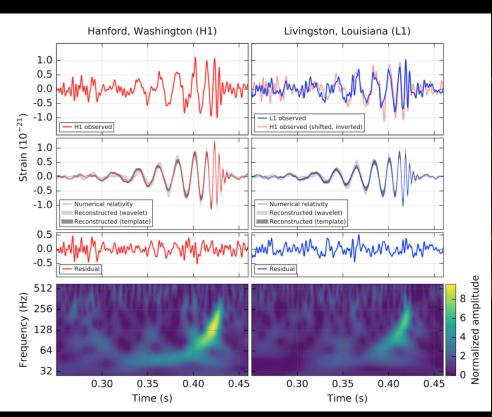
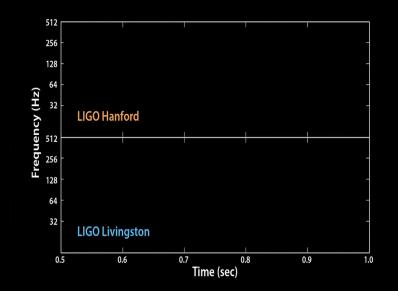
Multi-messenger Astrophysics: The New Era of Gravitational Waves


> Irene Di Palma University of Rome La Sapienza

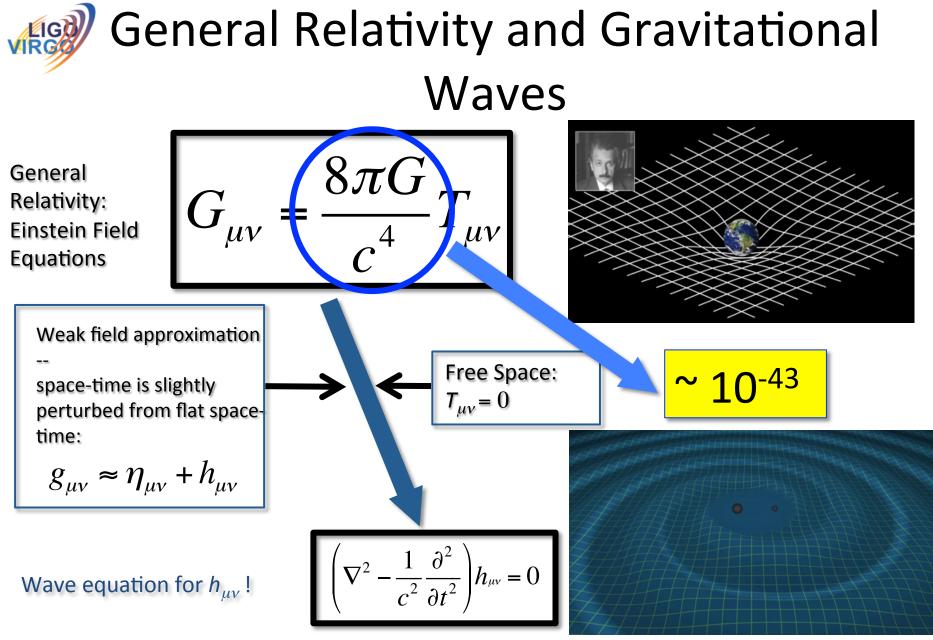
For the LIGO Scientific Collaboration and the Virgo Collaboration

LIGO-G1701857


Image Credit: Aurore Simmonet/SSU

GW150914: The First Binary Black Hole Merger

Abbott, et al. ,LIGO Scientific Collaboration and Virgo Collaboration, "Observation of Gravitational Waves from a Binary Black Hole Merger" <u>Phys. Rev. Lett. 116, 061102</u> (2016)

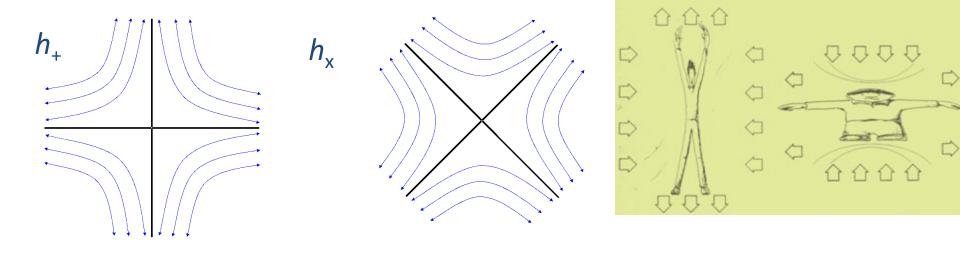


Outline

- Gravitational Waves and GW Astrophysics
- LIGO/Virgo Detectors
- Gravitational Waves from Binary Black Hole Mergers
 - Detection Confidence
 - Astrophysics
- Multi-messenger Astronomy with Gravitational Waves

A. Einstein, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (Berlin, 1916), 688696; Sitzungsberichte der Kniglich Preussischen Akademie der Wissenschaften (Berlin, 1918), 154167.

"Matter tells space-time how to curve. Space-time tells matter how to move." John Archibald Wheeler


Gravitational Waves

Solution for an outward propagating wave in z-direction:

$$h(t,z) = h_{\mu\nu} e^{i(\omega t - kz)} = h_{+}(t - z/c) + h_{\times}(t - z/c)$$

Physically, *h* is a *strain*:
$$\Delta L/L$$

$$h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The Astrophysical Gravitational-Wave Source Catalog

Credit: Bohn, Hébert, Throwe, SXS

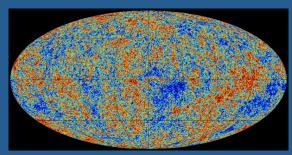
Coalescing Binary Systems

• Black hole – black hole

•Black hole – neutron star

• Neutron star – neutron star

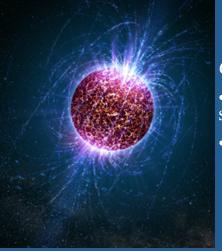
• modeled waveform



Credit: Chandra X-ray Observatory

Transient 'Burst' Sources

- asymmetric core collapse supernovae
- cosmic strings
- ???


