Measurement of the Forward-Backward Asymmetry in B^\pm Meson Production at the DØ Experiment

PRL 114 05813 (2015)

Julie Hogan
Rice University

Young Scientist Forum – March 4th, 2015
DØ Detector

- Central tracking: silicon microstrip & fiber trackers
- Liquid argon / uranium calorimeter
- Independent muon tracking

- Run II → ~10 years of pp collisions at $\sqrt{s} = 1.96$ TeV
- Data: 10.7 fb$^{-1}$ recorded, this analysis uses 10.4 fb$^{-1}$ (tracker+muon quality)
A_{FB} in \bar{b}b Production

- Do heavy quarks have a preference to move in the proton direction?

- Forward-backward asymmetry arises from interference of higher-order diagrams with color factors that are not $Q \leftrightarrow \bar{Q}$ symmetric:
 - No A_{FB} created at leading order in the SM, only appears at higher orders
 - Dominant source is interference of tree and box diagrams $\rightarrow A_{FB} > 0$

- In pp collisions, forward = b, B^{-} (\(\bar{b}, B^{+}\)) following p (\bar{p}) direction

$$A_{FB}(B^{\pm}) = \frac{N(-q_B \eta_B > 0) - N(-q_B \eta_B < 0)}{N(-q_B \eta_B > 0) + N(-q_B \eta_B < 0)}$$
Motivation

- A_{FB} of $t\bar{t}$ production created a lot of interest
 - Early measurements $>>$ SM, still some tension between CDF and SM
 - BSM models to explain excess can also predict $b\bar{b}$ asymmetry \rightarrow same sources
 - SM Prediction: $A_{FB}(b\bar{b}) = (0.34 \pm 0.10 \pm 0.01)\%$, $M(b\bar{b}) \approx 35 - 75$ GeV (PRL 111 062003)

- Still at the beginning of hadron collider measurements for $b\bar{b}$!
 - LHCb: forward-central asymmetry in mass range around Z peak (PRL 113 082003)
 - CDF: forward-backward asymmetry in $M(b\bar{b}) > 130$ GeV (CDF/ANAL/TOP/PUB/11092)

- Fully reconstructed B^\pm decays tag b/\bar{b} exactly
 - No precision lost to mis-ID or B^0/\bar{B}^0 oscillations

- DØ has many practical advantages:
 - History of precise CPV asymmetry results
 - pp initial state, reversing magnet polarities, extensive μ coverage

Figure from arXiv:1411.3007
Motivation

- A_{FB} of $t\bar{t}$ production created a lot of interest
 - Early measurements $>>$ SM, still some tension between CDF and SM
 - BSM models to explain excess can also predict $b\bar{b}$ asymmetry \rightarrow same sources
 - SM Prediction: $A_{FB}(b\bar{b}) = (0.34 \pm 0.10 \pm 0.01)\%$, $M(b\bar{b}) \approx 35 - 75$ GeV (PRL 111 062003)

- Still at the beginning of hadron collider measurements for $b\bar{b}$!
 - LHCb: forward-central asymmetry in mass range around Z peak (PRL 113 082003)
 - CDF: forward-backward asymmetry in $M(b\bar{b}) > 130$ GeV (CDF/ANAL/TOP/PUB/11092)

- Fully reconstructed B^\pm decays tag b/\bar{b} exactly
 - No precision lost to mis-tags, B^0/\bar{B}^0 oscillations

- DØ has many practical advantages:
 - History of precise CPV asymmetry results
 - $p\bar{p}$ initial state, reversing magnet polarities, extensive μ coverage
Reconstructing $B^\pm \rightarrow J/\psi K^\pm$

- $\mu^+\mu^-$ pair (J/ψ) + track (K^\pm) = B^\pm
 - B^\pm decay length significance > 3σ
- F/B definition: $q_{FB} = -q_B \text{sign}(\eta_B)$
 - Ambiguous near $|\eta| = 0$ due to finite resolution
- Rejecting $|\eta_B| < 0.1$ (2% of data) gives:
 - 100% $q_{FB}(\text{MC@NLO } B^\pm) = q_{FB}(\text{reco } B^\pm)$
 - 99.5% $q_{FB}(\text{MC@NLO } b, \bar{b}) = q_{FB}(\text{reco } B^\pm)$
- B^\pm kinematics closely match b kinematics:
 - Reco. B^\pm vs generated b, \bar{b}
 - $A_{FB}(B^\pm)$ affected minimally by hadronization
Maximum Likelihood Fit

