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Overview

Graphene conformal system of massless fermions in 2+1-dim
interacting through electromagnetic forces

I αgraphene = e2

4π~c
c

vF
∼ 300

137 = 2.2

AdS/CFT D3/probe D5
Dual theory N = 4 SYM at large ’t Hooft coupling λ coupled to
fundamental hypermultiplets along a 2+1-dim defect
We study the D3/probe D5-D5 system as an holographic model of a
graphene bilayer
The effects of an external magnetic field and of the introduction of a
charge density are examined
Two channels for chiral symmetry breaking

I intra-layer condensate
I inter-layer condensate
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D3/probe D5-D5

Stack of N D3-branes AdS5 × S5 background

ds2 = dr2

r2 +r2
(
−dt2 + dx2 + dy2 + dz2

)
+dψ2+sin2 ψd2Ω2+cos2 ψd2Ω̃2

where d2Ω2 = sin θdθdφ and d2Ω̃2 = sin θ̃dθ̃dφ̃

Embed N5 D5 and D5 probes in this background (N5 � N)

DBI + WZ actions

S = T5N5

[
−
∫
d6σ

√
−det(g + 2πα′F ) + 2πα′

∫
C(4) ∧ F

]
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D5-D5 embedding

Worldvolume coordinates and ansatz for the embedding of the D5-D5

t x y z r ψ θ φ θ̃ φ̃
D3 × × × ×

D5/D5 × × × z(r) × ψ(r) × ×

Induced metric on the D-branes worldvolume

ds2 = dr2

r2

(
1 + (r2z′)2 + (rψ′)2

)
+r2

(
−dt2 + dx2 + dy2

)
+sin2 ψd2Ω2

Charge density and external magnetic field D5 world-volume
gauge fields (in the ar = 0 gauge)

2π√
λ
F = a′0(r)dr ∧ dt+ bdx ∧ dy

b = 2π√
λ
B a0 = 2π√

λ
A0
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DBI action

DBI action for N5 D5 (D5)

S = N5

∫
dr sin2 ψ

√
r4 + b2

√
1 + (rψ′)2 + (r2z′)2 − (a′0)2

where N5 =
√
λNN5
2π3 V2+1

a0(r) and z(r) are cyclic variables their canonical momenta are
constants

Q = −δL
δa′0
≡ 2πN5√

λ
ρ ρ = sin2 ψ

√
r4 + b2a′0√

1 + (rψ′)2 + (r2z′)2 − (a′0)2

Πz = δL

δz′
≡ N5f f = sin2 ψ

√
r4 + b2r4z′√

1 + (rψ′)2 + (r2z′)2 − (a′0)2

I ρ = charge density on the D5 (D5)
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Equations of motion

Solving for a′0(r) and z′(r) in terms of ρ and f we get

a′0 = ρr2√1 + r2ψ′2√
r4 (b2 + r4) sin4 ψ + ρ2r4 − f2

z′ = f
√

1 + r2ψ′2

r2
√
r4 (b2 + r4) sin4 ψ + ρ2r4 − f2

The EoM for ψ(r) is

rψ′′ + ψ′

1 + r2ψ′2−
ψ′ (f2 + ρ2r4 + r4 (b2 + 3r4) sin4 ψ

)
− 2r3 (b2 + r4) sin3 ψ cosψ

f2 − ρ2r4 − r4 (b2 + r4) sin4 ψ
= 0

Note: the magnetic field b can be rescaled to 1 by rescaling r →
√
br,

f → b2f , ρ→ b ρ
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Asymptotic behaviour

Asymptotic behaviour at r →∞ for the embedding functions z(r), ψ(r)
and the gauge field a0(r)

z(r) '
r→∞

±L2 −
f

5r5 + . . . (for D5/D5)

I L = separation between the D5 and the D5
I f ∝ expectation value for the inter-layer chiral condensate

ψ(r) '
r→∞

π

2 + m

r
+ c

r2 + . . .

I m ∝ mass term for the fermions we consider solution with m = 0
I c ∝ expectation value for the intra-layer chiral condensate

a0(r) '
r→∞

µ− ρ

r
+ . . .

I µ = chemical potential

Andrea Marini Holographic graphene bilayers Cortona, May 29, 2014 7



Unconnected solutions

Eq. for z(r) z′ = f
√

1 + r2ψ′2

r2
√
r4 (b2 + r4) sin4 ψ + ρ2r4 − f2

If f = 0 the solution is trivial z = ±L/2 (for D5/D5)

Unconnected solution

D5 D5
r =∞

r = 0

L

“Black hole” embedding

D5 D5
r =∞

r = 0

L

Minkowski embedding
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Connected solutions
If f 6= 0 the solution for z(r) is

z(r) = f

∫ r

r0
dr̃

√
1 + r̃2ψ′(r̃)2

r̃2
√
r̃4 (b2 + r̃4) sin4 ψ(r̃) + ρ2r̃4 − f2

r0 such that r4
0

(
b2 + r4

0

)
sin4 ψ(r0) + ρ2r4

0 − f2 = 0

D5 D5
r =∞

r = 0

L

Minkowski embedding

D-brane worldvolume confined in
the region r ≥ r0

in order to have a sensible
solution we have to glue smoothly
the D5/D5 solutions at r = r0

connected solution
fD5 = −fD5 and ρD5 = −ρD5
D5-D5 system is neutral
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Minkowski vs. BH embeddings

(f = 0, c 6= 0)-solutions can in principle be either BH or Mink.
embeddings

In practice if ρ 6= 0 only BH embeddings are allowed

Mink. embeddings D-brane pinches off at r = r̄ where ψ(r̄) = 0

If ρ 6= 0 a′0 is singular at r̄ there must be charge sources
F-strings suspended between the D5 and the Poincaré horizon (r = 0)
TF1 > TD5 strings pull the
D5 to r = 0 BH embed.

