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Finite dimensional invariant Gibbs measures

Hamiltonian flow on R2n:

ṗj =
∂H

∂qj
, q̇j = −∂H

∂pj

with Hamiltonian H(p, q) = H(p1, . . . , pn, q1, . . . , qn)

Vector field X = ( ∂H∂qj ,−
∂H
∂pj

) is divergence-free:

By Liouville’s theorem, Lebesgue measure
∏n
j=1 dpjdqj is invariant

Hamiltonian H(p(t), q(t)) is invariant under the flow

=⇒ Gibbs measure: dµ = Z−1 exp(−βH(p, q))

n∏
j=1

dpjdqj is invariant

Namely,
µ(Φ(−t)A) = µ(A) for all t ∈ R

Moreover, if F (p, q) is a “nice” conserved quantity, then

dµF = Z−1 exp(−F (p, q))

n∏
j=1

dpjdqj

is also invariant
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Q: Why do we care about invariant measures?

Given an invariant measure µ , we can view the system as a dynamical system
with measure-preserving transformation T :

T = solution map : (p(0), q(0)) 7→ (p(t), q(t))
∣∣
t=1

We have the following theorems on recurrence properties of the dynamics:

Poincaré recurrence theorem

For any measurable A with µ(A) > 0, there exists n such that

µ(A ∩ T−nA) > 0

Q: Can we construct invariant measures for Hamiltonian PDEs?
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Gibbs measure for Hamiltonian PDEs on T

Nonlinear Schrödinger equation (NLS):

iut + uxx = ±|u|p−2u, x ∈ T = R/Z, u, complex-valued

NLS is a Hamiltonian PDE:

H(u) = 1
2

∫
T |ux|

2dx± 1
p

∫
T |u|

pdx, M(u) =
∫
T |u|

2dx,

H(u) is conserved under the NLS flow

Gibbs measure: “dµ = Z−1e−H(u)du” is “expected” to be invariant

Gibbs measure as a weighted Wiener measure:

dµ = Z−1e−H(u)du = Z−1e
∓ 1
p

∫
T |u|

pdx
e−

1
2

∫
T |ux|

2dxdu︸ ︷︷ ︸
Wiener measure on T

We actually consider

dµ = Z−1e
∓ 1
p

∫
T |u|

pdx
e−

1
2

∫
T |ux|

2dx− 1
2

∫
T |u|

2dxdu
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Wiener measure (or rather Ornstein-Uhlenbeck process):

dρ = Z−1 exp
(
− 1

2

∫
T
|u|2dx− 1

2

∫
T
|ux|2dx

)
du on Hs(T), s < 1

2

Under this measure, u is represented by

u(x) =
∑
n∈Z

gn(ω)√
1 + 4π2n2

e2πinx ∈ Hs(T), s < 1
2
, almost surely

where {gn(ω)}n∈Z = independent standard Gaussian r.v.’s

Lebowitz-Rose-Speer ’88, Bourgain ’94: made sense of Gibbs measure

dµ = Z−1e∓
1
p

∫
|u|p e−

1
2

∫
T |u|

2− 1
2

∫
T |ux|

2

du︸ ︷︷ ︸
Wiener measure ρ on T

as a weighted Wiener measure for

- defocusing case (− sign) : all p > 2

- focusing case (+ sign) for p ≤ 6 (with L2-cutoff)
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Gibbs measure: dµ = Z−1e−H(u)du

(i) Global well-posedness in the support of µ: cubic NLS (p = 4)

=⇒ Invariance of µ follows from the finite dimensional approximations

(ii) Only local well-posedness in the support of µ:

We use formal invariance of µ to construct a.s. global dynamics

Circular argument?:

Invariance
**
a.s. GWPjj

Bourgain ’94: Extended local-in-time solutions to global ones by

invariance of finite-dimensional Gibbs measures

(in place of conservation laws) and approximation argument

=⇒ a.s. GWP on the statistical ensemble & invariance of Gibbs measure

(iii) No local-in-time dynamics in the support of µ

=⇒ (iii.a) Probabilistic local Cauchy theory & (ii)

or (iii.b) “compactness” argument
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Review of Bourgain’s idea

iut + uxx = ±|u|p−2u(NLS)

with Gibbs measure dµ = Z−1e−H(u)du where H(u) = 1
2

∫
|ux|2 ± 1

p

∫
|u|p

Assume LWP in a Banach space B ⊃ supp(µ), e.g. B = Hs, s < 1
2

with local time of existence δ ∼ ‖u0‖−θB , θ > 0

=⇒ For ‖u0‖B ≤ K, consider the finite dimensional approximation:

