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Introduction

The 1968 Veneziano amplitude

A(s, t) =
Γ(−α(s))Γ(−α(t))
Γ(−α(s)− α(t))

marks the birth of string theory.

It has some positive and phenomenological

appealing properties, most importantly linear

Regge trajectories of the form J = α(0) + α′s

and their daughter trajectories.

The amplitude suffers from several bad

properties such as the UV behavior (s, t → ∞
with s/t fixed) where the amplitude decreases

exponentially A(s, t) ∼ exp−α′s.

It is then interesting to ask, what is the relation

between the Veneziano amplitude and QCD?

Is there a limit of QCD where meson scattering

is described by the Veneziano amplitude?
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A bit of history

Already in 1970 both Nielsen and Olesen and

Sakita and Virasoro, tried to derive the

Veneziano amplitude from field theory.

They used a scalar theory (since QCD was not

born yet) and argued that at high orders in

perturbation theory Feynman graphs look like

a dense fishnet

x x

xx

As the fishnet becomes denser and denser, the

holes close and the fishnet looks similar to a

string worldsheet.

This is a nice picture that some people use till

now to explain the qualitative relation between

large-N QCD and string theory.
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The relation between the amplitude and QCD

The topology of the string amplitude, the disk,

suggests that we should take the ’t Hooft limit

of QCD.

Indeed, in the limit Nc → ∞, fixed g2Nc and

fixed Nf the QCD amplitude does not contain

internal fermionic loops (windows) or handles.

A(x1, x2, x3, x4) = ⟨q̄q(x1)q̄q(x2)q̄q(x3)q̄q(x4)⟩

x x

xx

Let us write

(det(i ̸ D))Nf = exp(NfΓ[Aµ]) ,
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with

Γ[Aµ] = −
1

2

∫ ∞

0

dT

T

×
∫

DxµDψµ exp

{

−
∫ T

ϵ
dτ

(

1

2
ẋµẋµ +

1

2
ψµψ̇µ

)

}

×TrP exp

{

i

∫ T

0
dτ

(

Aµẋ
µ −

1

2
ψµFµνψ

ν

)

}

expanding the exponent expNfΓ in powers of

Nf/Nc yields the following expression for the

scattering amplitude

A(x1, x2, x3, x4) =

1

2

∫ ∞

0

dT

T

∫

Dx exp

(

−
∫

dτ 1
2 ẋ

2
µ

)

⟨W (x1, x2, x3, x4)⟩YM

where the worldline fermions were omitted for

the brevity of writing.

Thus, in the ’t Hooft limit the scattering

amplitude A(x1, x2, x3, x4) is given by sum over

all sizes and shapes of Wilson loops that pass

via the points x1, x2, x3, x4.

See related discussion by Makeenko and Olesen.
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Holography and Wilson loops

The advantage of expressing the amplitude as a

sum over Wilson loops is that since we know

how to calculate expectation values of Wilson

loop via holography, we can relate the field

theory expression to string theory (and

eventually derive the Veneziano amplitude).

The holographic prescription (Maldacena) is to

find a string worldsheet which terminates on

the AdS boundary. The worldsheet boundary is

the contour of the Wilson loop.

The present calculation requires a contour that

passes through x1, x2, x3, x4, hence a typical

worldsheet looks like

x

x

x

x

IR cut−off

4d Boundary

U
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Holography and Wilson loops

We propose the following expression for the

amplitude

1

2

∫ ∞

0

dT

T

∫

Dxµ(τ)×

exp

(

−
∫

dτ 1
2 ẋ

2
µ

)

⟨W (x1, x2, x3, x4)⟩ =
∫

Dgαβ DxM×

exp

(

−
1

2πα′

∫

d2σ
√
ggαβ∂αx

M∂βx
NGMN + ...

)

|{x1,x2,x

The amplitude is given by a sum over all string

worldsheets that terminate on the AdS space

and pass through the points x1, x2, x3, x4.

