
Latest B physics results from ATLAS

ATLAS experiment

For B physics measurements require excellent tracking capabilities and muon identification

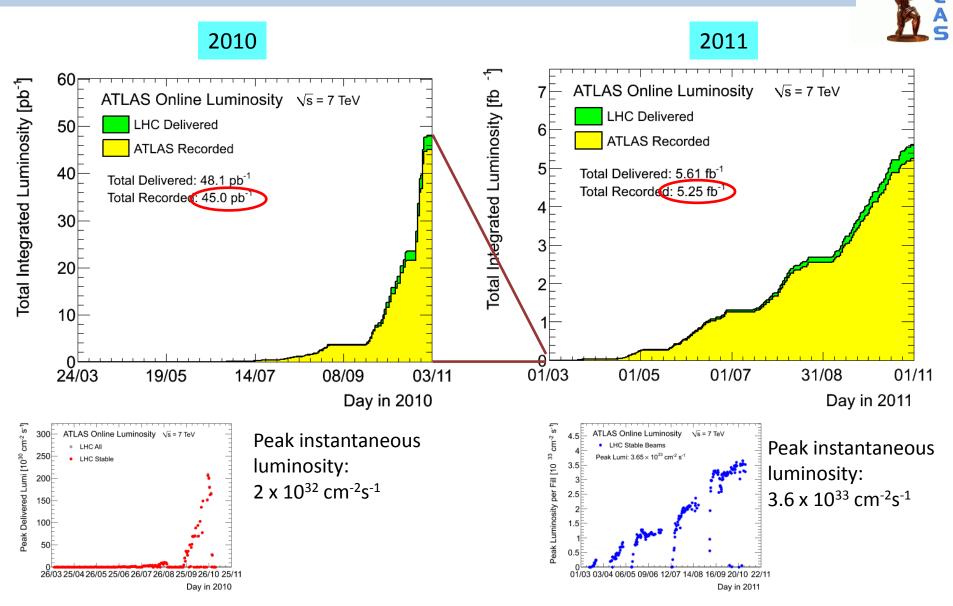
Transition radiation tracker

Muon Spectrometer

Muon chambers

- • $|\eta|$ <2.7
- •Toroid B-Field, average ~0.5T

Solenoid magnet


Semiconductor tracker

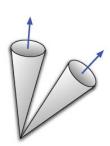
•Muon Momentum resolution $\sigma/p < 10\%$ up to $\sim 1 \text{ TeV}$

Inner Detector

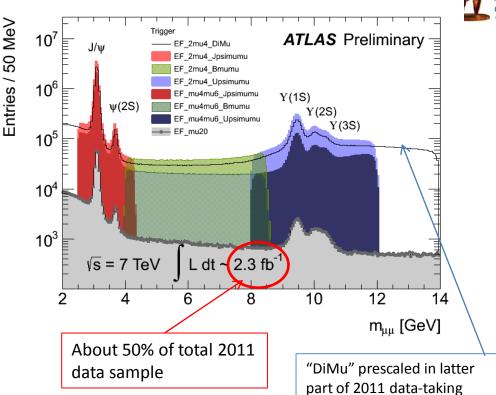
- • $|\eta|$ <2.5,
- •Solenoid B=2T
- Si Pixels,
- •Si strips,
- •Transition Radiation Tracker (TRT)
- $\bullet \sigma/p_T \sim 3.4 \times 10\text{--}4 \ p_T + 0.015 \ \text{for} \ (|\eta| < 1.5)$
- •Used for Tracking and Vertexing:
- Precision momentum and lifetime measurements

ATLAS data sample

ATLAS B-physics programme and trigger strategy


ATLAS is a general purpose detector – main focus is on high pT discovery physics but also has a dedicated B physics programme.

