s-PROCESSING FROM MHD-INDUCED MIXING AND ISOTOPIC ABUNDANCES IN PRESOLAR SIC GRAINS

S. Palmerini, M. Busso, O. Trippella & D. Vescovi

INFN sezione di Perugia & Università degli Studi di Perugia, Italy

CONTRIBUTION OF LMS TO GCE

Despite their low masses LMS are so numerous to contribute for 75% to the total mass return from stars to the ISM (SedImayr 1994);

WHAT ARE WE LOOKING FOR?

A physical mechanism that allows: the formation of the ¹³C pocket

→ proton penetration from the envelop during the TDU $\rightarrow {}^{12}C(p,\gamma){}^{13}N(\beta^+\nu){}^{13}C$ $\rightarrow {}^{14}N$ is the most important neutron poison.

NUCLEI IN THE COSMOS

MIGHT STELLAR MAGNETIC FIELDS TRIGGER THE FORMATION OF A 13C-POCKET SUITABLE TO ADDRESS OBSERVATIONAL CONSTRAINTS?

S. Palmerini NIC 2018

(MHD) 13C-POCKET FORMATION: UP-FLOW OF MAGNETISED MATERIAL

(MHD) 13C-POCKET FORMATION

 $\rho/\rho_{o} = (r/r_{o})$ $P/P_0 = (r/r_c)^{-5.64}$ $-T/T_0 = (r/r_)^{-1.345}$

5

 r/r_0

10

ы 10 P(r)/Р

p(r)/p₀

10-12

(a)

10

$\Delta M (M_{\odot})$	Radius/R _*	Mass (M_{\odot})	$P(\mathrm{dyn}\ \mathrm{cm}^{-2})$	T(K)	ρ (g cm ⁻³)	μ	P_m
0.000	8.25×10^{-4}	0.61934	3.34×10^{11}	2.94×10^{6}	9.83×10^{-4}	4.0×10^{-6}	4.7
0.001	2.89×10^{-4}	0.61835	2.70×10^{14}	1.68×10^{7}	0.39	4.3×10^{-4}	12.8
0.004	1.37×10^{-4}	0.61534	2.80×10^{16}	4.29×10^{7}	7.81	0.016	27.0
0.005	1.09×10^{-4}	0.61434	8.47×10^{16}	5.58×10^{7}	18.58	0.041	32.5
0.010	5.78×10^{-5}	0.60434	1.82×10^{18}	1.12×10^{8}	222.18	0.440	52.3

Note. Data refer to the sixth TDU episode for the model star of $M = 1.5 M_{\odot}$, $Z = Z_{\odot}$ as discussed in Busso et al. (2007).

The density of envelope material injected (downflow mass) into the Helayers will vary as: $d\rho_d/\rho_d = +\alpha dr$ corresponding to an **exponential profile**: $\rho_d(r) = \rho_{d,0} e^{-\alpha(r_e - r)}$ We multiplied for the infinitesimal element of volume: $dM_d(r) = 4\pi r^2 \rho_e e^{-\alpha(r_e-r)} dr.$ After integration between envelope border and the innest layer, we obtain:

$$\Delta M_d^H \simeq 0.714 \frac{4\pi\rho_E}{\alpha} \left\{ \left[r_e^2 - \frac{2}{\alpha} r_e + \frac{2}{\alpha^2} \right] - \left[r_p^2 - \frac{2}{\alpha} r_p + \frac{2}{\alpha^2} \right] e^{-\alpha(r_e - r_p)} \right\}$$

Comparing this result with the **mass transported** by magnetic buoyancy

$$M_{up} = \dot{M} \cdot \Delta t = 4\pi r_e^2 \rho_e v_e f_1 f_2 \Delta t$$

we obtain the **amount of proton injested** in the He-rich region for the formation of the ¹³C-pocket

Courtesy of O. Trippella

(MHD) 13C-POCKET FORMATION

(MHD) 13C-POCKET FORMATION

3 TESTS FOR OUR MODEL

PRESOLAR GRAINS FROM AGB STARS

1.4 Presolar Grains

E Zinner, Washington University, St. Louis, MO, USA © 2014 Elsevier L

MODEL COMPARISON WITH GRAINS: ZIRCONIUM

MODEL COMPARISON WITH GRAINS: ZIRCONIUM

12

Relevant tests on the extension of the pocket and on the form of the ¹³C distribution can then be obtained by the relative trends of ls and hs nuclei

120 140 16 MASS NUMBER

-0.50

-1.00

-1.50

60

SS s-Process

SS r-Process

100

200

220

180

160

REMARKS

- Below the convective envelopes of low mass red giant stars (AGB and RGB) the exact analytical solutions of the MHD equations are held.
- The physical conditions of the region below the convective envelope (during TDU) allow the buoyancy of magnetized structures which mighr drive the formation of a ¹³C-pocket suitable to account for the s-isotope abundances found in MS presolar SiC grains (fits are in general of a quality comparable to the best ones in literature).
- The MHD mixing parameters are related to the intrinsic property of the stellar structure and linked to the particular polytropic transformation that best represents the thermodynamics of the environment.
- HOWEVER: an AGB star affected by MHD mixing cannot be responsible, by itself, for the enrichment in short lived nuclei of the Early Solar System ...see poster n.89.

THANK YOU! GRAZIE!

92-94-95-98-100MO/96MO FROM MHD POCKET

99-101-102RU/100RU FROM MHD POCKET

