# Simulating storage system performance: a useful approach for SuperB?

#### Moreno Marzolla

Dipartimento di Scienze dell'Informazione Università di Bologna marzolla@cs.unibo.it

http://www.moreno.marzolla.name/

SuperB Computing R&D Workshop, feb 9—12 2010, Ferrara, Italy

Copyright © 2010, Moreno Marzolla, Università di Bologna

*This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit* http://creativecommons.org/licenses/by-sa/3.0/ *or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.* 

#### Introduction

• The term *capacity planning* refers to the activity of estimating the right amount of resources required to meet future service demands

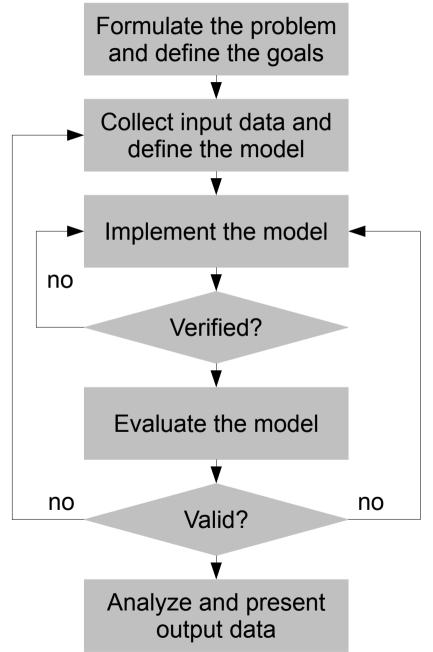
## Introduction

- The performance and scalability of a new system can be estimated
  - by measuring an existing system
  - by building and analyzing an appropriate model
    - Analytical model
    - Simulation model
    - Combination of the two above
  - You can use a running system as a source of "reliable" parameter estimates to be used as inputs for an analytical model

## Measuring existing systems

- PROs
  - You definitely get the most realistic parameter estimates (response times, throughput...)
- CONs
  - There could be no system to measure!
  - Need to modify the system to insert "probes"
  - It is difficult to forecast how the worload varies in the future (the "new" system might be used differently from a similar, "old" one)

## Analytical models


- Develop a mathematical model of the system using an appropriate notation:
  - E.g, Queueing Network, Markov Chain, Petri Nets...
- PROs
  - Models can be evaluated quickly and efficiently
- CONs
  - Analytical models require significant simplifying assumptions in order to be tractable
- The performance modeler must be acquainted with the specific modeling notation (QN, MC, PN...)

## Simulation models

- Write a simulation program which behaves like the "real system"
- PROs
  - Simulation is very powerful
- CONs
  - Writing a simulation program requires a lot of effort
  - Even moderately complex simulations could require a long running time to produce accurate results
- Care must be taken in analyzing the simulation results (initialization bias, confidence intervals)

#### Performance modelling study (simplified)

- Statement of objectives; examine design and evaluation criteria; estimate manpower, cost and time for the performance study
- Input data analysis, identify probability distributions; collect data for validation; start with a simple model
- Implement the model (write the simulation program, or implement equations with some numerical evaluation tool
- Check adequacy of probability distributions and simplifying assumptions; involve people familiar with the system;
- Evaluate the model; run simulation
- Test sensitivity of output to changes in input parameters; compare output with a current system if available
- Document and present the results; compute confidence intervals, compare alternatives