B-physics programme concentrates on low p_T dimuon signatures:


- \triangleright Onia studies (J/ $\psi \rightarrow \mu^+ \mu^-$, $\Upsilon \rightarrow \mu^+ \mu^-$)
- \triangleright B \rightarrow J/ $\psi(\mu\mu)$ X, mixing and CP violation studies
- ► Rare and semi-rare B decays B→μμ(X)
- (Purely hadronic channels not discussed here)

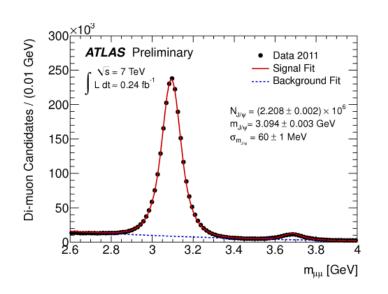
Trigger on low p_T (4,6 GeV) di-muon

- 2 muons at Level1
- Confirmed in High Level Trigger
- > Then require vertex fit and mass cuts

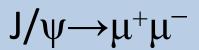
- ➤ Used unprescaled '2mu4' trigger for Jpsi, Upsilon and $B \rightarrow \mu^+ \mu^-$ throughout 2011 data-taking
- Large samples of events recorded for the Bphysics programme

Trigger	Mass window	No. of events (M)
2mu4_DiMu	1.4 – 14 GeV	27
2mu4_Jpsimumu	2.5 – 4.3 GeV	14
2mu4_Bmumu	4 – 8.5 GeV	3.7
2mu4_Upsimumu	8 – 12 GeV	9.1

Quarkonia production



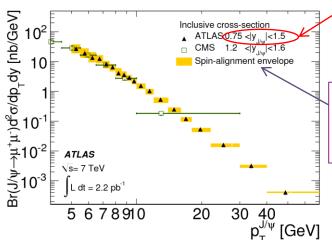
AIMS:


- Test perturbative QCD at new energy regime, higher transverse momentum and wider rapidity range than previously
- Production mechanism for quarkonium states (J/ ψ and Υ) not fully understood

 J/ψ and Υ candidates (2011)

- > 2 oppositely charged muons
- $p_T(\mu_1) > 4$ GeV, $p_T(\mu_2) > 2.5$ GeV (4,4 for Upsilon)
- \geq ~2.2 million J/ ψ from 240 pb⁻¹
- Next slides show published data (2010 only).

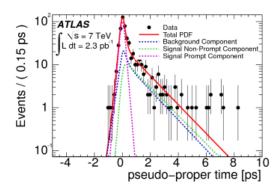
Inclusive J/ψ cross-section

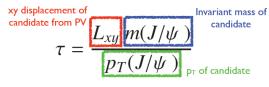

Event weight:

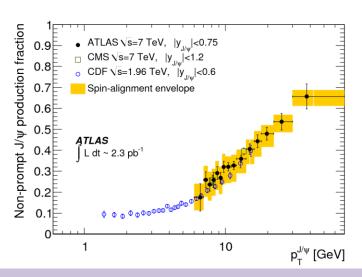
$$w^{-1} = \mathcal{A} \cdot \mathcal{M} \left[\mathcal{E}_{\text{trk}}^2 \cdot \mathcal{E}^+_{\mu} \left(p_T^+, \eta^+ \right) \cdot \mathcal{E}^-_{\mu} \left(p_T^-, \eta^- \right) \cdot \mathcal{E}_{\text{trig}} \right]$$

Detector Acceptance – from generator level MC Bin migration correction – due to finite detector resolution

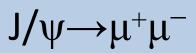
Reconstruction efficiency – from tag-and-probe method using data


Trigger efficiency – determined from MC and reweighted to data

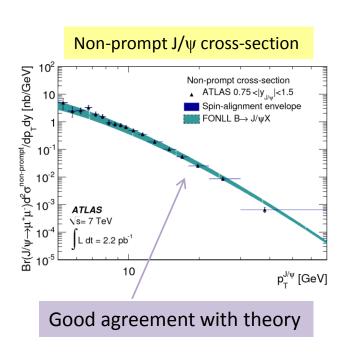

Example of one rapidity bin (4 in total)

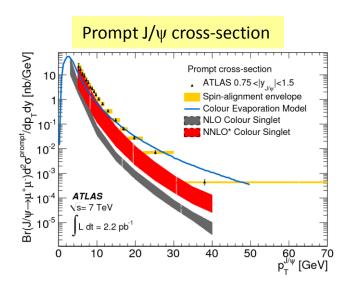

5 extreme spin alignment scenarios used for acceptance maps – variation taken as systematic effect.