•Unmodeled waveform

Credit: Planck Collaboration

Cosmic GW Background

- residue of the Big Bang
- probes back to $< 10^{-15}$ s
- stochastic, incoherent background
- Difficult (impossible?) for LIGO-Virgo to detect

Credit: Casey Reed, Penn State

Continuous Sources Spinning neutron stars

• monotone waveform

Gravitational Wave Detectors: LIGO and Virgo

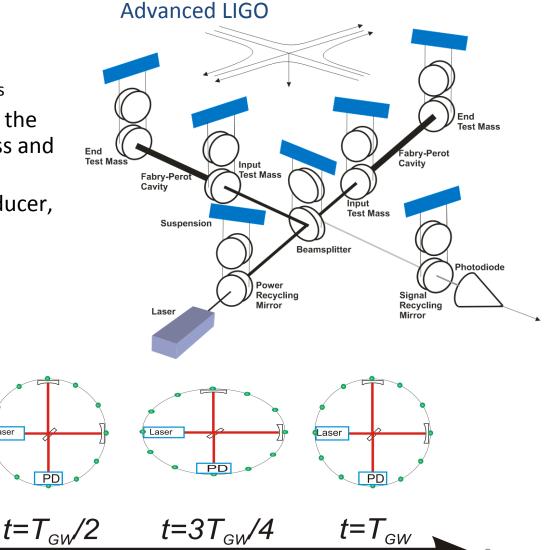
Precision Gravitational-wave Interferometry

- LIGO uses enhanced Michelson interferometry
 - With suspended ('freely falling') mirrors
- Passing GWs stretch and compress the distance between the end test mass and the beam splitter
- The interferometer acts as a transducer, • turning GWs into photocurrent

_aser

PD

 $t=T_{GW}/4$


aser

A coherent detector!

PD

t=0

aser

Time

How does an interferometer work?

 ΔL

VIRG

 Gravitational waves twist the space-time and during their crossing they produce a positive or negative separation among the two free masses.

Laser

The *h* parameter is the measure of relative variation among the two free masses.

$$h = \frac{\Delta L}{L}$$

"+" polarized GW propagating orthogonal to the screen

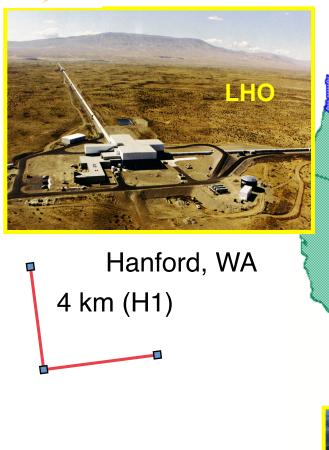
Tiny ripples:

LIGO Hanford

LIGO Livingston

Operational Under Construction Planned

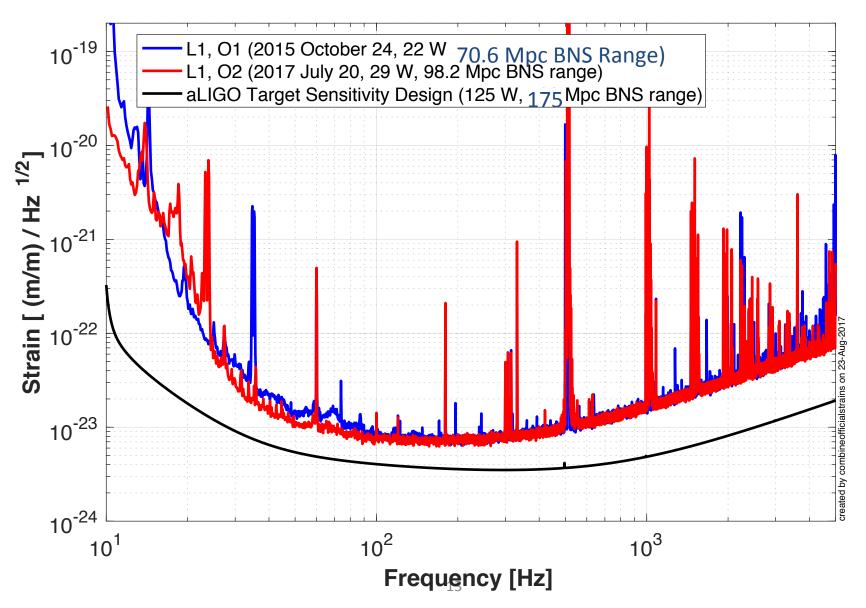
Gravitational Wave Observatories


GEO600

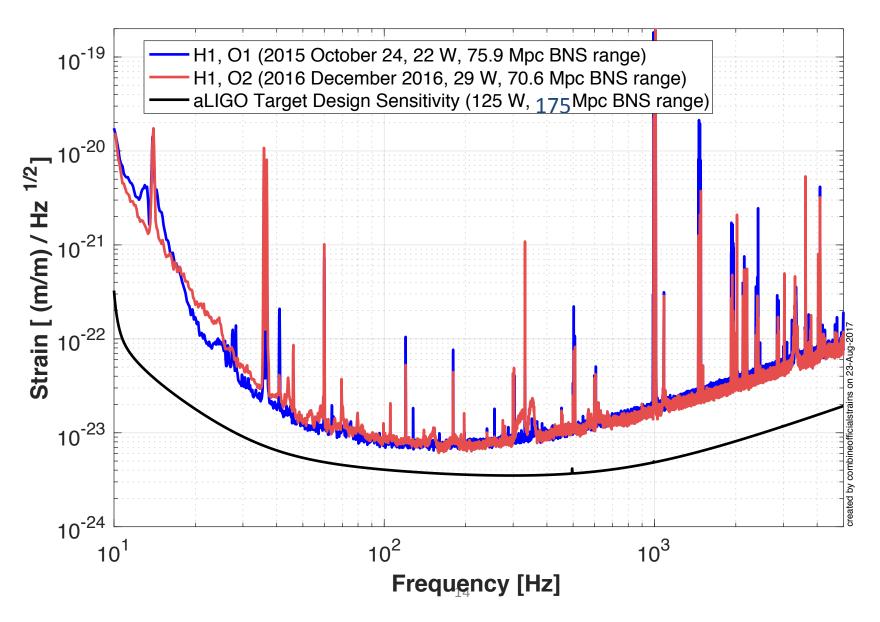
VIRGO

KAGRA

LIGO India


4 km L1 Livingston, LA Çaltech

LIGO: Laser Interferometer Gravitational-wave Observatory


LLO

LIGO Livingston Performance

VIRC

LIGO Hanford Performance

ADVANCED VIRGO

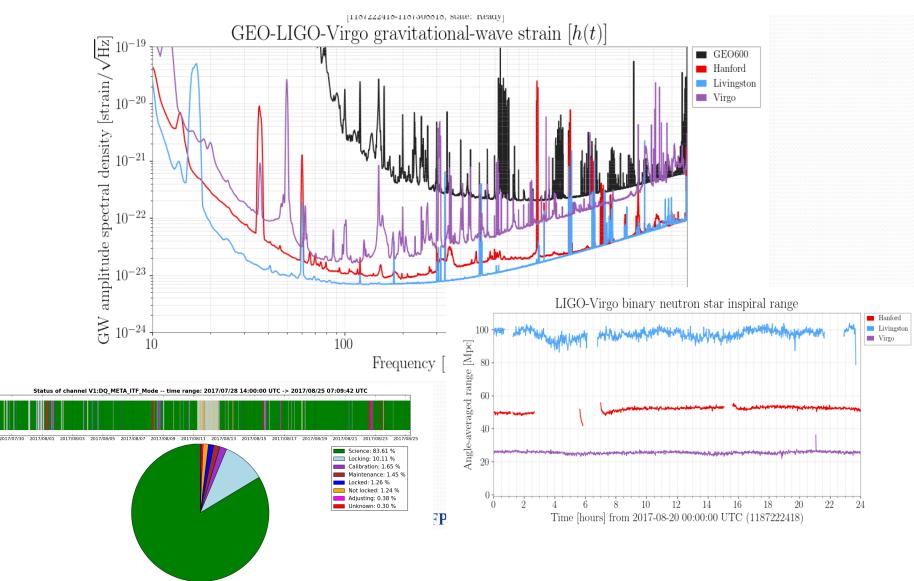
6 EU countries: France, Hungary, Italy, Poland, Spain, and The Netherlands 20 labs, ~280 authors