[Kobayashi et al. hep-th/0611099]

For unconnected solutions
(f = 0) Mink. embeddings are
allowed only if ρ = 0

D5 D5
r =∞

r = 0

L
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D-brane separation and chemical potential

Separation between the D5 and the D5 for the connected solution
(f 6= 0)

L = 2
∫ ∞
r0

dr z′(r) = 2f
∫ ∞
r0

dr

√
1 + r2ψ′2

r2
√
r4 (b2 + r4) sin4 ψ + ρ2r4 − f2

Chemical potential

µ =
∫ ∞
r0

a′0(r) dr = ρ

∫ ∞
r0

dr
r2√1 + r2ψ′2√

r4 (b2 + r4) sin4 ψ + ρ2r4 − f2

where r0 is the solution of r4
0

(
b2 + r4

0

)
sin4 ψ(r0) + ρ2r4

0 − f2 = 0
if f = 0 r0 = 0
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D-brane separation and chemical potential
For the constant solution ψ = π/2 the integrals can be done analitically

The turning point r0 of the connected solution is

r0 =
4

√√
(b2 + ρ2)2 + 4f2 − b2 − ρ2

4√2

The separation between the branes for the connected solution is

L =
f
√
πΓ
( 5

4
)

2F1

(
1
2 ,

5
4 ; 7

4 ;− f2

r08

)
2r05Γ

( 7
4
)

The chemical potential is

µ =
ρ
√
πΓ
(

5
4

)
2F1

(
1
4 ,

1
2 ; 3

4 ;− f2

r08

)
r0Γ

(
3
4

)
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Solutions

We must look for non-trivial (i.e. non-constant) solutions for ψ

EoM for ψ is a non-linear ODE

Numerical method to find solutions imposing the suitable asymptotic
condition

ψ(r) '
r→∞

π

2 + c

r2 + . . .

We used a shooting technique

(f 6= 0, c 6= 0)-solutions seem not to exist
I states of mixed inter/intra-layer condensation do not occur

The other types of solutions are instead allowed
I f = 0, c = 0 (z = ±L/2, ψ = π/2) chiral symm.
I f = 0, c 6= 0 intra
I f 6= 0, c = 0 inter
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Plot of solutions

Example of plots of non-trivial solutions with
√
bL ' 2 and

µ/
√
b ' 1.7

I f = 0, c 6= 0 intra
I f 6= 0, c = 0 inter
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Solutions with zero charge density

We are interested in solutions at fixed L and µ

Eq. for a0 is a′0 = ρr2√1 + r2ψ′2√
r4 (b2 + r4) sin4 ψ + ρ2r4 − f2

It has a trivial solution a0 = const when ρ = 0

Other solutions with ρ = 0 and a0 = µ

Among these the only relevant
one Minkowski embedding
with f = 0 and c 6= 0

[Evans,Kim 1311.0149]

1 2 3 4 5

0.5

1.0

1.5

ψ

r
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Free energy

Which configuration is favored?

Compare the free energies of the different solutions at the same L
and µ

The right quantity to define the free energy is the action evaluated on
solutions F [L, µ] = S[ψ, z, a0]

δF =
∫ ∞

0
dr

(
δψ

∂L
∂ψ′

+ δa0
∂L
∂a′0

+ δz
∂L
∂z′

)′
= −ρδµ+ fδL

F [L, µ] = N5

∫ ∞
r0

dr
r2 (b2 + r4) sin4 ψ

√
1 + r2ψ′2√

r4 (b2 + r4) sin4 ψ + ρ2r4 − f2

F implicit function of L and µ
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Free Energy

The free energy of each solution is UV divergent

Regularization subtracting to the free energy of each solution that
of the trivial (f = 0, c = 0; ρ 6= 0)-solution (with the same µ)

We use the regularized free energy to study the dominant
configuration at fixed values of L and µ

We construct the phase diagram working on a series of constant L
slices
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Phase diagram
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Large L limit

0 0.5 1 1.5 2 2.5 3 3.510−1

100

101

102

103

104

(0.76,2.8)

µ√
b

√
bL

For L→∞ we recover the known results for a single layer
[Evans,Gebauer,Kim,Magou 1003.2694; Jensen,Karch,Son,Thompson 1002.3159]

µ√
b0 1 2 3 4

ρ = 0 χSB ρ 6= 0 χSB ρ 6= 0 χSBKT
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Conclusions

D3/probe D5-D5 system as an holographic model of a graphene bilayer

Two channels for chiral symmetry breaking intra/inter-layer
condensates

Inter-layer condensate is possible only for overall neutral system

No pahse with both inter- and intra-layer condensates

Study of the phase diagram
(
µ/
√
b,
√
bL
)

For two layers at a finite distance with an external magnetic field and
a chemical potential chiral symmetry is always broken

Three relevant phases intra ρ = 0, intra ρ 6= 0, inter

Andrea Marini Holographic graphene bilayers Cortona, May 29, 2014 20



Outlook

This work can be extended in several directions:

The temperature can be taken into account

Study of non-neutral system (ρD5 + ρD5 6= 0)

We can use a different holographic model for bilayer semi-metal
D3/probe D7-D7
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Extra slides
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Classification of the solutions

Scheme of the possible types of solutions

f = 0 f 6= 0

c = 0 unconnected, ψ = π/2 connected, ψ = π/2
BH, chiral symm. Mink, inter

c 6= 0 unconnected, ψ not constant connected, ψ not constant
BH/Mink, intra Mink, intra/inter
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