The above expression holds for any

gauge/gravity pair. The information about the

gauge theory is encoded in the metric GMN

(and possibly other background fields).
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Witten’s model

We are interested in the gravity dual of pure

Yang-Mills theory. Such a dual is not known,

but Witten’s model of compactified D4 branes

on a thermal circle contains the essential

ingredients: confinement and a mass gap.

The metric is

ds2 = (U/R)3/2(ηµνdx
µdxν

+f(U)dτ2) + (R/U)3/2(
dU2

f(U)
+ U2dΩ2

4)

with

f(U) = 1− U3
KK/U3

Due to the metric singularity at U = UKK ,

large Wilson loops exhibit an area law

⟨W ⟩ = exp−(ΣA) with a string tension

Σ = 1
2πα′ (

UKK
R )

3

2 .

It is therefore anticipated that if ∆xi is large,

or UKK → ∞, the sum over Wilson loops will

be dominated by configurations that exhibit an

area law.
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String theory calculation

Let us ignore the compact directions (the

four-sphere and τ). This is a reasonable

assumption. These direction are more of an

artefact than a feature of Yang-Mills theory.

Moreover, the contribution to the path integral

from compact directions is expected to be

small. We therefore approximate the amplitude

by
∫

DxµDU exp

(

−
1

2πα′

∫

d2σ {(∂αxµ∂αxνGµν)+

(∂αU∂
αUGUU )}) |{x1,x2,x3,x4}

with the 5d metric

ds2 = (U/R)3/2ηµνdx
µdxν + (R/U)3/2(

dU2

f(U)
) .
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Holographic Calculation of the Amplitude

Due to the metric singularity, the path integral

is dominated by U in the vicinity of UKK . This

is the case for large worldsheets, where the

string “sits” at the horizon, or when

UKK → ∞. So, let us insert δ(U − (UKK + ϵ))

into the path integral, suppressing quantum

fluctuations in the U directions. Later we will

discuss happens when we omit the delta

function and allow fluctuations in the U

direction. The modified path integral reads
∫

DxµDUδ(U − UKK − ϵ)×

× exp

(

−
1

2πα′

∫

d2σ {(∂αxµ∂αxνGµν)+

(∂αU∂
αUGUU )}) |{x1,x2,x3,x4} =

∫

Dxµ exp

(

−
1

2πα′

∫

d2σ ∂αx
µ∂αxνĜµν

)

|{x1,x2,x3,x4}

with Ĝµν the flat 4d metric

ds2 = (UKK/R)3/2ηµνdx
µdxν
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Holographic Calculation of the Amplitude

It is easier to calculate the amplitude in

momenta space by inserting vertex operators of

the form

V ∼
∫

dy exp(ik · x)

The resulting expression is

A(k1, k2, k3, k4) =

∫

Dxµ
∏

i=1,..,4

∫

dyi exp (ikix(yi))

× exp

(

−Σ

∫

d2σ ∂αx
µ∂αxµ

)

We obtain the Koba-Nielsen expression for the

scattering amplitude

A(k1, k2, k3, k4) ∼ δ(
∑

i

ki)×

∫

∏

i

dyi
∏

j<l

(yj − yl)
2α′(R/UKK)3/2kj ·kl

which yields the Veneziano amplitude, with

α′
eff = α′(R/UKK)3/2.
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A comment about the lattice strong coupling

expansion

Interestingly the lattice strong coupling

expansion, to leading order, also yields an area

law for Wilson loops.

Invoking the Hopping expansion on the lattice

(which is very similar to the worldline

expansion), we obtain the following expression

for the meson scattering amplitude

⟨φ†φ(n1) · · ·φ†φ(n4)⟩c ≃
∑

l

κl

l

∑

ni∈Cl

e−σA

It means that on the lattice the scattering

amplitude is given by the Veneziano amplitude

and that to leading order in the strong

coupling expansion, the lattice is equivalent to

flat space string theory.
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Beyond the Veneziano Amplitude

We now wish to include holographic

corrections.