ARTEMIS Nice EGO Cascina **INFN** Firenze-Urbino **INFN** Genova **INFN** Napoli **INFN** Perugia **INFN** Pisa **INFN** Roma La Sapienza **INFN Roma Tor** Vergata **INFN** Trento-Padova LAL Orsay - ESPCI Paris LAPP Annecy **LKB** Paris LMA Lyon NIKHEF Amsterdam POLGRAW(Poland) RADBOUD Uni. Nijmegen RMKI Budapest University of Valencia

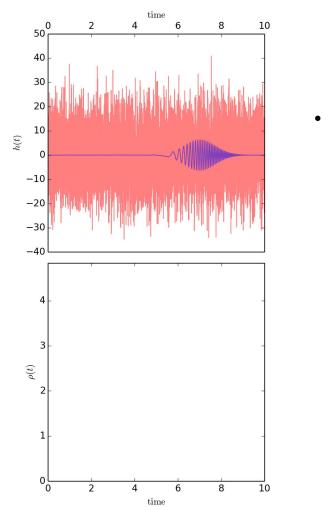
APC Paris



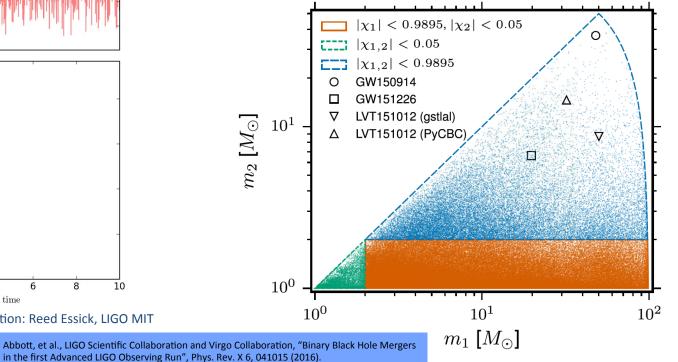
Advanced Virgo Progress


- Advanced Virgo integration completed in late 2016, followed by commissioning period
- First project milestone (1h stable lock) reached in March 2017
- First commissioning run (C8) in May 2017
- Sensitivity exceed that of Virgo+ in July, 2017
- Weekend run on May 27 to 29 to test long-term stability, and effectiveness of automation.
- Longest stable lock stretch was 69 hours
- Binary neutron star range up to 28 Mpc
- Joined O2 on August 1, 2017
- Virgo science duty cycle was more than 80% (over last four weeks of O2)

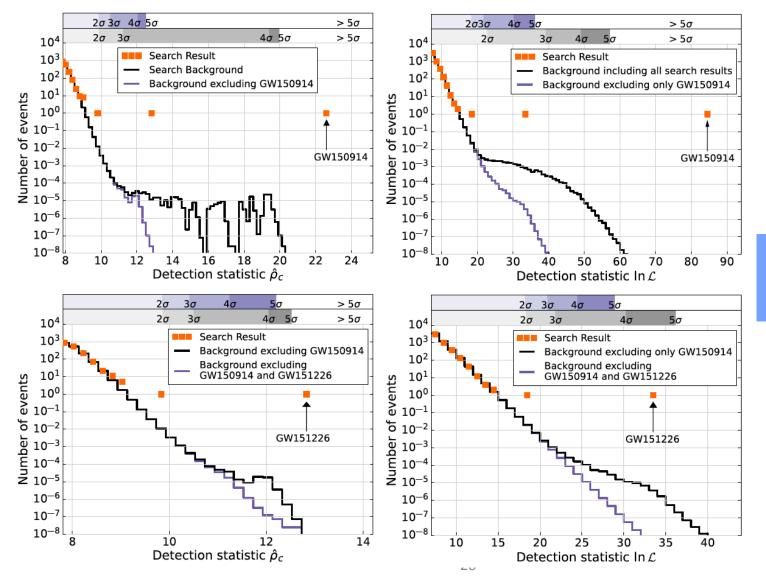
AdV best BNS range from May 7 (C8) to July 30 (ER12)


Advanced Virgo Performance

The First Gravitational Wave Detections: Binary Black Holes

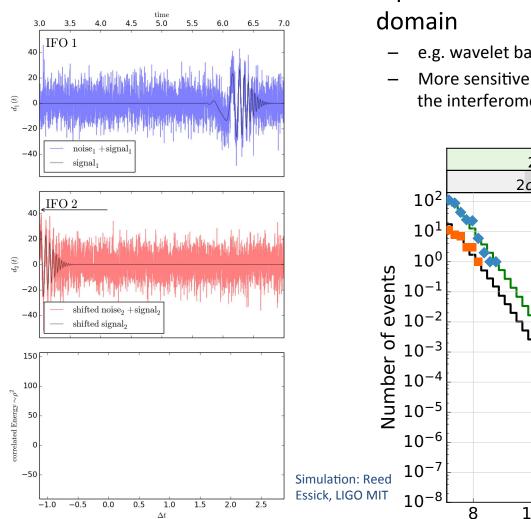


Simulation: Reed Essick, LIGO MIT

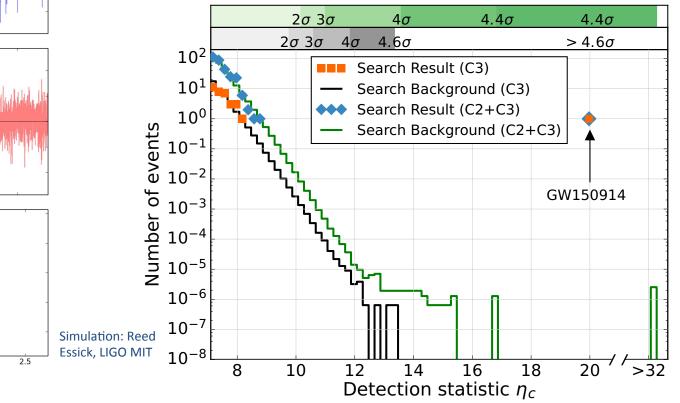

Matched filter search: X-correlation of L1, H1 data streams $||1\rangle$

$$\rho = \frac{\langle S|h\rangle}{\sqrt{\langle h|h\rangle}} \qquad \langle a|b\rangle = 4 \operatorname{Re} \int_{f_{\text{low}}}^{f_{\text{high}}} \frac{\tilde{a}(f)b(f)}{S_n(f)} \, df$$