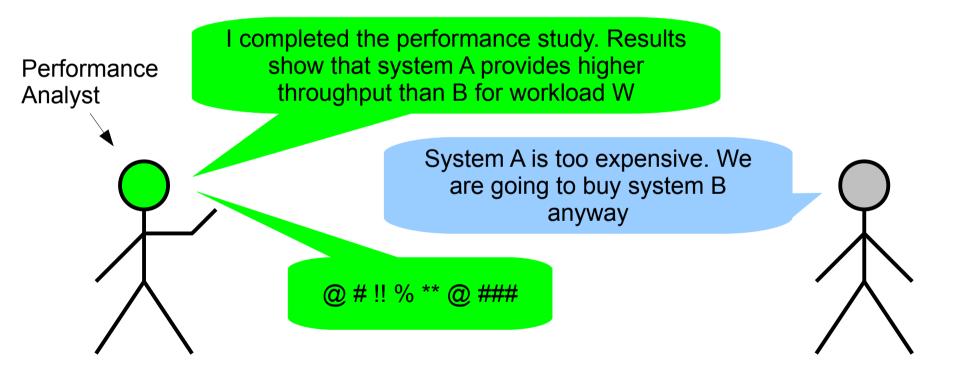


Some common mistakes (so we can try to avoid them)

#### Common mistakes No goal

- Before starting a performance study, a clear goal must be stated
  - Ok: "Compare the throughput of system A and system B with respect to workload W"
  - Ok: "Which caching policy among A, B and C provides the higher hit ratio for access pattern P?"
  - Not ok: "Analyze system A"
  - Not ok: "Prove that A is better than B"

#### Common mistakes: Inappropriate level of detail


- Avoid complexity if possible
  - Complex models require a deep understanding of the inner working of the system being modeled
    - this understanding is often not available
  - Detailed input parameters (e.g., service times) are needed to produce meaningful results
    - such parameters are often unknown
- Prefer simpler models which depends on few parameters

#### Common mistakes: Underestimating the manpower

- Doing a proper capacity planning study requires time and experience analysts
  - Performance analysis, like programming, cannot be mastered in a week
  - The level of required competence increases with the complexity of the model
  - More on manpower later

#### Common mistakes: Taking no action

• Are you willing to take into account the results of the performance study?



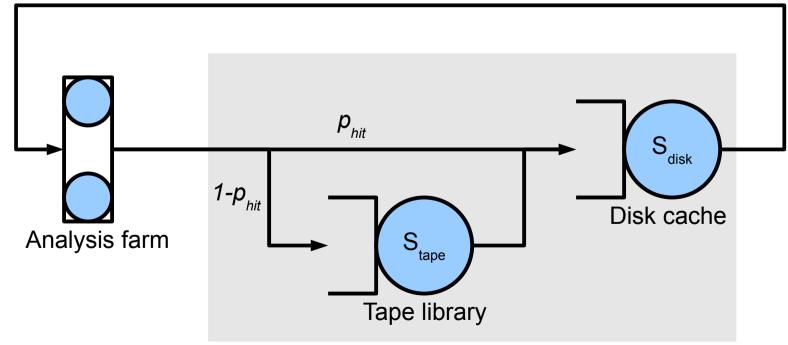
## Performance evaluation of Storage Systems

- Some relevant literature
  - "Towards a Performance Model for Virtualised Multi-Tier Storage Systems", USENIX http://www.usenix.org/events/fast08/wips\_posters/lebrecht-wip.pdf
  - "Analytical Performance Modeling of Hierarchical Mass Storage Systems", IEEE ToC http://portal.acm.org/citation.cfm?id=268702
  - "A Performance Model of Disk Array Storage Systems", http://www.cs.unh.edu/~varki/publication/cmg.ps
  - Others...

## Performance evaluation of Storage Systems

- Existing studies consider relatively simple storage systems (single disks, RAID arrays)
- Existing models are highly specific and cannot be easily generalized
  - In general, models tend to depend on the goal of the study
- Lack of software tools for simulation/modeling of storage systems
  - General-purpose simulation engines exist, but models must be defined/coded by hand

## Performance evaluation of Storage Systems


- The DiskSim Simulation Environment: http://www.pdl.cmu.edu/DiskSim/
  - Targeted at accurate, single-disk modeling
- The MONARC project at CERN: http://www.cern.ch/MONARC/
  - Early effort for modeling of a distributed computing infrastructure
  - Unfortunately this project finished long ago