- Boosted Decision Tree to reduce background
- Unbinned fit over all B^\pm candidates
- Events weighted to correct for reconstruction asymmetries (next slides)
- 4 components, each with an event fraction f and asymmetry A

$$\mathcal{L}_n = \alpha \left[f_S (1 + q_{FB} A_S) S(M_{J/\psi K}, E_K) + f_P (1 + q_{FB} A_P) P(M_{J/\psi K}, E_K)
ight]$$

$$+ f_T (1 + q_{FB} A_T) T(M_{J/\psi K})$$

$$+ [1 - \alpha (f_S + f_P + f_T)] (1 + q_{FB} A_E) E(M_{J/\psi K}, E_K)$$

Signal: $B^\pm \rightarrow J/\psi K^\pm$ double Gaussian

Pion: $B^\pm \rightarrow J/\psi \pi^\pm$ shifted double Gaussian

Threshold: partial B reconstruction

Exponential: combinatoric background
Reconstruction Asymmetries

- Asymmetries in the detector or reco of J/ψ or K^\pm must be corrected
- Forward-backward asymmetry is a combination of charge asymmetry and “north-south" asymmetry
- Deal with A_C: w_{magnet}
 - Equalize $N(B^\pm)$ in 4 magnet polarity settings to remove tracking asymmetries
 - Set $N(B^+)=N(B^-)$ to correct for K^\pm detector interaction cross-section differences → 1% A_C
- Deal with A_{NS}: $w_{J/\psi}w_K$
 - Measure asymmetries in samples without expected production asymmetry
 - set $\varepsilon_{\eta<0}=\varepsilon_{\eta>0}$ with a corrective weight, based on event-by-event kinematics
 - Effects on $A_{FB}(B^\pm)$ are small: B^+ and B^- on same side have opposite q_{FB}, so A_{NS} corrections mostly cancel
Reconstruction Asymmetries

- Asymmetries in the detector or reco of J/ψ or K^{\pm} must be corrected
- Forward-backward asymmetry is a combination of charge asymmetry and "north-south" asymmetry
- Deal with A_C: w_{magnet}
 - Equalize $N(B^{\pm})$ in 4 magnet polarity settings to remove tracking asymmetries
 - Set $N(B^+) = N(B^-)$ to correct for K^{\pm} detector interaction cross-section differences → 1% A_C
- Deal with A_{NS}: $w_{J/\psi}w_K$
 - Measure asymmetries in samples without expected production asymmetry
 - set $\varepsilon_{\eta < 0} = \varepsilon_{\eta > 0}$ with a corrective weight, based on event-by-event kinematics
 - Effects on $A_{FB}(B^{\pm})$ are small: B^+ and B^- on same side have opposite q_{FB}, so A_{NS} corrections mostly cancel
Reconstruction Asymmetries

- $A_{NS}(J/\psi)$: prompt $J/\psi \to \mu^+\mu^-$, measure in bins of $|\eta|$ and p_T
 - identical selection with requirement of low decay length significance
 - Est. 2% B decay fraction
- A_{NS} calculated by counting after sideband subtraction in each bin of $|\eta|$
- Low p_T A_{NS} traced to inactive material causing $\langle p_T(\mu) N \rangle > \langle p_T(\mu) S \rangle$
Reconstruction Asymmetries

