) RG-unmatched term, of O(m4), is formally
like a (3-loop order) α2

S term:

→ Explains why HTLpt scale dependence plainly resurfaces at 3-loops.



Preliminary RGO(HTL) results (1- and 2-loop, pure glue)

One-loop: obtain exactly scale-invariant pressure (like for ϕ4 and NLSM):
P

Pideal
(G ) = 1− 15

4
m̂2 + 15

2
m̂3 +O(m6)

where m̂ = G (1+
√
1− 1

3G
), and G ∼ a coupling: G−1 = ln 4πT

Λ
MS

+ const.

But this OPT (i.e. ∂mP(m) ≡ 0) solution is complex for T/Tc >∼ 2 (with
small imaginary parts):
a complex pressure is unphysical, but here largely an artefact of
MS-scheme +high-T approx:
• by renormalization scheme change, can push complex solution to much
higher T/Tc , where to match standard PT.

• Yet physically consistent with standard P(g):
for P(m → mPT

Debye) for g → 0 (SB limit)

• Our attitude: crude one-loop approximation not �nal stage, so better
scale invariant and complex than conversely.
Pragmatic: at one-loop we take Re[P(g)] in larger T/Tc range.

• 2-loops: RG Equation gives a real unique solution.



Preliminary RGO(HTL) results (1- and 2-loop, pure glue)
2-loops: a moderate scale-dependence reappears, similar to ϕ4, NLSM
case: a factor ∼ 2 improvement w.r.t. HTLpt 2-loops:

1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1.0

T/T c

P/Pideal

HTLpt 3−loop

RGOPT 2−loop

HTLpt 2−loop
RGOPT 1−loop

(Preliminary!)

[JLK, M.B Pinto, to appear soon]

NB scale dependence improvement should be more drastic at 3-loops:

Generically: RGOPT at O(gk) → m̄(µ) appears at O(gk+1) for any m̄,
but m̄2

G ∼ gT → P ≃ m̄4

G/g + · · · has leading µ-dependence at O(gk+2).

• however low T ∼ Tc genuine pressure shape needs determining higher
order subtraction terms of O(m4

Dα
2

S lnµ):

new calculations of 3-loop HTL integrals (neglected in standard HTLpt
since formally O(α4

S))



(Very!) preliminary RGO(HTL) approximate 3-loop results
3-loops: exact missing m4α2

S terms need extra nontrivial calculations, but
P3l
RGOHTL ∼

RGOPT (P3l
HTLpt) +m4α2

S(C30 ln
3 µ
2πT

+ C31 ln
2 µ
2πT

+ C32 ln
µ

2πT
+ C33):

leading logarithms (LL) and next-to-leading (NLL) C30,C31 determined
for free from lower orders from RG invariance!
Within this LL, NLL approximation and in the T/Tc >∼ 2 range where
more trustable:
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(Very preliminary)

We assume/expect unknown terms will not spoil this improved scale
dependence
(But P(T/Tc) shape not shown since not precisely known for low
T ∼ Tc (for the time being): will be sensitive to those missing terms)



Summary and Outlook

•OPT gives a simple procedure to resum perturbative expansions, using
only perturbative information.

•Our RGOPT version includes 2 major di�erences w.r.t. previous
OPT/SPT/HTLpt... approaches:

1) OPT +/or RG minimizations �x optimized m̃ and possibly g̃ = 4πα̃S

2) Requiring AF-compatible solutions uniquely �xes the basic
interpolation m → m(1− δ)γ0/b0 : discards spurious solutions and
accelerates convergence.

Applied to T ̸= 0: exhibits improved stability + much improved scale
dependence (with respect to standard PT, but also wrt SPT ∼ HTLpt)

•Paves the way to extend such RG-compatible methods to full QCD
thermodynamics, (work in progress, starting with T ̸= 0 pure
gluodynamics) specially for exploring also �nite density