- Background computed from time-shifting coincident data in 100 ms steps
 - For GW150914, 51.5 days \rightarrow 5x10⁶ years

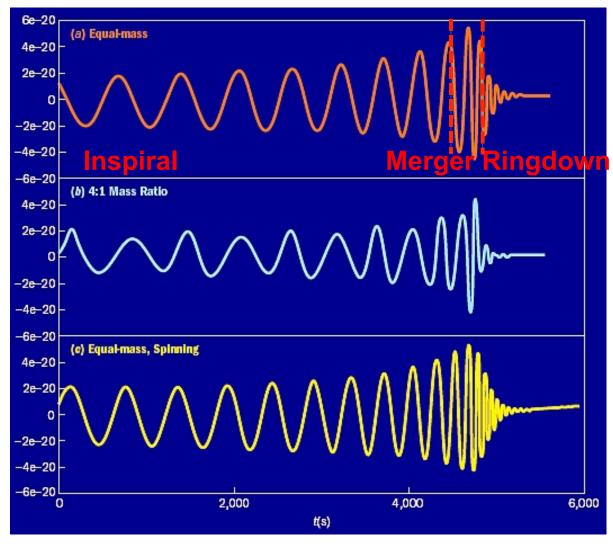

Assessing Statistical Significance: Modeled Search

Abbott, et al., LIGO Scientific Collaboration and Virgo Collaboration, "Binary Black Hole Mergers in the first Advanced LIGO Observing Run", Phys. Rev. X 6, 041015 (2016).



Assessing Statistical Significance: **Unmodeled Search**

- Pipelines look for excess power in time-frequency
 - e.g. wavelet basis
 - More sensitive to generic sources, but also to noise transients in the interferometers


Generic transient search

Extracting Astrophysical Parameters from GW Waveforms

- Compact object parameters encoded in the waveforms:
 - Constituent masses, constituent spins, sky location, luminosity distance, orbital inclination, time of arrival
- Intrinsic degeneracies make parameter estimation difficult!
 - E.g., luminosity distance vs. inclination angle
- The SNR of the waveform matters
 - often buried in detector noise; lower SNR obscures parameter estimation

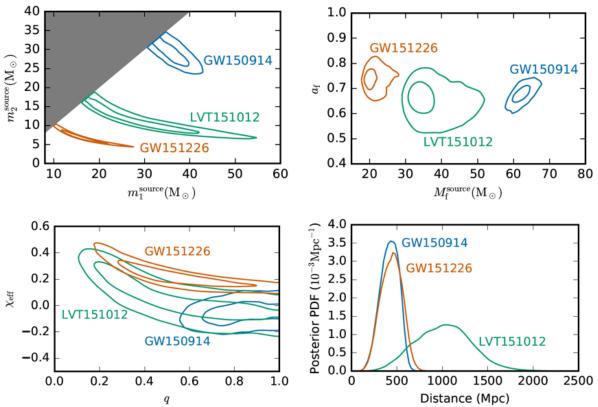
LIGO Scientific Collaboration and Virgo Collaboration, "Parameter estimation for compact binary coalescence signals with the first generation gravitational wave detector network" <u>Phys. Rev. D 88(2013) 062001</u>

Extracting Astrophysical Parameters from Waveforms

- Total Mass: $M = m_1 + m_2$
- Mass ratio: $q = \frac{m_2}{m_1} \le 1$
- Chirp Mass: $\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{M^{1/5}}$ $\mathcal{M} = \frac{c^3}{G} \left(\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f}\right)^{3/5}$
- Black Hole Spins:

$$a_{1,2} = \frac{c}{Gm_{1,2}^2} |S_{1,2}|$$

• Spin component aligned with orbital angular momentum:


$$\chi_{1,2} = \frac{c}{Gm_{1,2}^2} S_{1,2} \cdot \hat{L}$$

• Effective spin parameter:

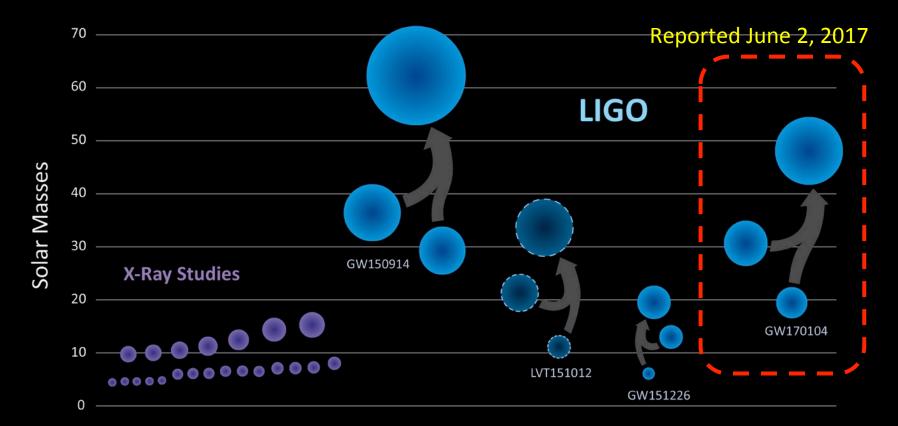
$$\chi_{\rm eff} = \frac{m_1 \chi_1 + m_2 \chi_2}{M}$$

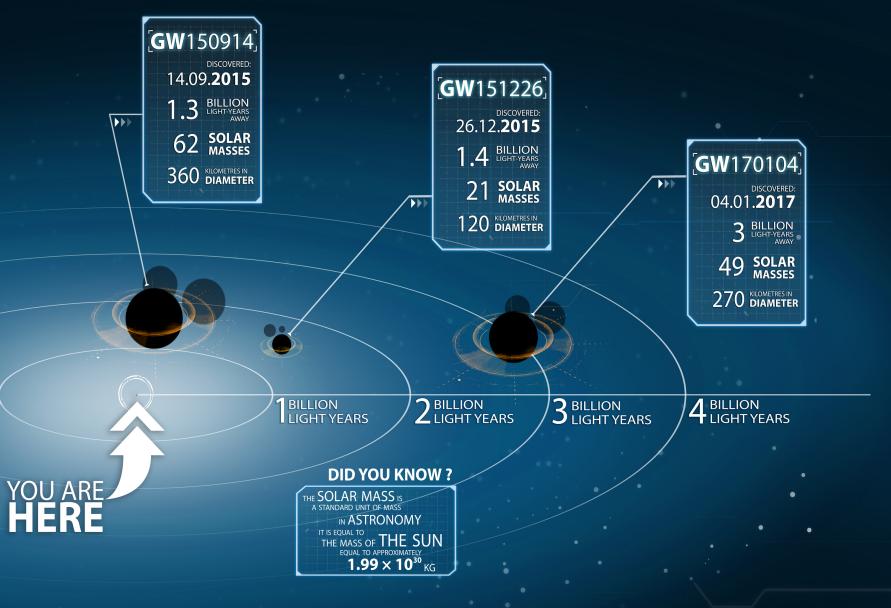
• Luminosity Distance D_L

- Bayesian computation of posterior PDFs
 - Markov chain Monte Carlo
 - Nested Sampling