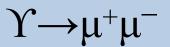
Fraction of J/ψ from B hadrons



Perform simultaneous fit to mass and pseudo-proper decay time

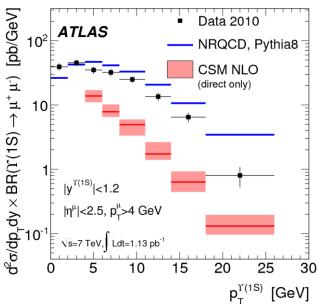


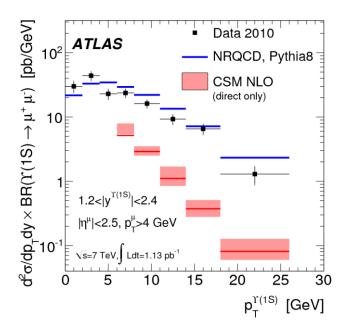

Good agreement with CDF – fraction is energy independent

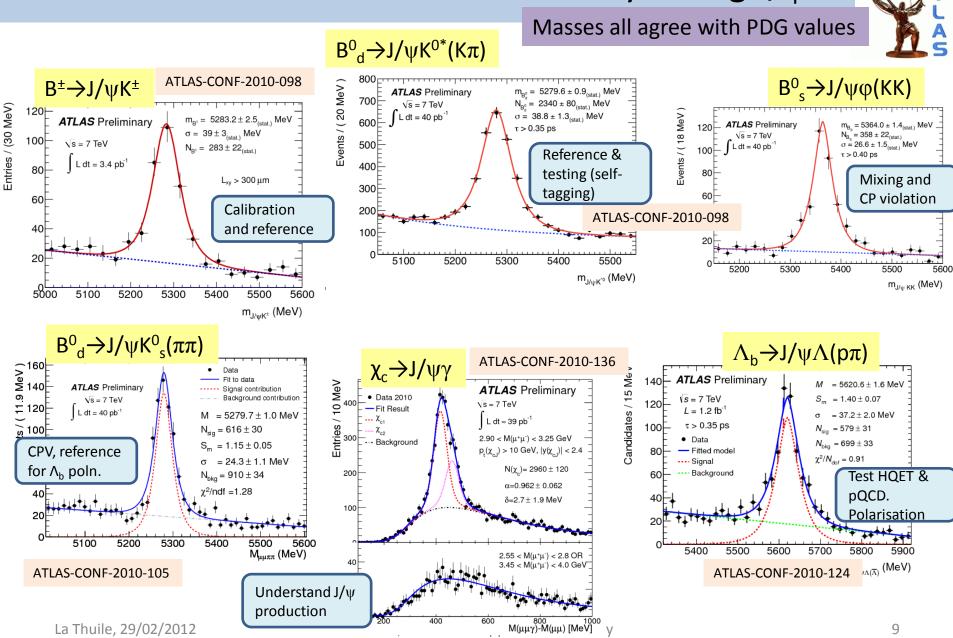

Derive non-prompt and prompt production cross-section separately



Great theoretical interest:


- > CEM is not describing shape
- Colour Singlet Model (CSM) is low for NLO but good shape
- > CSM NNLO* is significant improvement





- \triangleright Cross-section $\Upsilon \rightarrow \mu\mu$
- Restrict muon kinematics:
 - $> |p_T| > 4 \text{ GeV}$
 - > |η| < 2.5</p>
- \triangleright Reduces uncertainty due to Υ spin alignment.
- Agree within factor 2 with NRQCD although shape not well described
- Colour Singlet Model prediction is low but contains no feed down from higher order states

