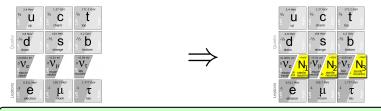
Sterile neutrinos as dark matter

Dmytro lakubovskyi

Discovery Center, Niels Bohr Institute, Copenhagen Univ.


Borexino10 Workshop, Gran Sasso, September 7, 2017.

ν MSM: SM extension with 3 sterile neutrinos

Asaka & Shaposhnikov'05. Review: Boyarsky+'09

- Neutrino masses: Bilenky & Pontecorvo'76; Minkowski'77; Yanagida'79; Gell-Mann et al.'79; Mohapatra & Senjanovic'80; Schechter & Valle'80
- Baryon asymmetry: Fukugita & Yanagida'86; Akhmedov, Smirnov & Rubakov'98; Pilaftsis & Underwood'04-05;
- Dark matter: Dodelson & Widrow'93; Shi & Fuller'99; Dolgov & Hansen'00

A unified SM of particle physics and cosmology

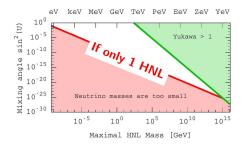
Sharing success of the Standard Model at accelerators and resolving major BSM problems: Neutrino masses and oscillations; Baryon asymmetry of the Universe; Dark matter

< □ > < A > >

Type I seesaw model

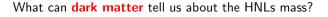
Left-handed neutrino is not truly neutral; we can write

Neutrino Majorana mass =
$$rac{m{c}(ar{L}\cdot ilde{H}^{\dagger})(L^c\cdot ilde{H})}{m{\Lambda}}$$

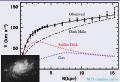

but it violates unitarity! Alternative: see-saw mechanism,

$$\mathcal{L}_{\mathsf{Seesaw Type I}} = \mathcal{L}_{\mathsf{SM}} + i\bar{N}\partial \!\!\!/ N + \bar{N}(\tilde{H} \cdot L) + \frac{1}{2}\bar{N}MN^c + \mathsf{h.c.}$$

- Contains both Dirac and Majorana mass terms
- Neutrinos are light because $m_{\text{Dirac}} \ll M$: $m_{\nu} \simeq \frac{(m_{\text{Dirac}})^2}{M} = U^2 M$ The new particle is called "Sterile neutrino" or "heavy neutral lepton" or HNL


Dmytro lakubovskyi

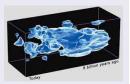
HNL parameters and neutrino oscillations

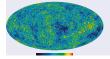

For every point in the white region, HNLs with such mass/interaction that can explain the phenomenology of neutrino oscillations

- \mathcal{N} HNLs bring $7 \times \mathcal{N} 3$ new parameters
- With the full knowledge of PMNS and active neutrino masses/phases we will be able to determine
 - **7** out of 11 parameters $(\mathcal{N} = 2)$ **9** out of 18 parameters $(\mathcal{N} = 3)$
- Undetermined parameters are: \mathcal{N} Majorana masses + some ratios of Yukawas (for example, one replace $Y_{\alpha I} \leftrightarrow Y_{\alpha J} (M_I/M_J)^{1/2}$ for some pairs $I \neq J$.)



Dark Matter in the Universe


Astrophysical evidence:


Expected: mass_{cluster} = $\sum mass_{gals}$ Observed: 10^2 times more mass confining ionized gas

Lensing signal (direct mass measurement) confirms other observations

・ロト ・日 ・ ・ ヨ ・ ・

Cosmological evidence:

Jeans instability turned tiny density fluctuations into visible structures

Discovery Center, Niels Bohr Institute

Sterile neutrinos as dark matte

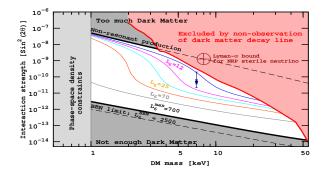
Dmvtro lakubovskvi

Neutrino dark matter

Neutrino seems to be a perfect dark matter candidate: neutral, long-lived, massive, abundantly produced in the early Universe

Cosmic neutrinos

- We know how neutrinos interact and we can compute their primordial number density $n_{\nu} = 112 \,\mathrm{cm}^{-3}$ (per flavour)
- To give correct dark matter abundance the sum of neutrino masses, $\sum m_{\nu}$, should be $\sum m_{\nu} \sim 11 \, {\rm eV}$


Tremaine-Gunn bound (1979)

- Such light neutrinos cannot form small galaxies one would have to put too many of them and violated Pauli exclusion principle
- \blacksquare Minimal mass for fermion dark matter $\sim 300-400\,\mathrm{eV}$
- If particles with such mass were weakly interacting (like neutrino) – they would overclose the Universe $(\Omega h^2 \sim 3!)$

cove

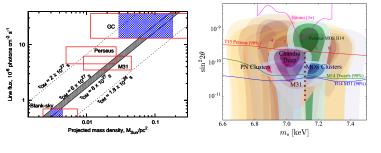
Parameter space of sterile neutrino dark matter in the νMSM is bounded on all sides

Is it possible to probe the whole parameter space of the ν MSM?