- $A_{NS}(K^\pm)$: sample of $\varphi \rightarrow K^+K^-$ decays selected to reproduce kinematics of kaons in $B^{\pm} \rightarrow J/\psi \ K^{\pm}$
- Binned by charge and $|\eta|$ of leading kaon
- A_{NS} is a parameter in simultaneous χ^2 fits to north and south side data in each $|\eta|$ bin:
Extraction of $A_{FB}(B^{\pm})$

$$A_{FB}(B^{\pm}) = [-0.24 \pm 0.41\text{(stat)} \pm 0.19\text{(syst)}]\%$$

- 89328 signal evts / 160360 candidates
- $\chi^2 / \text{d.o.f} = 249 / 214$

TABLE I: Summary of uncertainties on $A_{FB}(B^{\pm})$ in data.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>0.41%</td>
</tr>
<tr>
<td>Alternative BDTs and cuts</td>
<td>0.17%</td>
</tr>
<tr>
<td>Fit Variations</td>
<td>0.06%</td>
</tr>
<tr>
<td>Reconstruction Asymmetries</td>
<td>0.05%</td>
</tr>
<tr>
<td>Fit Bias</td>
<td>0.02%</td>
</tr>
<tr>
<td>Systematic Uncertainty</td>
<td>0.19%</td>
</tr>
<tr>
<td>Total Uncertainty</td>
<td>0.45%</td>
</tr>
</tbody>
</table>
EXTRACTION OF $A_{FB}(B^\pm)$

$A_{FB}(B^\pm) = [-0.24 \pm 0.41 \text{(stat)} \pm 0.19 \text{(syst)}]\%$

- 89328 signal evts / 160360 candidates
- $\chi^2 / \text{d.o.f.} = 249 / 214$

Back-of-the-envelope comparison:
agrees with SM = $(0.34 \pm 0.10)\%$
at the 1σ level.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>0.41%</td>
</tr>
<tr>
<td></td>
<td>0.17%</td>
</tr>
<tr>
<td></td>
<td>0.06%</td>
</tr>
<tr>
<td></td>
<td>0.05%</td>
</tr>
<tr>
<td></td>
<td>0.02%</td>
</tr>
<tr>
<td></td>
<td>0.19%</td>
</tr>
<tr>
<td></td>
<td>0.45%</td>
</tr>
</tbody>
</table>
$A_{FB}(B^\pm)$ Estimate from MC@NLO

- 16M QCD $p\bar{p} \rightarrow b\bar{b}X$ events generated with MC@NLO + HERWIG for hadronization
- Identical $B^\pm \rightarrow J/\psi K^\pm$ selection as in data
 - Add requirement that J/K^\pm reconstructed tracks match generated $B^\pm \rightarrow J/\psi K^\pm$ tracks (leaves only signal)
 - Correct for unmodeled muon trigger effects
 - Correct for MC reconstruction asymmetries

\[A_{FB}(B^\pm) = [2.31 \pm 0.34(\text{stat}) \pm 0.51(\text{syst})]\% \]

- Systematic uncertainties: PDF, energy scale, fragmentation
 - Renormalization & factorization energy scale variations: 0.44%
 - Fragmentation model variations: 0.25%
 - PDF eigenvector uncertainty shifts: 0.03%
$A_{FB}(B^{\pm})$ Estimate from MC@NLO

- Also measured in bins of $|\eta|$ and p_T
 - $\langle p_T(B^{\pm}) \rangle = 12.9$ GeV
 - A_{FB} in data systematically lower than in MC

\[\text{Data} = (-0.24 \pm 0.45)\% \quad \text{MC} = (2.31 \pm 0.61)\% \]
\[\text{Difference} = (2.55 \pm 0.76)\% \approx 3\sigma \]

- MC suggests $A_{FB}(B^{\pm}) \approx A_{FB}(b\bar{b})$, but doesn't align with theorists' $A_{FB}(b\bar{b})$ predictions at low $M(bb)$
- Not optimal for an SM prediction in this channel
First Tevatron measurement of a forward-backward asymmetry in the b sector

$$A_{FB}(B^\pm) = (-0.24 \pm 0.41 \pm 0.19)\%$$

- Precision reflects DØ's excellent heavy flavor asymmetry program
- Agrees with preliminary results from CDF → asymmetry consistent with zero
- Extends and complements CDF high mass measurement

Less room for new physics causing anomalous forward-backward asymmetries (top and bottom)

- DØ $A_{FB}(tt)$ measurements and SM predictions have moved toward each other
- Our result suggests agreement with theorist's SM predictions of $A_{FB}(b\bar{b})$
Summary