(F-NLSN)

{
iuNt + uNxx = ±PN (|uN |p−1uN )

uN
∣∣
t=0

= PNu0 =
∑
|n|≤N û0(n)e2πinx,

is LWP on [0, δ] where δ ∼ K−θ, independent of N

(F-NLSN) preserves
∫
|uN |2dx =

∑
|n|≤N

|ûN (n)|2 = Euclidean distance on C2N+1

=⇒ (F-NLSN) is GWP for each N , but no uniform estimate as N →∞
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1 (FNLSN) is Hamiltonian with H(uN ) = 1
2

∫
|∂xuN |2 ± 1

p |u
N |p

=⇒ By Liouville’s theorem,

Lebesgue measure duN :=
∏
|n|≤N dû

N (n) is invariant under the flow

2 Conservation of H(uN ) =⇒ finite dimensional Gibbs measure

dµN := Z−1
N exp

(
−H(uN )

)
duN

is invariant under the flow of (F-NLSN)

Proposition: Bourgain ’94

Given T <∞, ε > 0, there exists ΩN = ΩN (ε, T ) ⊂ B s.t.

µN (ΩcN ) < ε,

for uN0 ∈ ΩN , the solution uN to (FNLSN) with uN |t=0 = uN0 satisfies the

following growth estimate:

‖uN (t)‖B .
(

log
T

ε

) 1
2
, for |t| ≤ T

Remark: This growth estimate is independent of N
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Proof.

Let ΦN (t) = flow map of (F-NLSN) : uN0 7→ uN (t), and define

ΩN =

[T/δ]⋂
j=−[T/δ]

ΦN (jδ)({‖uN0 ‖B ≤ K})

By invariance of µN ,

µN (ΩcN ) ≤
[T/δ]∑

j=−[T/δ]

µN
(
ΦN (jδ)({‖uN0 ‖B > K})

)
invariance

.
T

δ
µN ({‖uN0 ‖B > K})︸ ︷︷ ︸

<e−cK2

∼ TKθe−cK
2

=⇒ By choosing K ∼
(

log T
ε

) 1
2 , we have µN (ΩcN ) < ε

By its construction, ‖uN (jδ)‖B ≤ K for j = 0, · · · ,±[T/δ]

=⇒ By local theory,

‖uN (t)‖B ≤ CK ∼
(

log
T

ε

) 1
2

for |t| ≤ T
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This proposition ‖uN (t)‖B .
(

log T
ε

) 1
2 along with uniform convergence:

‖u− uN‖C([−T,T ];Bs1 ) → 0, s1 < s

uniformly for u0 with ‖u0‖Bs ≤ K as N →∞
provides an a priori bound on the growth of solutions

=⇒ Almost a.s. GWP: Given T and ε > 0 (unrelated!!), there exists ΩT,ε

such that

µ(ΩcT,ε) < ε,

(NLS) is well-posed on [−T, T ] for u0(ω) ∈ ΩT,ε

Almost a.s. GWP implies a.s. GWP:

For fixed ε > 0, let Tj = 2j and εj = 2−jε

=⇒ By almost a.s. GWP, construct Ωj := ΩTj ,εj

Then, let Ωε =
⋂∞
j=1 Ωj

=⇒ (NLS) is globally well-posed on Ωε with µ(Ωcε) < ε

Now, let Ω̃ =
⋃
ε>0 Ωε

=⇒ Then, (NLS) is globally well-posed on Ω̃ and µ(Ω̃c) = 0
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=⇒ (NLS) is GWP almost surely on the statistical ensemble

µN

invariance

weak convergence / µ

??

uN
uniform convergence

// u
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Invariance of Gibbs measure µ

Let F be a continuous and bounded function on X = C(T;C)

Weak convergence of finite dimensional Gibbs measure µN to µ:

lim
N→∞

∫
F (φ)dµN (φ) =

∫
F (φ)dµ(φ)