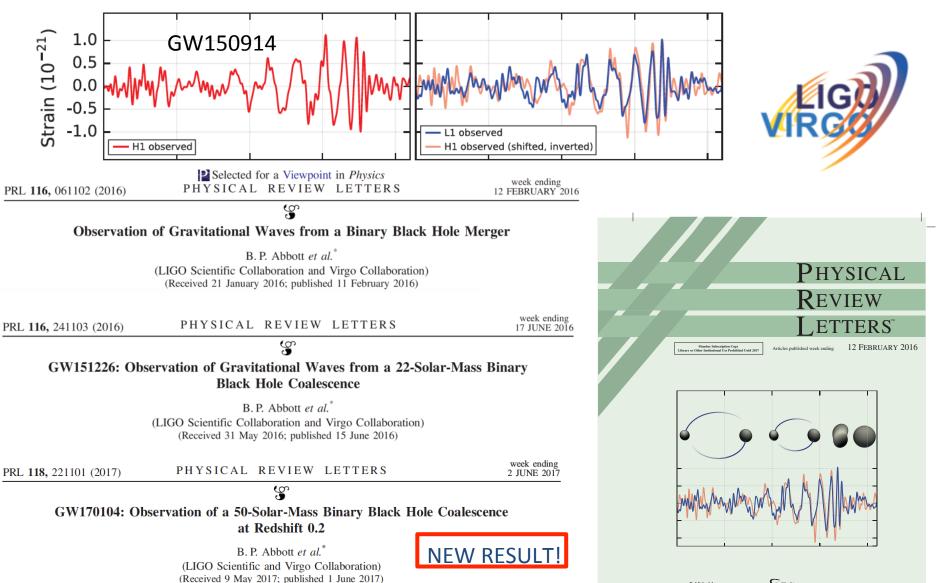
Abbott, et al., LIGO Scientific Collaboration and Virgo Collaboration, "Binary Black Hole Mergers in the first Advanced LIGO Observing Run", Phys. Rev. X 6, 041015 (2016).