- First Tevatron measurement of a forward-backward asymmetry in the b sector:

 \[A_{FB}(B^\pm) = (-0.24 \pm 0.41 \pm 0.19)\% \]

 - Precision reflects DØ's excellent heavy flavor asymmetry program
 - Agrees with preliminary results from CDF → asymmetry consistent with zero
 - Extends and complements CDF high mass measurement

- Less room for new physics causing anomalous forward-backward asymmetries (top and bottom)

 - DØ $A_{FB}(tt)$ measurements and SM predictions have moved toward each other
 - Our result suggests agreement with theorist's SM predictions of $A_{FB}(b\bar{b})$

Thank You!
Backup
REFERENCES

- A_{FB} mechanisms: Kuhn/Rodrigo, PRD 59, 054017 (1999)
- Top standard model: arXiv:1411.3007
- LHCb measurement: PRL 113, 082003 (2014)
- CDF preliminary note: CDF/ANAL/TOP/PUB/11092
- Theory Predictions
 - Grinstein/Murphy: PRL 111, 062003 (2013)
 - Manohar/Trott: PLB 711, 313 (2012)
- Full list in PRL 114 05813 (2015), arXiv:1411.3021
Theoretical Predictions

- Closest energy range: $A_{FB}(b\bar{b}) = (0.34 \pm 0.10 \pm 0.01)\%$
 - $M(b\bar{b}) = 35 – 75 \text{ GeV}$, or $p(b) > \sim 15 \text{ GeV}$
 - Increases to 2% – 4% near/above $M(Z)$
- New physics particles could replace gluons in $q\bar{q} \rightarrow b\bar{b}$ interactions
- NP which agrees with CDF $A_{FB}(t\bar{t})$ give $A_{FB}(b\bar{b}) = \sim 0\% – 0.8\%$

- We produce a SM estimate using MC@NLO: QCD $p\bar{p} \rightarrow b\bar{b}X$
 - Allows direct calculation of asymmetry for B^\pm mesons
 - Ensures identical kinematics to our data sample
 - Lets us compare between $A_{FB}(B^\pm)$ and $A_{FB}(b\bar{b})$

Figure from PRL 111 062003 (2013).
Reconstructing $B^\pm \rightarrow J/\psi K^\pm$

- All DØ data from Tevatron Run II, 10.4 fb$^{-1}$
- $\mu^+\mu^-$ pair (J/ψ) + track (K^\pm) = B^\pm candidate
- μ^\pm: $p_T > 1.5$ GeV; $|\eta| < 2.1$
- K^\pm: $p_T > 0.7$ GeV; $|\eta| < 2.1$
- J/ψ: Mass = 2.7 – 3.45 GeV
 - Decay length uncertainty < 0.1 cm
 - $\cos(2D \text{ Pointing Angle}) > 0$
- B^\pm: Mass = 4.0 – 7.0 GeV
 - decay length significance > 3
 - vertex fit $\chi^2 < 16 / 3$ d.o.f
 - $\cos(2D \text{ Pointing Angle}) > 0.8$

(more background reduction not shown in the plot)
Boosted Decision Tree

- Background taken from data in sidebands
 - Mostly partial reconstruction and combinatoric background
- Signal MC (leading-order) generated with Pythia
 - Match kinematics as closely as possible with expected data signal (from sideband subtraction) using weights
 - Ex: muon p_T, trigger effects aren't modeled
- BDT trained using 40 variables:
 - Momenta, decay lengths, impact parameters, pointing angles, vertex fit χ^2, isolation, and $\Delta\phi$ for several particle pairs
- Cut on discriminant chosen to minimize $A_{FB}(B^\pm)$ statistical uncertainty
Maximum Likelihood Fit

- Particle masses don't match between north ($\eta < 0$) and south ($\eta > 0$) sides of the detector: $M(\text{north})$ always $< M(\text{south})$
 - Ex: $M(J/\psi) \rightarrow \Delta M$ significant based on errors, but small compared to peak width:

![Graph showing $M(\mu\mu)$ distribution with North and South data](image)

