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— A lot of research in gauge/string correspondence with applications to

QGP centers on answering the question:

Why QGP thermalization is fast?

— The difficulty in answering this question is that it implies understanding
the evolution of the strong coupled gauge theories, where lattice techniques

are not very useful

— So, we like to refer to AdS/CFT correspondence, and use large-N SYM
as a proxy for a real QGP



The motivations:

e QCD thermodynamics from lattice; (Karsch, Laermann,
hep-lat/0305025). The plateau is ~ 80% of the SB result — close to 3/4
in SYM thermodynamics
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e The small shear viscosity ratio (Policastro,Son,Starinets, hep-th /0104066 )
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— From A.Bazarov et.al (HotQCD Collaboration), arXiv:1407.6387:
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So, should be use nonconformal modes of gauge/gravity correspondence to
model equilibration of QGP?

—> I am going to use top-down holographic model to address this question



Outline of the talk:

A toy model for holographic equilibration
» where the relaxation time(s) is(are) encoded?

N = 2* gauge theory/supergravity holography
m (Gauge theory perspective

m Holographic Pilch-Warner RG flow
m Matrix model and localization results

Spectra of quasinormal modes
» Relaxation rates for homogeneous/isotropic perturbations:
{02,03,04, T, }

» Relaxation rates for generic transverse/traceless perturbations of 7,

Conclusion — beyond N = 2* holography
» relaxation with chemical potential in N =4 SYM
m relaxation in bottom-up holographic models



Consider N = 4 large-N SU(N) SYM theory at strong coupling in
thermal state:

3 1
€ = §7r2N2T4, p=—m2N?*T*, s = 57r2N2T3

The holographic dual to this state is a Schwarzschild black hole in
Poincare-slice AdSs. It has the thermodynamic properties (Hawking
temperature, Bekenstein-Hawking entropy,... ) as above

SYM has gauge invariant fermion bi-linear operators of dimension A = 3:
O3, and gauge invariant scalar bi-linears of dimension A = 2: O5. In
thermal equilibrium,

(O3)120 =0, (O2)720 =0

We can ’prepare’ a non-equilibrium states of the N' = 4 plasma (thus
inducing a non-trivial time-dependence of Oa) by quenching the
coupling constants of these relevant operators:

Hsyy — Hsyy +Aa0a

AA = )\A(t) : )\A(—OO) =0



e Specifically, we assume

1 1 t «
Ma(t) = X4 [ = + = tanh — |, T =—,
at) = Aa (2 T3 T ) T,
where:
m 7T is the temperature of the thermal state at ¢t — —o0,
n )\OA is the amplitude of the quench, taken to be small compare to the
initial temperature,

YN
i < 1

)

m « is the rate of quench, measure in units of inverse temperature.
= Note that « can be arbitrarily small/large, corresponding to
abrupt /adiabatic quenches

e o — 0 limit (infinitely sharp — step-function — quench) can be thought
as preparing a system in an excited state at ¢ = 0 and allowing it to relax



—> I am not going to explain how to set up about quench holographically,

and rather move to to discuss the results

— Our primary observable is the expectation value of the quenching

operator:

OA = OA(t)



e Evolution of the normalizable component O3 (left panel) and Oy (right
panel) during the quenches with @ = 1. The dashed red lines represent

the adiabatic response.

e As 7 — 400 the expectation values approach their equilibrium values in

a damped-oscillatory manner (More on this later).



The response of Oa depends on A:

m for fast quenches, « is small,

T/a
)
04203 (t)

— The response is quite different!
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—> How do we characterize equilibration time?

m Introduce
OA(7) = [Oa(T)] saiabatic
[OA (7_)] equilibrium

Oneq(T)

where |Oa(T)]equitibrium is the adiabatic response that can be computed

Y

analytically.
m Note,

B Bueq(r) 0

as at early/late times the system is in equilibrium.



—> In practice,

5neq

Extraction of the excitation/equilibration rates for &« = 1 quench. The
horizontal green line is the threshold for excitation/equilibration which we
define to be 5% away from local equilibrium as determined by d,,¢,. The
dashed red lines indicate the earliest and latest times of crossing this
threshold, which we denote as 7., (for excitation time) and 7,4, (for

equilibration time), respectively.
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— Going to small « (Ina — —o0) corresponds to preparing the state with
an abrupt quench of a dim-A operator. The dashed scaling line translates
into a universal relaxation time:
1
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independent of «!