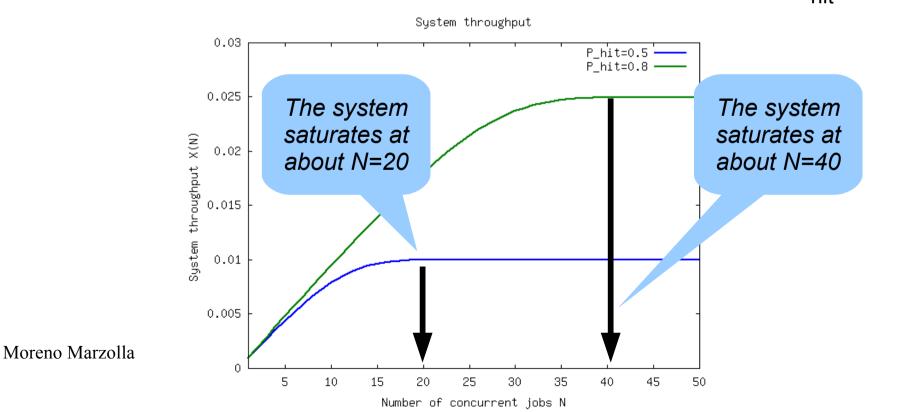
## "Toy" example

- Analysys farm with a number of computing nodes connected to a storage system
- Fixed number of N jobs
  - Some are using the CPUs
  - Some are waiting for data access
- The storage system is two-tiered
  - A small disk pool provides a fast data cache
  - A large, slow tape library holds all data

#### System model

- Based on a closed Queueing Network
  - Service times are exponentially distributed
  - Routing is purely probabilistic




### **Model parameters**

- N (unknown)
  - Number of concurrent jobs
- $S_{_{CPU}}$  (measured)
  - Average length of computation (w/o data access)
- S<sub>disk</sub> (measured)
- Average time to access data from disk

- $S_{tape}$  (measured)
  - Average time to access data on tape
- *p*<sub>hit</sub> (estimated, e.g.
  by simulation using actual access traces)
  - Cache hit probability

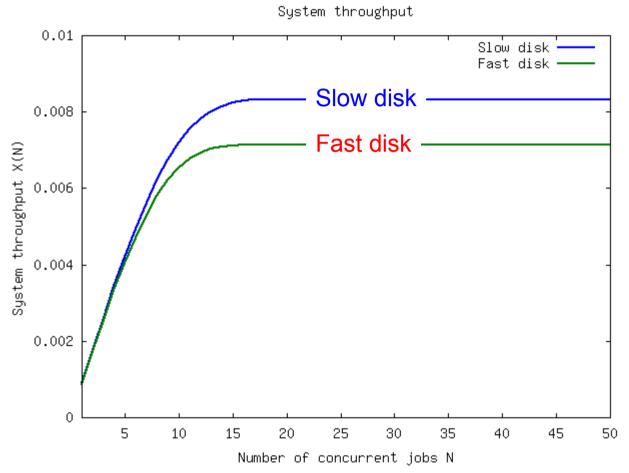
#### **Question 1**

- Given  $S_{CPU}$ =1000,  $S_{tape}$ =200,  $S_{disk}$ =1
  - What is the max system throughput when  $p_{hit} = 0.5$ ?
  - What is the max system throughput when  $p_{hit} = 0.8$ ?



20

#### **Question 2**


- Given  $S_{CPU}$ =1000,  $S_{tape}$ =200, we can buy:
  - Disks model A (cheap, slow)

 $-S_{diskA} = 1.0, p_{hitA} = 0.4$ 

- Disks model B (expensive, 20% faster than model A)
  - For the same money we can buy less disk space
  - We estimate the cache hit probability decreases to 0.3