Astrophysical Parameters of the Detected BBH Mergers


$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					40		1.0	
Signal-to-noise ratio p 23.7 13.0 9.7 False alarm rate FAR/yr ⁻¹ < 6.0 × 10 ⁻⁷ < 6.0 × 10 ⁻⁷ 0.37 p-value 7.5 × 10 ⁻⁸ 7.5 × 10 ⁻⁸ 0.045 Significance > 5.3 σ > 5.3 σ 1.7 σ Primary mass $m_{j}^{2 mer}/M_{\odot}$ 36.2 ^{+5.2} / _{-5.8} 14.2 ^{+8.3} 23 ⁺⁶ / _{-5.8} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-5.8} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-5.8} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-5.8} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-5.8} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-6.6} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-6.6} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-6.6} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-6.6} 29.1 ^{+1.1} / _{-4.4} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-6.6} 29.1 ^{+3.7} / _{-4.4} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-6.6} 20.1 ^{-6.6} / _{-0.6} 29.1 ^{-6.6} / _{-0.76} 1.0 ^{+0.1} / _{-0.2} 1.5 ^{+0.3} / _{-0.4} 29.1 ^{+3.7} / _{-4.4} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-4.4} 29.1 ^{+3.7} / _{-4.4} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-4.4} 29.1 ^{+3.7} / _{-4.4} 29.1 ^{+3.7} / _{-4.4} 7.5 ^{+2.3} / _{-2.3} 13 ^{+4.5} / _{-4.4} 29.1 ^{+3.6} / _{-4.4} 29.1 ^{+3.7} / _{-4.4} 29.	Event	GW150914	GW151226	LVT151012	40 35	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		23.7	13.0	9.7	([∞] 25 W), 20	GW1509	0.8 GW15	GW150914
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	0.37	10	LVT15101:	2 0.6	
Significance> 5.3σ > 5.3σ 1.7σ Primary mass m_1^{suvvc}/M_{\odot} $36.2^{\pm}3.2_{-3.8}$ $14.2^{\pm}8.3_{-3.7}$ $23^{\pm}18$ 10^{-20} 20^{-30} 40^{-50} 60^{-70} 80^{-70} Secondary mass m_2^{suvvc}/M_{\odot} $29.1^{\pm}3.7_{-3.8}$ $14.2^{\pm}8.3_{-5}$ $23^{\pm}18$ 0.6^{-0} 10^{-10} 10^{-	p-value	$7.5 imes10^{-8}$	$7.5 imes 10^{-8}$	0.045		GW151226	1 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Significance	$> 5.3 \sigma$	$> 5.3 \sigma$	1.7σ			60 20 3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$36.2^{+5.2}_{-3.8}$	$14.2_{-3.7}^{+8.3}$	23^{+18}_{-6}				GW150914 -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$29.1_{-4.4}^{+3.7}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}	0.2		[₩] 3.0 - 01 2.5 - щ 2.0 -	GW151226
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1011	× 0.0	LVT151012	Q 1.5	LVT151012
Effective inspiral spin χ_{eff} -0.0 χ_{eff} Peak luminosity $\ell_{peak}/(erg s^{-1})$ $3.6^{+0.5}_{-0.4} \times 3.3^{+0.8}_{-1.6} \times 3.1^{+0.8}_{-1.8} \times 10^{56}$ $3.1^{+0.8}_{-1.8} \times 10^{56}$ $3.1^{+0.8}_{-1.8} \times 10^{56}$ Final spin a_f $0.68^{+0.05}_{-0.06}$ $0.74^{+0.00}_{-0.06}$ $0.66^{+0.09}_{-0.06}$ Chirp mass \mathcal{M} $21.1^{+2.4}_{-2.7} \mathcal{M}_{\odot}$ Radiated energy $E_{rad}/(M_{\odot}c^2)$ $3.0^{+0.5}_{-0.4}$ $1.0^{+0.1}_{-0.2}$ $1.5^{+0.3}_{-0.4}$ Total mass \mathcal{M} $50.7^{+5.9}_{-5.9} \mathcal{M}_{\odot}$ Peak luminosity $\ell_{peak}/(erg s^{-1})$ $3.6^{+0.5}_{-0.4} \times 3.3^{+0.8}_{-0.4} \times 3.1^{+0.8}_{-0.8} \times 10^{56}$ Total mass \mathcal{M} $50.7^{+5.9}_{-5.9} \mathcal{M}_{\odot}$ Peak luminosity $\ell_{peak}/(erg s^{-1})$ $3.6^{+0.5}_{-0.4} \times 3.3^{+0.8}_{-0.8} \times 3.1^{+0.8}_{-0.8} \times 10^{56}$ $7.4^{+0.00}_{-0.06} \times 3.3^{+0.6}_{-0.10} \times 3.4^{+0.8}_{-0.4} \times 3.4^{+0.8}_{-0.6} \times 3.4^{+0.9}_{-0.6} \times 3.4^{+$.	$3.0^{+0.5}_{-0.4}$	$1.0\substack{+0.1\\-0.2}$	$1.5^{+0.3}_{-0.4}$	0 1000 1500 2000 2500
Final mass $M_{f}^{\text{source}}/M_{\odot}$ 62. $\ell_{\text{peak}}/(\text{erg s}^{-1})$ 10 ⁵⁶ 10 ⁵⁶ 10 ⁵⁶ 10 ⁵⁶ $31.2_{-6.0}^{+6.0}M_{\odot}$ Final spin a_{f} $0.68_{-0.06}^{+0.05}$ $0.74_{-0.06}^{+0.09}$ $0.66_{-0.10}^{+0.09}$ Chirp mass \mathcal{M} $21.1_{-2.7}^{+2.4}M_{\odot}$ Radiated energy $E_{rad}/(M_{\odot}c^{2})$ $3.0_{-0.4}^{+0.5}$ $1.0_{-0.2}^{+0.1}$ $1.5_{-0.4}^{+0.3}$ Total mass \mathcal{M} $50.7_{-5.9}^{+5.9}M_{\odot}$ Peak luminosity $\ell_{peak}/(\text{erg s}^{-1})$ $3.6_{-0.4}^{+0.5} \times$ $3.1_{-1.8}^{+0.8} \times$ Final black hole mass M_{f} $48.7_{-4.6}^{+5.7}M_{\odot}$ Radiated energy E_{rad} $2.0_{-0.67}^{+0.06} M_{\odot}c^{2}$ Peak luminosity distance $2.0_{-0.67}^{+0.06} M_{\odot}c^{2}$ Luminosity distance D_{L}/Mpc 420_{-180}^{+150} 440_{-190}^{+180} 1000_{-500}^{+500} Radiated energy E_{rad} $3.1_{-0.3}^{+0.7} \times 10^{56} \text{erg s}^{-1}$ Source redshift z $\Delta\Omega/deg^{2}$ $0.09_{-0.04}^{+0.03}$ $0.20_{-0.09}^{+0.09}$ $W_{collication}$ $W_{collication}$ $W_{collication}$ $\Delta\Omega/deg^{2}$ 230 850 1600 Luminosity distance D_{L} $GW170104$ 880_{-390}^{+300} Mpc		0.0		-	2 6 ^{+0.5} ×	2 2+0.8	2 1+0.8	Distance (Mpc)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$3.0_{-0.4}$ ×		5.1-1.8 ×	$31.2^{+8.4}M$
Radiated energy $E_{\rm rad}/(M_{\odot}c^2)$ $3.0^{+0.5}_{-0.4}$ $1.0^{+0.1}_{-0.2}$ $1.5^{+0.3}_{-0.4}$ Total mass M $50.7^{+5.9}_{-5.0}M_{\odot}$ Peak luminosity $\ell_{\rm peak}/({\rm ergs^{-1}})$ $3.6^{+0.5}_{-0.4} \times$ $3.3^{+0.8}_{-1.6} \times$ $3.1^{+0.8}_{-1.8} \times$ $48.7^{+5.7}_{-4.6}M_{\odot}$ Luminosity distance $D_{\rm L}/{\rm Mpc}$ 420^{+150}_{-180} 1000^{+500}_{-500} Radiated energy $E_{\rm rad}$ $2.0^{+0.6}_{-0.7}M_{\odot}c^2$ Source redshift z $0.09^{+0.03}_{-0.04}$ $0.20^{+0.09}_{-0.09}$ $0.20^{+0.09}_{-0.09}$ Final black hole spin a_f $0.64^{+0.29}_{-0.20}$ Sky localization $\Delta\Omega/{\rm deg}^2$ 230 850 1600 Luminosity distance D_L $GW170104$ 880^{+450}_{-390} Mpc		62	lpeak/(erg	s^{-1})	10^{56}	10^{56}	10^{56}	
Radiated energy $E_{rad}/(M_{\odot}c^{2})$ $3.0^{+0.5}_{-0.4}$ $1.0^{+0.1}_{-0.2}$ $1.5^{+0.3}_{-0.4}$ Total mass M $50.7^{+5.9}_{-5.0}M_{\odot}$ Peak luminosity $3.6^{+0.5}_{-0.4} \times$ $3.3^{+0.8}_{-1.6} \times$ $3.1^{+0.8}_{-1.8} \times$ $48.7^{+5.7}_{-4.6}M_{\odot}$ $\ell_{peak}/(erg s^{-1})$ 10^{56} 10^{56} 10^{56} $2.0^{+0.6}_{-0.7}M_{\odot}c^{2}$ Luminosity distance D_{L}/Mpc 420^{+150}_{-180} 440^{+180}_{-190} 1000^{+500}_{-500} Radiated energy \mathcal{E}_{rad} $3.1^{+0.7}_{-1.3} \times 10^{56} erg s^{-1}$ Source redshift z $0.09^{+0.03}_{-0.04}$ $0.20^{+0.09}_{-0.09}$ $0.20^{+0.09}_{-0.09}$ Final black hole spin a_{f} $0.64^{+0.00}_{-0.20}$ Sky localization $\Delta\Omega/deg^{2}$ 230 850 1600 Luminosity distance D_{L} $GW170104$	Final spin $a_{\rm f}$	$0.68^{+0.05}_{-0.06}$	$0.74^{+0.06}_{-0.06}$	$0.66^{+0.09}_{-0.10}$		Chirp mass \mathcal{M}		$21.1^{+2.4}_{-2.7}M_{\odot}$
Iteact duminosity $0.0_{-0.4}^{-0.6} \times 0.0_{-1.6}^{-1.6} \times 0.0_{-1.8}^{-1.8} \times 10^{-1.8} \times 10^{-1.8} \times 10^{-1.8} \times 10^{-1.8} \times 10^{-56}$ Radiated energy E_{rad} $2.0_{-0.7}^{+0.6} M_{\odot} c^2$ Luminosity distance 420_{-180}^{+150} 440_{-190}^{+180} 1000_{-500}^{+500} Peak luminosity ℓ_{peak} $3.1_{-1.3}^{+0.7} \times 10^{56} \text{erg s}^{-1}$ Source redshift z $0.09_{-0.04}^{+0.03}$ $0.20_{-0.09}^{+0.09}$ $0.20_{-0.09}^{+0.09}$ Final black hole spin a_f $0.64_{-0.20}^{+0.09}$ Sky localization 230 850 1600 Luminosity distance D_L GW170104 880_{-390}^{+450} Mpc		$3.0^{+0.5}_{-0.4}$	$1.0\substack{+0.1 \\ -0.2}$	$1.5\substack{+0.3 \\ -0.4}$				$50.7^{+5.9}_{-5.0}M_{\odot}$
Luminosity distance 420^{+150}_{-180} 440^{+180}_{-190} 1000^{+500}_{-500} Peak luminosity ℓ_{peak} $3.1^{+0.7}_{-1.3} \times 10^{56} \text{erg s}^{-1}$ D_L/Mpc $0.09^{+0.03}_{-0.04}$ $0.09^{+0.03}_{-0.04}$ $0.20^{+0.09}_{-0.09}$ $Final black hole spin a_f 0.64^{+0.09}_{-0.20} Sky localization \Delta\Omega/deg^2 230 850 1600 Luminosity distance D_L GW170104 880^{+450}_{-390} Mpc $	Peak luminosity	$3.6^{+0.5}_{-0.4} \times$	$3.3^{+0.8}_{-1.6} \times$	$3.1^{+0.8}_{-1.8} \times$			M_f	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\ell_{\text{peak}}/(\text{erg s}^{-1})$	10^{56}	10^{56}	10^{56}		et luu		$2.0^{+0.6}_{-0.7} M_{\odot} c^2$
Source redshift z $0.09^{+0.03}_{-0.04}$ $0.09^{+0.03}_{-0.04}$ $0.20^{+0.09}_{-0.09}$ Sky localization $\Delta\Omega/\deg^2$ 230 850 1600 Final black hole spin a_f Luminosity distance D_L GW170104	•	420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}			varameter $\gamma_{\rm eff}$	
Sky localization $\Delta\Omega/\deg^2$ 230 850 1600 Luminosity distance D_L GW170104 880 ⁺⁴⁵⁰ ₋₃₉₀ Mpc	Source redshift z	$0.09\substack{+0.03\\-0.04}$	$0.09\substack{+0.03\\-0.04}$	$0.20\substack{+0.09 \\ -0.09}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
2 Source redshift z $0.18^{+0.08}_{-0.07}$		230	850	1600		Luminosity distance D_L	′ 	880 ⁺⁴⁵⁰ ₋₃₉₀ Mpc
					2	Source redshift z		$0.18^{+0.08}_{-0.07}$