Let us carry out a Kruskal transformation and

expand the metric near the horizon to include

deviations from the flat space sigma model.

The leading correction takes the form

A(k1, k2, k3, k4) =

∫

DxµDÛ
∏

i=1,..,4

∫

dyi exp (ikix(yi))

× exp(−Σ

∫

d2σ (∂αx
µ∂αxµ + ∂αÛ∂

αÛ+

λÛ2∂αx
µ∂αxµ))

where λ ∼ 1
U2

KK
is the coupling between xµ

and the holographic coordinate Û .

In the limit λ→ 0, the IR cut-off coincides

with the UV cut-off and we recover the

Veneziano amplitude.

We wish to study, by using perturbation

theory, corrections due to the interaction

between xµ and Û .
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Perturbative corrections to the xµ propagator

Consider the following tree-level, one-loop and

two-loop contributions to

⟨xµ(σ, τ)xν(σ′, τ ′)⟩

U

uninteresting one−loop

interesting two−loop

tree level

^

U

^

^

U

x x

x x

x x

The one-loop correction renormalizes (shifts)

the QCD string tension. It is not so interesting.

The two-loop correction carries some

non-trivial information.
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Two-loop correction to the xµ propagator

The correction is

p+q1+q2

q1

pp

q2

λ2
∫

d2p

2π2

d2q1
2π2

d2q2
2π2

exp(ip(σ − σ′))×

×
(

1

p2

)2 (p · (p+ q1 + q2))2

q21q
2
2(p+ q1 + q2)2

= λ2 log3(σ − σ′)
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The corrected amplitude

A(k1, k2, k3, k4) ∼ δ(
∑

i

ki)

∫

∏

i

dyi×

∏

j<l

exp 2α′
effkj · kl

(

log(yj − yl)− λ2 log3(yj − yl)
)

The above expression can be represented as

A(s, t) =

(

1− λ2(s̃
∂3

∂s̃3
+ t̃

∂3

∂ t̃3
)

)

B(s̃, t̃)

with s̃ = −α′
effs and t̃ = −α′

eff t.

Namely, the original Veneziano amplitude

receives small holographic corrections of the

form

λ2(s̃
∂3

∂s̃3
+ t̃

∂3

∂ t̃3
)B(s̃, t̃)
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Regge regime

In the Regge regime of large s and fixed |t|

B(s̃, t̃) → s̃−t̃ = exp(−t̃ log s̃)

In this limit the corrected expression is

A(s, t) → exp(−t̃(log s̃− λ2 log3 s̃))

= s̃−t̃(1−λ2 log2 s̃)

We can view this correction as a small

deviation from linearity of the Regge trajectory

when λ2 log2 s̃ ≪ 1

α(−s) = s̃(1−λ2 log2 s̃)
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Deviations from Linearity

The correction affects α(s) in the small s

regime. It leads to a bending of the curve of

the following form

0.5 0.6 0.7 0.8 0.9 1.0
s

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α(s)

A deviation from linearity is expected in QCD

on general grounds: a perfectly linear Regge

trajectory is obtained by assuming that all

Wilson loops, however small, admit an area

law. This is the same as λ = 0 in our approach.

However, small Wilson loops are computed

using perturbation theory and the result is a

perimeter law. Therefore the trajectory cannot

be perfectly linear.
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Conclusions

• In the ’t Hooft limit meson scattering can

be expressed as a sum over Wilson loops.

• Using holography the sum over Wilson

loops is mapped into a sum over string

worldsheets.

• By using an unjustified and crude

approximation where both the compact

directions and the holographic direction are

neglected, the path integral becomes

gaussian. The gaussian integration yields

the Veneziano amplitude.

• Incorporating a perturbative contribution

due to the interaction of 4d flat space with

the holographic coordinate, leads to a

deviation from linearity.
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