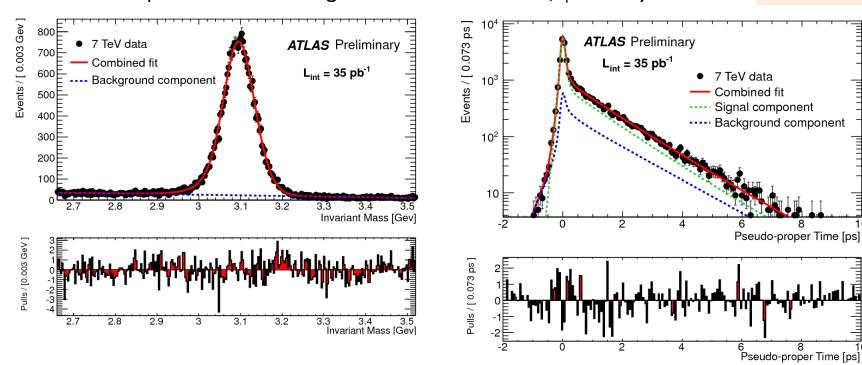
Observation of exclusive b-hadron decays using J/ψ

Lifetimes

Motivation:

- Test of Heavy Quark Effective Theory predicts lifetime ratios of different B-hadron species
- Lifetime difference ($\Delta\Gamma_{\rm s}$) in the B_s system mass eigenstates have different lifetime. Commission lifetime measurement ready for CP violation studies
- Validation of tracking and secondary vertex finding (resolution, calibration, alignment)

Measure lifetime for:


- Inclusive $B \rightarrow J/\psi X$ decays
- Exclusive B hadron decays (B⁰ \rightarrow J/ ψ K*, B_s \rightarrow J/ ψ ϕ)

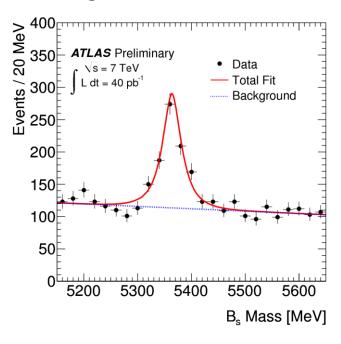
Average b hadron lifetime

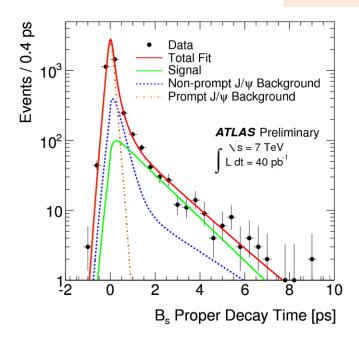
Inclusive sample – extract average B-lifetime from $B \rightarrow J/\psi X$ decays

ATLAS-CONF-2011-145

- \Rightarrow < τ_B >=1.489 ± 0.016(stat) ± 0.043(syst) ps
- ♦In agreement with CDF measurement and world average from different B-hadron species: $<\tau_B>=1.544\pm0.014$ ps
- ▶ Dominant systematic from background modelling and detector alignment uncertainties.

B⁰,B_s lifetime

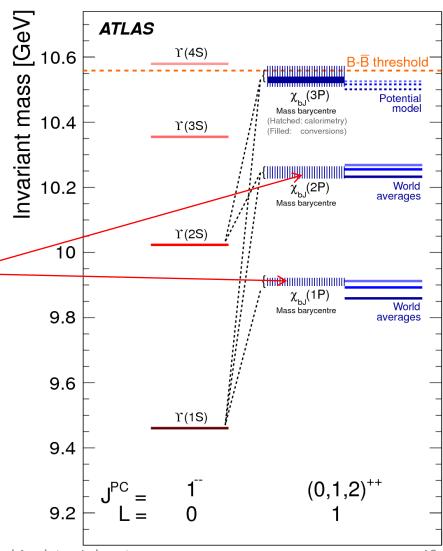



Simultaneous fit to invariant mass and proper decay time

$$\tau = \frac{L_{xy} m_B^{PDG}}{p_T^B}$$

Extract signal, B-mass and lifetime

ATLAS-CONF-2011-092


- > B⁰→J/ψK* : τ_{Bd} = 1.51 ± 0.04 (stat) ± 0.04 (syst) ps (2750 events)
- > B_s \rightarrow J/ $\psi \phi$: τ_{Bs} = 1.41 ± 0.08 (stat) ± 0.05 (syst) ps (463 events)

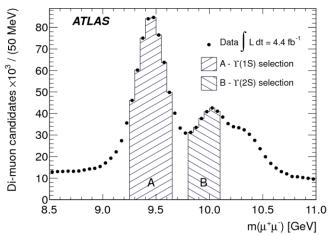
Agree with world average

The χ_c and χ_b represent the spin triplet (S=1) P-wave (L=1) states of the charmonium ($c\bar{c}$) and bottomonium ($b\bar{b}$) spectra.