What These GW Detections Tell Us About Black Holes

The Newest Black Hole Merger

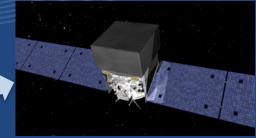

Black Holes of Known Mass

[LIGO'S GRAVITATIONAL-WAVE DETECTIONS]

Black Holes Detected By LIGO

Published by American Physical Society[™]

Volume 116, Number 6


The Future: Multi-messenger Astronomy With Gravitational Waves

Multi-messenger Astronomy with Gravitational Waves

Gravitational Waves

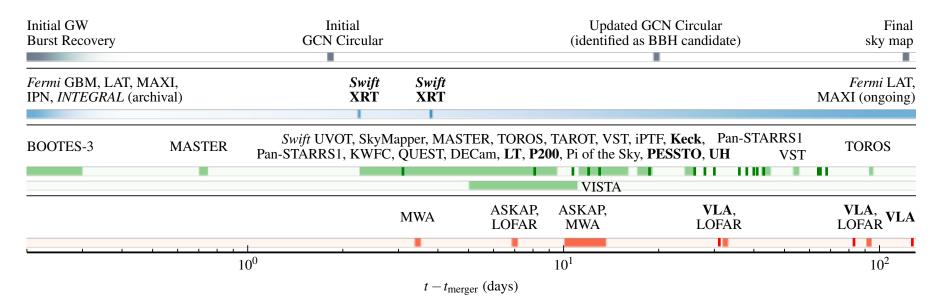
Binary Neutron Star Merger

X-rays/Gamma-rays

Visible/Infrared Light

Neutrinos

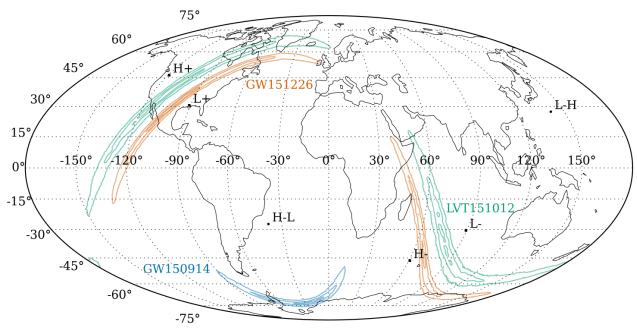
Radio Waves



GW150914 EM Follow Up

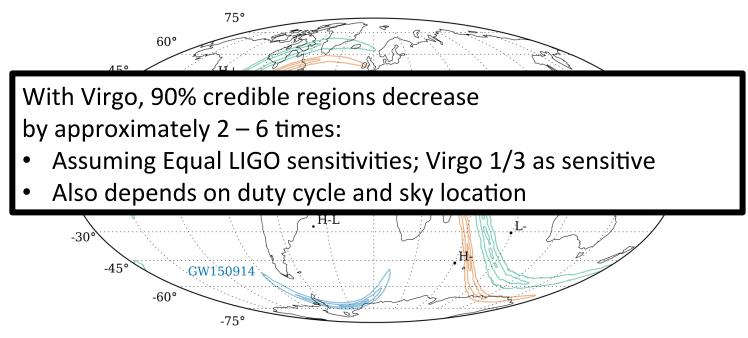
 Follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network (GCN) Circulars

> Abbott, et al. ,LIGO Scientific Collaboration and Virgo Collaboration, "Localization and Broadband Follow-Up of the Gravitational-Wave Transient GW150914", Ap. J. Lett, 826:L13, 2016.