— We can do more:

|
|

aaoaoaaq| |

000000

coookul|

letal=%!

=

W
000000
coooru

I
N ' 1
[ojoNoNoNoNo)

T — e

H
(6)] o
[
e e
|
L |
I n

In(lp, 1)

In((p, )

N
o

-15

0 ‘ 5 T 10

Behavior of the response coeflicients versus time for representative fast
quenches. As is evident in the picture, the same quasinormal mode governs
the dynamics very quickly after the quench:
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— Moral of the story:

Lowest quasinormal modes of the black hole in the gravitational dual control

the relaxation in strongly coupled gauge theory plasma

e Such feature was also observed in various other holographic examples

e It probably should not be a surprise that the relaxation rate is %, as

after preparing the state in a high-temperature plasma after an abrupt

quench temperature is the only scale

— This also motivates to look at non-conformal examples of gauge/gravity

Correspondence.



N = 2* gauge theory (a QFT story)

— Start with N =4 SU(N) SYM. In N =1 4d susy language, it is a gauge
theory of a vector multiplet V', an adjoint chiral superfield ® (related by

N =2 susy to V) and an adjoint pair {Q, Q} of chiral multiplets, forming an
N = 2 hypermultiplet. The theory has a superpotential:

v =220 [0.d] o

9y M

We can break susy down to N = 2, by giving a mass for N' = 2
hypermultiplet:

2/ 2
W:f

Tr ([Q, Q} <I>) + ;n (TrQ2 + TrQQ)

9v mr 9y M

This theory is known as N = 2* gauge theory



When m # 0, the mass deformation lifts the {Q, Q} hypermultiplet moduli
directions; we are left with the (N — 1) complex dimensional Coulomb
branch, parametrized by

¢ = diag (a1, a2, -+ ,an) , Zai:()

We will study N = 2* gauge theory at a particular point on the Coulomb
branch moduli space:

m*gy N

a; € [—CL(), CLo] , a,g — -

with the (continuous in the large N-limit) linear number density
p(a):L\/a%—a2 / da p(a) = N
mQQ%M —ag

Reason: we understand the dual supergravity solution only at this point on
the moduli space.



When m # 0, the mass deformation lifts the {Q, Q} hypermultiplet moduli
directions; we are left with the (N — 1) complex dimensional Coulomb
branch, parametrized by

¢ = diag (a1, a2, -+ ,an) , Zai:()

We will study N = 2* gauge theory at a particular point on the Coulomb
branch moduli space:

m*gy N

a; € [—CL(), CLo] , a,g — -

with the (continuous in the large N-limit) linear number density

pla) = —5——1/ag — a?, / da p(a) = N
m>g —ag

.
) a%’aX] a N 1 O a ava a aha aha
@, U . VV U C 0, ' "‘ UL J -‘V y " UJ U y @,

Reason: This moduli space point is a large-N saddle point obtained from
localization (in 2 transparencies)



N = 2* gauge theory (a supergravity story — a.k.a Pilch-Warner flow)

Consider 5d gauged supergravity, dual to N' = 2* gauge theory. The effective
five-dimensional action is

G [, VI (R (00— (0" 7).

g —

where the potential P is

1 [ /oWN\? [oWw\?| 1.,
7’%[(%)*(@)]5”

with the superpotential

1 1
W:——2—§p4cosh(2x), o =v3np
0
— The 2 supergravity scalars {«, x} are holographic dual to dim-2 and
dim-3 operators which are nothing but (correspondingly) the bosonic and the

fermionic mass terms of the N =4 — N = 2 SYM mass deformation.