A smoking gun signature: DM decay line

MW (HEAO-1) Boyarsky+'05; Coma and Virgo clusters Boyarsky+'06; Bullet cluster Boyarsky+'06;
LMC+MW(XMM) Boyarsky+'06; MW Riemer-Sørensen+'06; Abazajian+'06; MW (XMM) Boyarsky+'07;
MW (INTEGRAL) Yuksel+'07; Boyarsky+'07; M31 Watson+'06; Boyarsky+'07; Horiuchi+'13; dSphs
Loewenstein+'08,'09,'12; Malvshev+'15,...

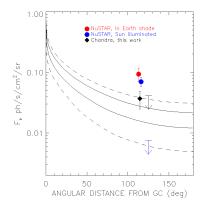
See e.g. [1602.04816] "A White Paper on keV Sterile Neutrino Dark Matter"



Dmytro lakubovskyi

3.5 keV line origin: radiatively decaying DM?

3.5 keV line: Bulbul et al, ApJ'14; Boyarsky, Ruchayskiy, DI, Franse, PRL'14


- Observations point to $\tau_{\rm DM} = (6-8) \times 10^{27}$ s [1408.2503, 1508.05186];
- Many detections and non-detections in different objects;
- Should be careful when comparing results from different objects DM content in each of them is uncertain!

Boyarsky, Franse, DI, Ruchayskiy, PRL'15

New detections

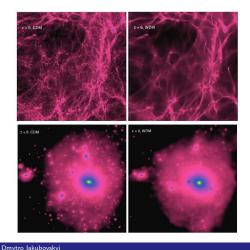

- 11σ detection by NuSTAR blank-sky 1607.07328
- **3** σ **detection** by Chandra from the same region 1701.07932
- 5 times larger signal than blank-sky from Galactic Center 1609.00667

Combined with previous detections, argues against systematical origin

Next step for 3.5 keV line: resolve the line

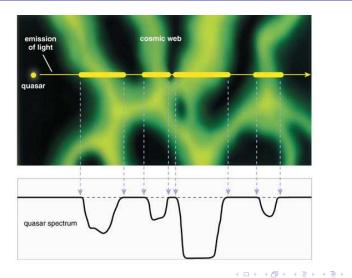
- A new microcalorimeter with a superb spectral resolution Hitomi (Astro-H) launched February 17, lost March 26, 2016;
- Before its loss, observed Perseus cluster core in calibration phase (additional filters block most of X-ray below 3 keV)

Discovery Center, Niels Bohr Institute


What did we learn with existing Hitomi data?

- Due to its superior energy resolution, *Hitomi* can distinguish between atomic line broadening (thermal velocities $\sim 10^2 \, \mathrm{km/sec}$) and decaying dark matter line broadening (virial velocity $\sim 10^3 \, \mathrm{km/sec}$)
- Bounds much weaker for a broad (dark matter) line → not at tension with previous detections
- Even the short observation of Hitomi showed no nearby astrophysical lines in Perseus cluster $\rightarrow 3.5$ keV line is not astrophysical Hitomi collaboration, 1607.04487

This does not seem to be astrophysics (Hitomi spectrum)
This does not seem to be systematics (4 different instruments)
???


Sterile neutrino: warm dark matter

COCO Warm simulation Bose+'15. HNL dark matter:

- Same structures as in CDM Universe at Mpc scales and above → no signatures in CMB/galaxy counts
- Decreasing number of small galaxies around Milky Way
- Decreasing number of small satellite galaxies within Milky Way halo
- Can help with "too big to fail" or "missing satellites" problems

Lyman- α forest and power spectrum

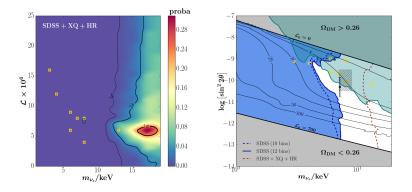
Discovery

Dmytro lakubovskyi

Sterile neutrinos as dark matte

Discovery Center, Niels Bohr Institute

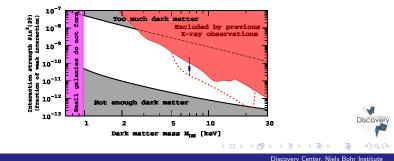
High-resolution Ly- α forest and ν MSM DM

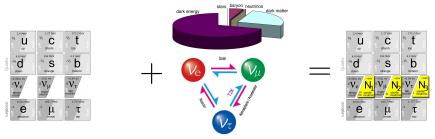

- Best fit thermal relic mass = 2.1 keV
- Corresponds to resonantly produced sterile neutrino with $M_N=7~{\rm keV}$ and
 - lepton asymmetry $L_6 = 11$
- 3.5 keV line, interpreted as sterile neutrino DM, gives range of lepton

asymmetries $L_6 = 8 - 12$

By accident (or maybe not?) the HNL dark matter interpretation of 3.5 keV line predicts **exactly** the amount of suppression of power spectrum observed in HIRES/MIKE (and **fully consistent** with all other structure formation bounds), see Garzilli, Boyarsky, Ruchayskiy [1510.07006]

Discove


The latest results from Ly- α forest [1706.03118]


Data from SDSS-III (BOSS) + X-Shooter + HIRES Hatched rectangle indicates 3σ 'island' in ν MSM parameter space Similar result from reionization (DI et al., in progress) and high-z luminosity function (1611.05892)

Future X-ray observations:

- Micro-X sounding rocket experiment (2019+) large field-of-view, large energy resolution, very small exposure – will probe Galactic Center+Bulge region (ApJ'15 [1506.05519]);
- Hitomi-2 planned to launch by NASA during 2020-2021;
- Athena large ESA mission (2028+), very large resolution and collecting area (each 10×XMM-Newton) – will probe individual DM haloes (e.g. galaxy clusters).