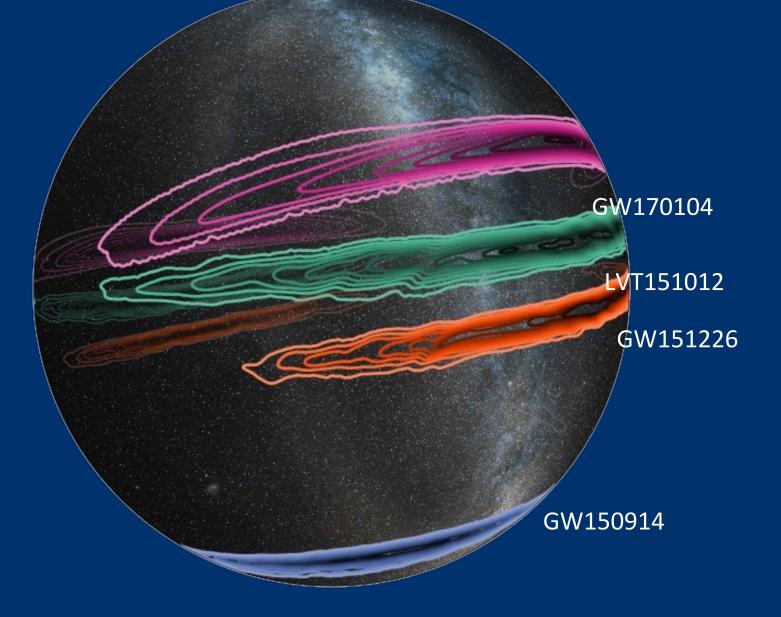


Event Sky Location

- With 2 detectors can only limit location to annulus on the sky
 - Preferential angles from interferometer antenna patterns



- 90% credible regions:
 - GW150914: 230 deg²
 - GW151226: 850 deg²
 - LVT151012: 1600 deg²
 - (GW170104: 1200 deg²)


Event Sky Location

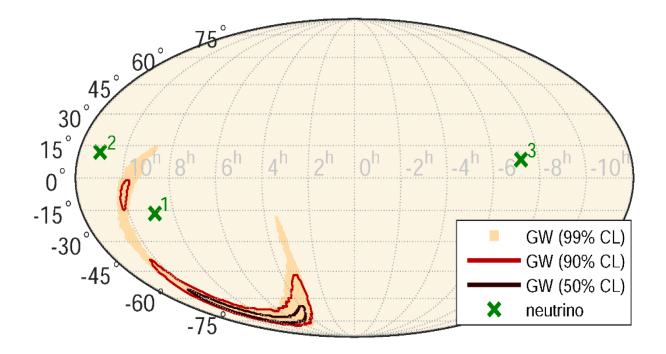
- With 2 detectors can only limit location to annulus on the sky
 - Preferential angles from interferometer antenna patterns

- 90% credible regions:
 - GW150914: 230 deg²
 - GW151226: 850 deg²
 - LVT151012: 1600 deg²
 - (GW170104: 1200 deg²)

Sky Locations of Gravitational-wave Events: LIGO Only

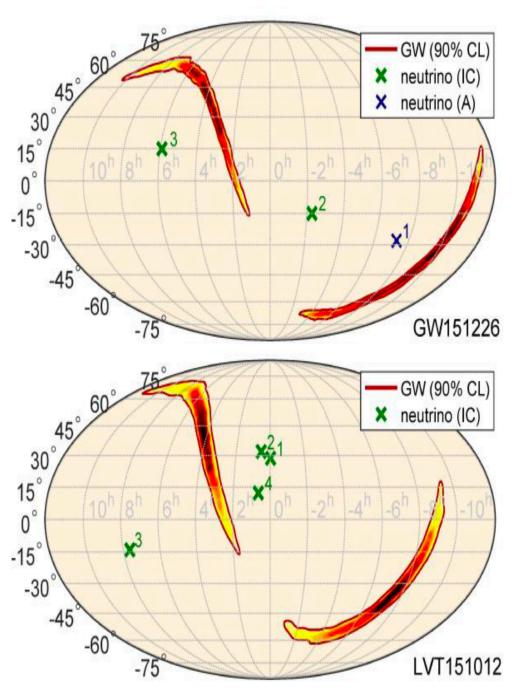
Sky Locations of Gravitational-wave Events: LIGO + Virgo

GW170104+V


LVT151012+V

GW151226+V

GW150914+V


GGGGG

Previous search: GW150914

- ANTARES FAR ~ 1.2/day
- IceCube FAR ~ 2.2+2.2 / 1000s
- ~TeV search (standard)
- ~10-100 GeV (DeepCore)
- ultra high energy (PeV)

#	ΔT [s]	RA [h]	Dec $[\circ]$	$\sigma_{\mu}^{ m rec}$ [°]	$E^{\rm rec}_{\mu}$ [TeV]	fraction
1	+37.2	8.84	-16.6	0.35	175	12.5%
2	+163.2	11.13	12.0	1.95	1.22	26.5%
3	+311.4	-7.23	8.4	0.47	0.33	98.4%

GW151226 & LVT151012

Event	#	Detector	ΔT [s]	RA [h]	$\text{Dec} [^{\circ}]$	$\sigma_{\mu}^{\rm rec}$ [°]	$E^{\rm rec}_{\mu}$ [TeV]
GW151226	1	ANTARES	-387.3	16.7	-28.0	0.7	9
GW151226	2	IceCube	-290.9	21.7	-15.1	0.1	158
GW151226	3	IceCube	-22.5	5.9	14.9	0.7	6.3
LVT151012	1	IceCube	-423.3	24.0	28.7	3.5	0.38
LVT151012	2	IceCube	-410.0	0.5	32.0	1.1	0.45
LVT151012	3	IceCube	-89.8	7.7	-14.0	0.6	13.7
LVT151012	4	IceCube	147.0	0.6	12.3	0.3	0.35

Conclusions

- LIGO-Virgo has made first measurements of gravitational wave amplitude and phase
- Merging binary black hole systems have been observed for the first time!
- Plans are underway to improve LIGO's sensitivity for O3 and beyond
- LIGO-Virgo O2 run completed on August 25

Stay Tuned...

THANKS for the attention!

INSPIRAL

HANFORD, WASHINGTON

LIVINGSTON, LOUISIANA

.39

RINGDOWN

MERGER

Einstein@Home

International Year of Astronomy 2009

Arecibo Power Spectrum

Please sign up your computers to Einstein@Home: http://einstein.phys.uwm.edu/

BOINC Information

User: Oliver Team: Albert-Einstein-Institut Hannover (Al-Project Credit: 330046.76 Project RAC: 1266.22 WU Completed: 15.80 % WU CPU Time: 00:20:45

Search Information

Ascension: 300.40 deg Declination: 25.10 deg DM: 498.40 pc/cm3 Orb. Radius: 0.183 ls Orb. Period: 1003 s Orb. Phase: 3.85 rad