PW geometry ansatz:
ds? = e (—dt* + dZ?) + dr?

solving the Killing spinor equations, we find a susy flow:

GA_ 1, da_1ow i 1ow
dr 3 dr 4 0a’ dr 4 Oy

Solutions to above are characterized by a single parameter k:

kp? inh
et = P p® = cosh(2y) + sinh?(2y) In sinh(x)

sinh(2y) ’

cosh(x)

In was found (Polchinski,Peet,AB) that

k = 2m



— Precision test on N/ = 2* holography from Pestun’s localization
e Supersymmetrically compactify N' = 2* gauge theory on S*

e Moduli of the theory are conformally coupled scalars, so they will all be
lifted via coupling to S* curvature

e The exact partition function of the compactified theory is known due to
Pestun’s localization (reduces to a matrix model):

. 2H2(&- —a;)
T row — dN 1 a’]) v J
N=2 / 11 —a,J mR)H (a; — a; + mR)

where

e In the large-N limit the partition function is dominated by the saddle
point, that can be computed analytically (AB, J.G.Russo and
K.Zarembo, 1301.1597)



—> One recovers:
= the moduli space point picked out by supergravity (as a matrix model

saddle point)
m the susy Wilson loops agree both in matrix model and in holographic dual

m the matrix model free energy agree with the holographic free energy
(Bobev et.al, arXiv:1311.1508)

— All these checked are in addition to earlier agreement with the metric on
the moduli space computed either in supergravity or from QFT using

Seiberg-Witten techniques



—> What do we do:

e Take PW gravitational dual to N/ = 2* gauge theory and construct black
hole solutions. The thermodynamics of the black hole has a nontrivial

dependence of 2 scales: T' and m. The m dependence is quite profound:

N*T?, 1
S() 2 T* m
N* —, Z>1

e Using the standard techniques we compute quasinormal modes of the BH
corresponding to
= the stress-energy tensor 7},
m operators {Os, O3} inducing the RG flow
= ’passive’ operators {0y, O3}
m also study the momentum dependence on the quasinormal frequencies

to get an idea of relaxation of spatially inhomogeneous excitations
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— (L) Trace of the energy-momentum tensor normalized to the energy
density of N =4 SYM (¢p = %W2N3T4 with N, denoting the number of
colors) as a function of m/T. The results indicate that, thermodynamically,
the effects of the conformal symmetry breaking are the strongest at

m/T ~ 4.8.
— (R) Trace anomaly in deep IR — approach to a C'F'T5



— There is an interesting story with the IR properties of the flow:
¢
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—Ratio of viscosities % versus the speed of sound in N = 2* gauge theory
plasma (AB, arXiv:0708.3459). Dashed line is the bulk viscosity bound,

S >9 (% — cg) A single point represents extrapolation of the speed of sound
n

and the viscosity ratio to T" — +O0.
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Real (green continuous) and minus imaginary (red dashed) parts of the
lowest quasinormal mode frequencies for operators of dimensions A = 2,3
and 4 (from bottom to top). The frequencies do not change significantly as a
function of m /T, which leads to universal equilibration in 1/7". One can also
infer from this plot that all the frequencies asymptote at low temperatures to
the quasinormal mode of a massless scalar field living in the
(1+5)-dimensional AdS-Schwarzschild geometry (dotted curves).



= Momentum dependence of the real (green) and minus imaginary part (red)
of the QNM frequency of operators with A = 2,3 and 4 (from bottom to top)
for m/T =0 (N =4 SYM, dashed) and m/T = 4.8 (continuous).
Surprisingly, corresponding curves are very close to each other despite of the
fact that m/T = 4.8 matches the locus of the maximal deviation from
conformal invariance in thermodynamics of N/ = 2*.

m There is very weak dependence on k£ in Imw



Conclusion:

I argued that relaxation time in strongly coupled plasma is encoded in
the spectrum of quasinormal modes of BH in the holographic dual

One can have a controlled examples of the top-down holography where it
is possible to systematically study effects of non-conformality on the

relaxation time

We found that |

Trelax X —

T
universally, even though are other microscopic scales in the plasma

(masses, etc)

The spatial relaxation is ultralocal — imaginary parts of the

quasinormal modes are almost flat in momentum k

Similar conclusions are reached in other models:

= thermalization in A/ = 4 plasma in the presence of charge
densities/magnetic fields (J.Fuini, L.Yaffe, arXiv:1503.07148)
= Bottom-up pheno models of holography (R.Janik et.al,
arXiv:1503.07148; T.Ishii et.al, arXiv:1503.07766)