Conclusions

Neutrino oscillation between three generations

Thank you for your attention!

Dmytro lakubovskyi

Sterile neutrinos as dark matte

Discovery Center, Niels Bohr Institute

< 一型

Backup slides:

Dmytro lakubovskyi

Sterile neutrinos as dark matte

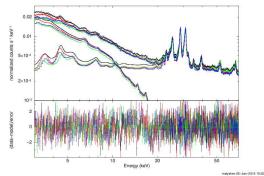
Discovery Center, Niels Bohr Institute

DM decay line: basic properties

- Signature of 2-body radiative decay (e.g. DM→ γ + γ, DM→ γ + ν): monochromatic line from all DM overdensities.
- Due to small $(v \sim 10^{-4} 10^{-2})$ Doppler broadening the line is narrow.
- Observed line position should evolve with redshift.
- Line position from nearby objects $E_{\gamma} = \frac{1}{2}m_{\text{DM}}c^2$
- Flux from DM decay:

$$F_{\mathsf{DM}} = \frac{E_{\gamma}}{m_{\mathsf{DM}}\tau_{\mathsf{DM}}} \int_{\text{fov cone}} \frac{\rho_{\mathsf{DM}}(\vec{r})}{4\pi |\vec{D}_L + \vec{r}|^2} d^3 \vec{r} \approx \frac{\Omega_{\mathsf{fov}}}{8\pi m_{\mathsf{DM}}\tau_{\mathsf{DM}}} \mathcal{S}$$

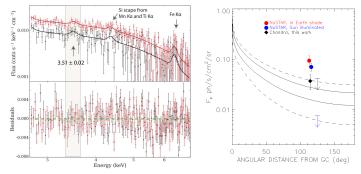
DM column density


$$\mathcal{S} = \int\limits_{\Omega_{\rm fov}} \rho_{\rm DM}(r) dr$$

– integral along the line-of-sight, averaged within the instrument's field-of-view – **slowly** grows with halo mass ($\sim M^{0.2}$) – 0911.1774.

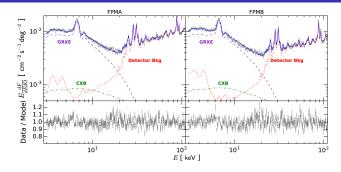
NuSTAR detections: blank-sky [1607.07328]

data and folded model

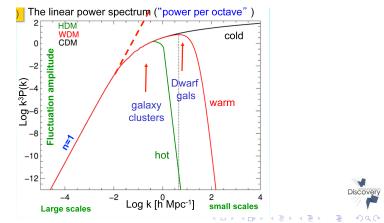


 11σ detection at the level slightly more than predicted with decaying DM;

 Located 'at the edge of energy range, where large uncertainties of response functions are potentially present'.


Chandra detections: blank-sky [1701.07932]

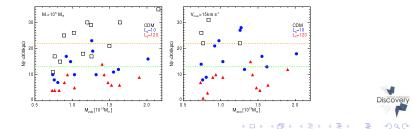
- **3** σ detection at the level consistent with decaying DM
- No instrumental features at these energy (compared with the other instruments)
- Combined with XMM and Suzaku detections, argues against systematical origin.


NuSTAR detections: GC [1609.00667]

- 3.5 keV line nature 'is not totally clear' and 'its determination is beyond the scope of this work';
- No numbers are given but from above Fig. one can estimate 3.5 keV line flux that is ~ 5 times larger than found by 1607.07328 perfectly consistent with decaying DM!

Sterile neutrino: warm dark matter

- keV sterile neutrinos are born relativistic
- Relativistic particles free stream out of overdense regions and smooth primordial inhomogeneities


Satellite number and properties

- Warm dark matter erases substructures compare number of dwarf galaxies inside the Milky Way with "predictions"
- Simulations: The answer depends how you "light up" satellites
- Observations: We do not know how typical Milky Way is

Lovell, Boyarsky, Ruchayskiy et al. [1611.00010]

Discovery Center, Niels Bohr Institute

Dmytro lakubovskyi

Sterile neutrinos as dark matte

Current status of structure formation bounds from the Local Universe

- Connection "dark structures" ↔ "visible structures" depends on (yet unknown) way to implement baryonic feedback
- Simulation to simulation (or even halo-to-halo) scatter is large and affects the conclusions
- We **do not know** how typical is our Galaxy, our Local Group, etc.
- We cannot "rule out" your warm dark matter model with these observations
- Need statisticically significant sample instead