Let ΦN and Φ = solution maps of F-NLSN and NLS on T:

uN (t) := ΦN (t)φN (ω)→ u(t) := Φ(t)φ(ω) a.s. in C([0, T ];X)

By DCT with µ = P ◦ φ−1 and µN = P ◦ φ−1
N ,∫

F ◦ Φ(t)dµ =

∫
F (Φ(t)φ)dµ(φ) =

∫
F (Φ(t)φ(ω))dP (ω)

= lim
N→∞

∫
F (ΦN (t)φN (ω))dP (ω) = lim

N→∞

∫
F ◦ ΦN (t)dµN

By invariance of µN under ΦN (t), we have

∫
F ◦ ΦN (t)dµN =

∫
FdµN
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McKean ’95: cubic NLS, and other equations (with Vaninsky)
Many results on invariant measures for Hamiltonian PDEs:

Bourgain (in mid 90’s),

Tzvetkov, Burq-Tzvetkov, Burq-Tzvetkov-Thomann, Oh (late 2000’s)
with their collaborators and students

More dynamical properties?

1 µ invariant =⇒ u(t)
D∼ u(0) but how are u(t) and u(0) related?

Can we say anything about the space-time covariance Eµ[u(x, t)u(y, 0)]?

Lukkarinen-Spohn, ’11: weakly nonlinear & large box limit of lattice NLS

2 Ergodicity and ‘asymptotic stability’ of µ?

Mass M and momentum P :

- are conserved for (NLS)

- are finite a.s. with respect to Gibbs measure

Oh-Quastel ’13: invariant Gibbs measures with prescribed M and P

These questions have been answered for some stochastic PDEs. This is
mainly due to uniqueness of invariant measures. However, for Hamiltonian
PDEs, there are more than one (formally) invariant measures and such
questions are out of reach at this point...

13 / 25



Gibbs measures on T2

Goal: Construct invariant Gibbs measures: dµ = Z−1e−
1
p

∫
T2 |u|

p

dρ

for the defocusing NLS on T2:

iut + ∆u = |u|p−2u

Difficulty: The Gaussian masure

dρ = Z−1 exp
(
− 1

2

∫
T2

|u|2dx− 1

2

∫
T2

|∇u|2dx
)
du

is support on Hs(T2) \ L2(T2), s < 0. They are not even functions!!

In particular,
∫
T2 |u|p =∞ a.s.

Two problems:

Construction of the Gibbs measure: Wick renormalization

Construction of the global-in-time dynamics:

(iii.a) probabilistic Cauchy theory

(iii.b) “compactness” argument (of measures on space-time functions)

14 / 25



Gibbs measures on T2

Goal: Construct invariant Gibbs measures: dµ = Z−1e−
1
p

∫
T2 |u|

p

dρ

for the defocusing NLS on T2:

iut + ∆u = |u|p−2u

Difficulty: The Gaussian masure

dρ = Z−1 exp
(
− 1

2

∫
T2

|u|2dx− 1

2

∫
T2

|∇u|2dx
)
du

is support on Hs(T2) \ L2(T2), s < 0. They are not even functions!!

In particular,
∫
T2 |u|p =∞ a.s.

Two problems:

Construction of the Gibbs measure: Wick renormalization

Construction of the global-in-time dynamics:

(iii.a) probabilistic Cauchy theory

(iii.b) “compactness” argument (of measures on space-time functions)

14 / 25



Wick ordering

Given u(x;ω) =
∑
n∈Z2

gn(ω)√
1+|n|2

ein·x under ρ, we have

σN = E
[ ∫

T2

|PNu|2dx
]

=
∑
|n|≤N

1

1 + |n|2 ∼ logN →∞

Wick ordered monomial: : |PNu|2 :
def
= |PNu|2 − σN

=⇒ For any q <∞,∫
T2

: |PNu|2 : dx ∈ Lq(ρ) (with a uniform bound in N for each q)

Hence, we can define the limit in Lq(ρ):∫
T2

: |u|2 : dx
def
= lim

N→∞

∫
T2

: |PNu|2 : dx
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Similarly, for any even p = 2m, we can define the Wick ordered monomial:

: |PNu|p :
def
= (−1)mm! · Lm(|PNu|2;σN )︸ ︷︷ ︸

Laguerre polynomial

In the real-valued setting, : (PNu)p : can be defined for any p ≥ 2 by Hermite polynomials∫
T2