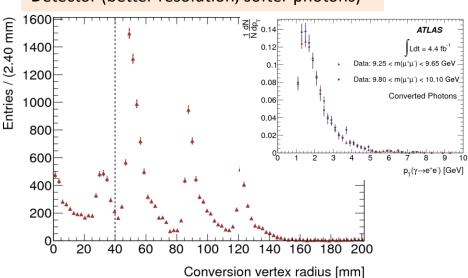
- The χ represent a triplet of states with J^{PC} = 0⁺⁺, 1⁺⁺, 2⁺⁺
- ightharpoonup Hyperfine mass splitting of the 3 states is small O(10 MeV)
- ► Branching fractions for the radiative decays $\chi_b \rightarrow \Upsilon \gamma$ are large O(10%)
- $\geq \chi_b(1P)$ and $\chi_b(2P)$ previously observed.
- $\triangleright \chi_b(3P)$ also predicted below $B\overline{B}$ threshold.

Search for $\chi_b(3P)$ states in $\chi_b \rightarrow \Upsilon \gamma$ decays. Photon reconstructed either directly in the calorimeter or through conversion to e^+e^- Observed bottomonium radiative decays in ATLAS, L = 4.4 fb

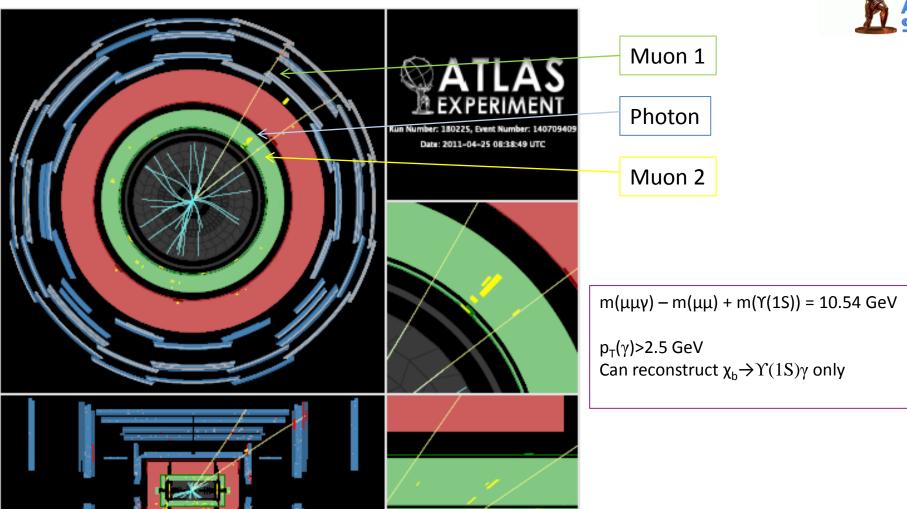
Event selection



Selection of $\Upsilon \rightarrow \mu\mu$ is common to both analyses:


- ➤ Opposite charged di-muons (p_T > 4 GeV)
- \triangleright Vertex fit $\chi^2 < 20$
- $> p_T(\mu\mu) > 12 \text{ GeV, } |y(\mu\mu)| < 2.$
- ightharpoonup Υ(1S)
 ightharpoonup μμ: 9.25 < m(μμ) < 9.65 GeV
- $ightharpoonup \Upsilon(2S) \rightarrow \mu \mu$: 9.80 < m(μμ) < 10.10 GeV