$$-S_{diskB} = 0.8, p_{hitB} = 0.3$$

#### Answer to question 2



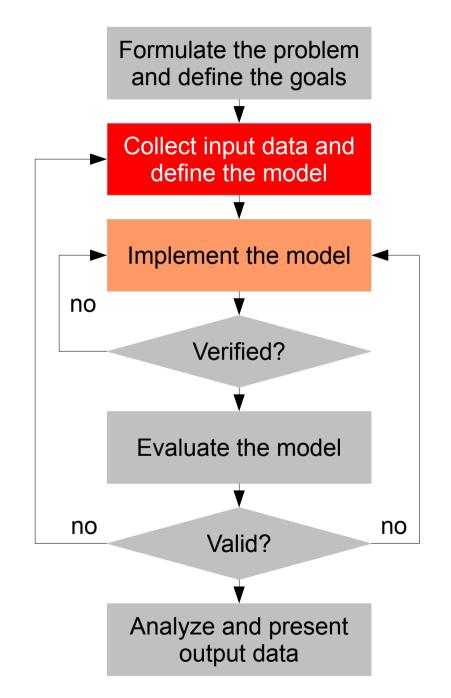
 In this case a large cache of slow disks is better than a small cache of faster disks

Moreno Marzolla

## Model extensions

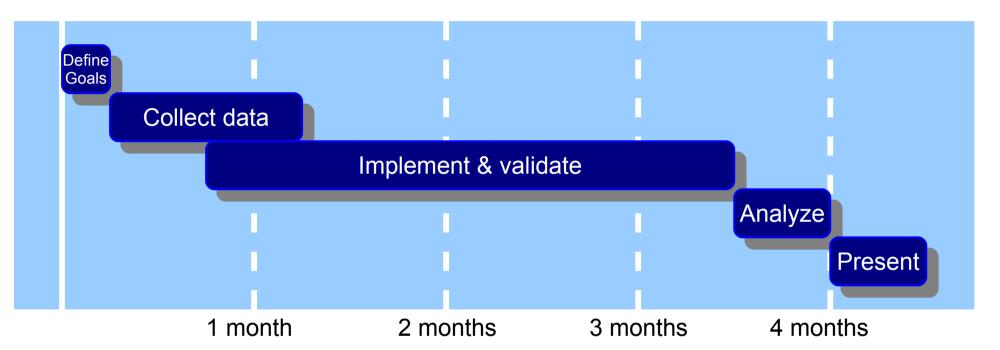
- Non-exponential service times
- Multiple classes of requests
- Priorities
- Batch arrivals
- •
- Note: any of the above makes the model nontrivial to solve
  - Nevertheless, it is possible to handle all extensions above, and many others...

## Back to the original question


- "Simulating storage system performance: a useful approach for SuperB?"
- My anwer: of course it is!!
  - Proper capacity planning helps to identify and discard wrong design decisions early
  - Potential limitations of the system can be identified and a plan to address them prepared in advance
  - Many questions can be given informed answers

#### **Manpower estimates**

• Disclaimer




#### The most (IMHO) difficult steps



Moreno Marzolla

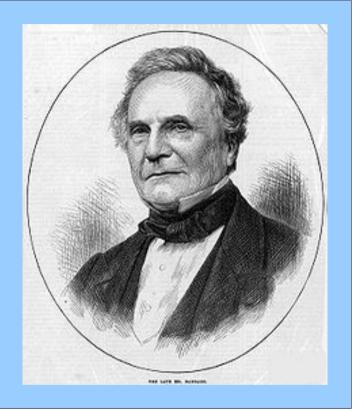
#### **Tasks and durations**



Increase by 1PM if training on performance modelling is needed

#### **Additional resources**

- JavaSim: a discrete-event simulator written in Java: http://javasim.codehaus.org/
- Simpy: simulation package in Python: http://simpy.sourceforge.net/
- The Java Modelling Tools from Politecnico di Milano, Italy: http://jmt.sourceforge.net/
- The qnetworks toolbox: a Queueing Networks analysis package for GNU Octave http://www.moreno.marzolla.name/software/qnetworks/
- The DiskSim Simulation Environment: http://www.pdl.cmu.edu/DiskSim/
- The MONARC project at CERN: http://www.cern.ch/MONARC/


Moreno Marzolla

#### Post Scriptum

### Garbage in, Garbage Out

On two occasions I have been asked, —"Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?" ... I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question."

— Charles Babbage, Passages from the Life of a Philosopher