: |u|p : dx
def
= lim

N→∞

∫
T2

: |PNu|p : dx exists in Lq(ρ) for any q <∞

=⇒ Wick ordered Hamiltonian: H(u) =
1

2

∫
T2
|∇u|2dx+

1

p

∫
T2

: |u|p : dx

Main tool: hypercontractivity/Wiener chaos estimate by Nelson ’73

Theorem: Gibbs measure for the Wick ordered NLS on T2

Let p ≥ 4 be an even integer. Then, the Gibbs measure

dµ = Z−1e
− 1
p

∫
T2 :|u|p:dx

dρ

is a probability measure on Hs(T2), s < 0

Euclidean quantum field theory: Nelson, Simon, Glimm-Jaffe...

No Gibbs measure in the focusing case: Brydges-Slade ’96
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(iii.a) Probabilistic Cauchy theory

Defocusing Wick ordered NLS on T2:

iut + ∆u = : |u|p−2u : (= ∂
∂u

: |u|p :)(WNLS)

Gibbs measure on Hs(T2), s < 0

ill-posed for s < scrit = 1− 2
p−2

: scrit = 0 if p = 4, scrit = 1
2 if p = 6, ...

Probabilistic Cauchy theory:

construct (local) solutions a.s. with respect to u|t=0 =
∑
n∈Z2

gn(ω)√
1+|n|2

ein·x

gain of integrability of linear solution under randomization

p = 4 (cubic NLS): the regularity gap is small, i.e. any ε > 0

Bourgain ’96 constructed local solutions a.s. & (ii)

=⇒ a.s. global dynamics and invariance of the Gibbs measure

For p ≥ 6, the regularity gap > scrit >
1
2

is too large...
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(iii.b) Compactness argument

µN = finite dimensional invariant Gibbs measure for

i∂tu
N + ∆uN = PN

(
: |PNu

N |p−2PNu
N :
)

(F-WNLSN)

Let ΦN : uN0 ∈ Hs 7→ uN ∈ C(R;Hs) be the solution map

1 extend µN to νN = measure on space-time functions:

νN
def
= µN ◦ Φ−1

N

2 show {νN}N∈N is tight ( = compact)
Prokhorov

=⇒ weak convergence

3 Skorokhod’s theorem: νN =⇒ ν and

uN converges to some u (= global-in-time weak solution to WNLS) a.s.

Theorem: Oh-Thomann ’15

There exists a set Σ of µ-full measure such that for every φ, there exists a solution

u ∈ C(R : Hs) with u|t=0 = φ. Moreover, the law L(u(t)) is the same as µ for any

t ∈ R
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Generalized KdV equation

Generalized KdV equation (gKdV):

∂tu+ ∂3
xu = ± 1

k
∂x(uk), (x, t) ∈ T× R

k = 2: Korteweg-de Vries equation (KdV)

k = 3: modified KdV equation (mKdV)

Hamiltonian: H(u) = 1
2

∫
T(∂xu)2dx± 1

k(k+1)

∫
T u

k+1dx

invariance of Gibbs measure µ:

Bourgain ’94: k = 2, 3

Richards ’12: k = 4 (probabilistic Cauchy theory)

Theorem: Oh-Richards-Thomann ’15 (compactness argument)

Let k be an odd integer. Then, there exists a set Σ of µ-full measure such that for

every φ, there exists a solution u ∈ C(R : Hs), s < 1
2
, to the defocusing gKdV with

u|t=0 = φ. Moreover, the law L(u(t)) is the same as µ for any t ∈ R

Focusing case: up to k = 6 (with an L2-cutoff in Gibbs measure)
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Gibbs measure on R
Defocusing NLS on R: iut + uxx = |u|p−2u

Constructed invariant Gibbs measures for NLS on T.