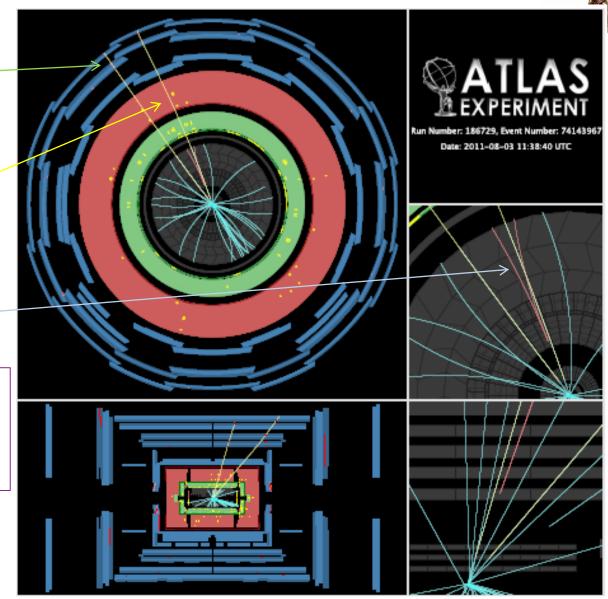
Unconverted photon selected using EM calorimeter



Converted photon selected using Inner Detector (better resolution, softer photons)

$\chi_b(3P)$ candidate reconstructed using an unconverted photon

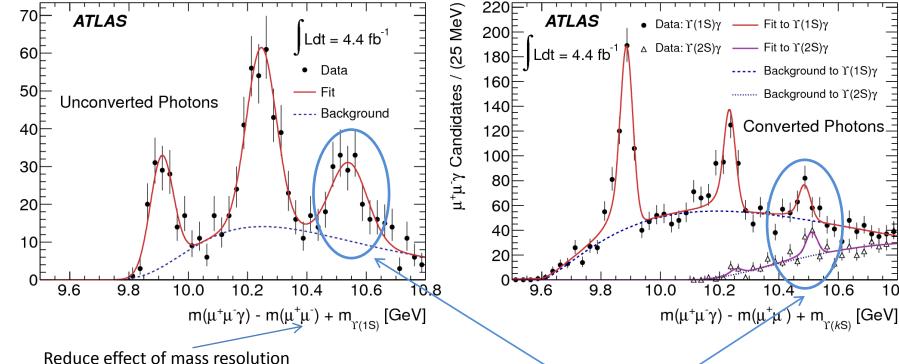
$\chi_b(3P)$ candidate reconstructed using a converted photon



Muon 2

Photon

 $m(\mu\mu\gamma) - m(\mu\mu) + m(\Upsilon(1S)) = 10.54GeV$


 $p_T(\gamma)>1.0 \text{ GeV}$ Can reconstruct $\chi_b \rightarrow \Upsilon(1S,2S)\gamma$

$\chi_b(nP) \rightarrow \Upsilon(1S,2S)\gamma$

- \rightarrow Observe mass peaks corresponding to $\chi_h(1P,2P)$
- \rightarrow Additional structure at higher mass, consistent with predictions for $\chi_h(3P)$

Mass
$$(\chi_b(3P)) = 10.530 \pm 0.005$$
 (stat.) ± 0.009 (syst) GeV

Currently unable to resolve the hyperfine splitting – measure mass barycentre

10.6

10.8

On the horizon

ATLAS has collected a fantastic di-muon sample in 2011.

Already have many interesting measurements:

- > J/ψ and Υ cross-sections published
- Observation of B-hadrons and lifetime measurements
- \triangleright Observation of new state $\chi_b(3P)$

This is just "scratching the surface". Expect many new results soon:

- Quarkonia:
 - $> J/\psi$ spin alignment
 - Upsilon production cross-section
 - \triangleright Plus many more (ψ cross-section, J/ ψ : ψ (2S) ratio, double Onia, J/ ψ + W/Z)
- ➤ B-hadron:
 - \triangleright CP violation and mixing measurements with B_s \rightarrow J/ $\psi \varphi$
 - $\rightarrow \Lambda_b \rightarrow J/\psi \Lambda$ lifetime and polarisation
 - $> B_c^+ \rightarrow J/\psi \pi^+$
 - >J/ψ+μ correlations
 - **>**
- ➤ Rare Decays:
 - \triangleright Limit on BR(B_c $\rightarrow \mu^+\mu^-$)
 - > B⁰_s $\rightarrow \mu^+\mu^-\phi$, B_d $\rightarrow \mu^+\mu^-K^*$

Looking forward to much more data in 2012