- Solenoid field asymmetric along z, but not included in the field map
- Solution: signal distribution has a **unique parameter set on each side**
Maximum Likelihood Fit

- Until the analysis methods were approved, asymmetries were blinded by randomizing sign(\(\eta\)) of the \(B^\pm\)

- Statistical uncertainty from the fit is 0.41%, confirmed with an ensemble of 1000 trials

- Performance of the algorithm is tested by injecting asymmetries and comparing with fit results

\[
\begin{align*}
\mu &= (-0.010 \pm 0.013)\% \\
\sigma &= (0.399 \pm 0.011)\% \\
\chi^2 &= 21.8/22
\end{align*}
\]
RECONSTRUCTION ASYMMETRIES

- Large negative asymmetries at low momentum appear to be caused by extraneous detector material asymmetries (cable bunches, etc).

- Excess of low p_T muons on the south side, and that side has lower average $p \rightarrow$ momentum threshold is higher on the north side.

\[\langle p \rangle = (4.018 \pm 0.002) \text{ GeV} \]

\[\langle p \rangle = (4.039 \pm 0.002) \text{ GeV} \]
Reconstruction Asymmetries

- Standard method:
 - $A_{\text{physics}} = A_{\text{raw}} - A_{\text{reco}}$
 - 1st order simplification of multiplying efficiencies
 - A_{reco} calculated from a weighted average over A_{NS} bins:
 $$A_{\text{FB}}(\text{reco}) = \frac{1}{N} \sum_{\text{bins}} n_i A_i$$
- Cross-check $\rightarrow A_{\text{reco}}$ agrees with new weight method
- Uncertainty: $\sim 0.13\%$
 - Directly from A_{NS} errors in A_{reco}

- Our method: weight so $\varepsilon_{\eta < 0} = \varepsilon_{\eta > 0}$:
 $$w_{\text{north}} = \frac{1 - A_{\text{NS}}}{1 + A_{\text{NS}}}$$
- Event kinematics determine the bin of $A_{\text{NS}}(J/\psi)$ and $A_{\text{NS}}(K^\pm)$
- Uncertainty: 0.003%
 - Ensemble of Gaussian variations to A_{NS}
Extraction of $A_{FB}(B^\pm)$

- Result is stable over time and with B^+/B^- fitted separately
- Background asymmetries also consistent with zero
- $A_{FB}(B^\pm) = [-0.24 \pm 0.41{\text{(stat)}} \pm 0.19{\text{(syst)}}]\%$

TABLE I: Summary of uncertainties on $A_{FB}(B^\pm)$ in data.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>0.41%</td>
</tr>
<tr>
<td>Alternative BDTs and cuts</td>
<td>0.17%</td>
</tr>
<tr>
<td>Fit Variations</td>
<td>0.06%</td>
</tr>
<tr>
<td>Reconstruction Asymmetries</td>
<td>0.05%</td>
</tr>
<tr>
<td>Fit Bias</td>
<td>0.02%</td>
</tr>
<tr>
<td>Systematic Uncertainty</td>
<td>0.19%</td>
</tr>
<tr>
<td>Total Uncertainty</td>
<td>0.45%</td>
</tr>
</tbody>
</table>

- Trained with different background samples or variables
- Mass range, E_K dependences, float/fix specific parameters
- Alternate fits, cuts, bins, etc
- Test of injecting asymmetries into blinded data
\[A_{FB}(B^\pm) \text{ Estimate from MC@NLO} \]

- Energy scale choice: 0.44%
 \[\mu_0 = \sqrt{\frac{1}{2} \left[2m^2(b) + p_T^2(b) + p_T^2(\bar{b}) \right]} \]
 - Vary renormalization and factorization scales from \(\mu_0/2 \) to \(2\mu_0 \)
 - Compared to default magnet polarity: \(A_{FB}(B^\pm) = (1.39 + 0.40)\% \)

- Fragmentation function: 0.25%
 - Weight \(z = p(B)_\parallel / p(b) \) to match LEP or SLD tuned Bowler function
 \[f_B(z) \propto \frac{1}{z^{1+bm_q^2}} (1 - z)^a \exp(-bm_T^2/z) \]