This construction applies to NLS on TL = R/LZ of any finite period L

Goal: Take L→∞

Gibbs measure µL on TL:

dµL = Z−1
L e−

1
p

∫ L
0
|u|pdxe−

1
2

∫ L
0
|ux|2− 1

2

∫ L
0
|u|2du

Free measure ρL: dρL = Z−1
L e−

1
2

∫ L
0
|ux|2− 1

2

∫ L
0
|u|2du

For finite L, µL � ρL but µ∞ 6� ρ∞ = Ornstein-Uhlenbeck:∫ L

0

|φ|pdx ∼ L as L→∞

Under ρL, we have

φ(x;ω) =
∑
n∈Z

√
L√

n2 + L2
gn(ω)e

2πinx
L −→ OU on R
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Bourgain ’00:

Gaussian domination (Brascamp-Lieb inequality): For I ⊂ [−L
2
, L

2
],

EµL‖φL‖L∞(I) .
[

log(1 + |I|)
] 1

2 = growth bound on OU

uniformly in L� 1

Invariance of µL and the Duhamel formulation:

(growth) EµL
[

sup
|t|≤T

‖uL(t)‖L∞(I)

]
.
[

log(T + |I|)
] 1

2

Theorem: Bourgain ’00

(i) Let p > 2. There exists a subsequence {Lj}∞j=1 such that Lj →∞ and

φLj → φ and uLj → u, almost surely, where

(i.a) convergence is uniform on bounded space-time regions,

(i.b) u is a distributional solution to NLS

(ii) (sub-)cubic NLS (p ≤ 4): uniqueness and continuous dependence
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No mention of the limiting Gibbs measure µ := µ∞:

weak convergence of µL to µ, invariance of µ, etc.

Not efficient:

Gaussian bound without use of the potential part “− 1
p

∫
|u|p”

Theorem: On-Quastel-Sosoe ’13

(i) For all L� 1,
EµL

[
sup
|t|≤T

‖uL(t)‖L∞(I)

]
.
[

log(T + |I|)
] 2
p+2

(ii) The periodic Gibbs measures µL converge weakly to µ := µ∞ on R
(iii) µ is invariant under the (sub-)quintic NLS flow (p ≤ 6)

Idea: view u under µL as a diffusion

Focusing case (Rider ’02): For cubic NLS (p = 4),

Gibbs measure concentrates on the trivial (i.e. zero) function
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I: Probabilistic description of µL, L� 1, and µ∞

Dirichlet Gibbs measures: Feynman-Kac formula

Ground state substitution: Ito’s formula, Girsanov theorem

Construct µ∞ as a stationary diffusion process (in x) with values in C

II: Tightness (= compactness) of {µL} as probability measures on C(R;C)

Kolmogorov’s continuity criterion ( 1
2
− ε Hölder regularity of BM/OU)

I and II: µL ⇀ µ∞

III: Improved growth bounds:

EµL
[

sup
|t|≤T

‖uL(t)‖L∞(I)

]
.
[

log(T + |I|)
] 2
p+2

Invariance of µ∞ under (sub-)quintic NLS on R: Skorohod theorem

“µ∞ is an invariant measure (in t) of an invariant measure in x”

New class of non-decaying, rough solutions (in x) to NLS on R

also on R+ = [0,∞) with u(0) = 0
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Defocusing NLS on R:

What about p > 6?

Theorem: Oh-Quastel-Sosoe ’15 (compactness argument)

Let p > 6. Then, there exists a set Σ of µ-full measure such that for every φ, there

exists a solution u ∈ C(R : Hs
loc) to the defocusing NLS on R with u|t=0 = φ.

Moreover, the law L(u(t)) is the same as µ for any t ∈ R

generalized KdV on R:

Gibbs measure µL converges to a Dirac’s δ-measure on the trivial function for

KdV (k = 2)

focusing modified KdV (k = 3)

Theorem: Oh-Quastel-Sosoe ’15 (compactness argument)

There exists a set Σ of µ-full measure such that for every φ, there exists a solution

u ∈ C(R : Hs
loc) to the defocusing mKdV on R with u|t=0 = φ. Moreover, the law

L(u(t)) is the same as µ for any t ∈ R
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White noise on T

White noise: dµ0 = Z−1 exp(− 1
2

∫
|u|2dx)du

u(x;ω) =
∑
n∈Z

gn(ω)einx ∈ Hs, s < − 1
2

Q: Invariance of white noise?

Difficulty: Very rough!!

KdV: Quastel-Valkó ’08, Oh ’09, Oh-Quastel-Valkó ’12

cubic NLS? Oh-Quastel-Valkó ’12:

white noise is a weak limit of invariant measures for cubic NLS

but no well-defined dynamics...

This problem is of particular interest in nonlinear optics. In particular, in the

context of the stochastic cubic NLS with random forcing by the space-time

white noise
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