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The laser: 50 years of discoveries
Testimony by Charles Townes

“The history of the laser is a perfect example of the,
impact of basic research, not only on'science,
but also on economy — a spectacular
impact, often completely
unexpected.”
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1996: The First Petawatt Laser, invented at LLNL: 600 J, >1 PW

Petawatt achievements and discoveries:

- 1.3-PW =1,300,000,000,000,000 Watts
« ~10%2" W/cm?2

* 10-100-MeV electron beams

Laser made proton beams

Hard x-rays and gamma-rays
Photo-fission
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_\ﬁh-repetition-rate Advanced Petawatt Laser System (HAPLS)

20 years later:
HAPLS laser runs 200,000 times faster than the original 1996 Petawatt
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Worldwide scientific laser facilities mostly meet the demands
for proof of principle experiments
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Commercial and advanced scientific short pulse laser
applications require high repetition rate
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Heat can be extracted through the “edge” or the “face”

Rod amplifiers

THIN DISK: “active
mirror”

multislab-face-cooling

Laser emission

Mhl pum.p Iijht

Laser emission

Pump\ Ip light

L A e ]

d—t S00fVe St reary
Eme—r Drer fow

-

Heat extraction through
back side of the disk

"‘)t

HHMH

Asbour rudram
ﬁhr'-n

L P——— ‘“'N”
= [l

') 111431
'-4k-4'J.-A;-4L-JL-“.—J

rmm
Perpligh
Laser
emission

(¥ waton

Wit

» Conductive cooling through
edges

» Stress orthogonal to laser
beam

* High energy storage

» Conductive cooling through
back side

* Stress parallel to laser beam

* Low energy storage

» Conductive/convective cooling
with liquid (National
Energetics) or Helium gas
(LLNL, RAL)

* Stress parallel to laser beam

 High energy storage
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LLNL pioneered gas-cooling of high energy laser amplifiers in the
eighties: slabs are cooled by rapidly flowing He-gas

Gas-cooled amplifier HAPLS production
schematic Amplifier Assembly

Amplifier
slabs

Face cooled Nd:Glass slabs
Room temperature Helium gas coolant

Gas acceleration vanes Mach 0.1
Cooled ASE Edge claddings
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Two architectures for high energy DPSSL recently demonstrated:
the LLNL's “HAPLS”, and Rutherford’s “DiPOLE100”

LagerFocusivorld S Delivers 200J, 20ns, 10Hz

ME DETECTORS & IMAGING LASERS & SOURCES OPTICS

e e s et @NA 30J, 1PW, 30fs, 10 Hz

LLNL HAPLS petawatt laser reaches highest average
power; ready for delivery to ELI Beamlines
02/0872017

Posted by Gail Overton
Senior Edtor
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Kilowatt average power 100 J-level diode
pumped solid state laser
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Diode pumping has a significant impact on system efficiencies

Ti:Sa PW Efficiency
WP 04%  2.6% Diodes
EO 0.6% 3.8%
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Scale a Ishlamp-pumed Ti:Sa laser to TeV-Collider size and

-y —a - g
- - A P S B —‘__

- A-.’_ F Sl
er piant In your 0acCkyargc

‘ Lawrence Livermore National Laboratory 9.2017 — LLNL- C.Haefner-EACC 2017 Italy



HAPLS is designed to deliver Petawatt peak power laser pulses
at energy 30J and 10Hz repetition rate = 300 Watt
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Electrical consumption <150 kW
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HAPLS today....at ELI Beamlines ready for installation
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HAPLS relies on a diode pumped, indirect chirped pulse
amplification architecture ("diode pumped laser pumped laser”

DPSSL pump lasers

Pulse shaping wideband
and contrast Multipass
enhancement Amplifier

Alpha
Amplifier

Deformable
Mirror

Beta
(Power)
Amplifier

Modified NIF Pump power Harmonic Beam
front-end amplifier converter Conditioning

Power
amplifier
3.2 MW laser diagnostics

. Compressor
diode arrays P

ELI Beamlines

facility control

system

[ Integrated Controls i 3

________________________________________
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 The HAPLS Pump laser delivers 1.2 MJ/hour today

 The HAPLS Petawatt laser system dellvers 190 lehour
-y

Ramped to its full performance at ELI,

HAPLS will deliver 1MJ/hr of Petawatt, 30fs pulses
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The average power scalability of energetic Ti:Sapphire (and
OPCPA) laser is constrained by the availability of pump lasers

"~ Waste [output| Efficiency
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Indirect CPA: Lamp-pumped SSL pumped Ti:S wp EO

1 0.4% 0.6%
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Indirect CPA: DPSSL-pumped Ti:S
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The short gain lifetime and the large quantum defect make Ti:Sapphire drives the
cost of the pump laser and makes it an unattractive HAP laser medium
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The HAPLS pump architecture utilizes dual diode-pumped
surface-cooled multislab amplifiers in a 4-pass polarization

switched architecture

Ti:sapphire  Frequency
Amplifier ~ Converter

A4 Pg Polarizer
1 He gas He gas
cooling cooling
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The dual diode-pumped surface-cooled multislab amplifier in a
4-pass polarization switched architecture is a template for high
average power high peak-power systems

High L
Contrast ~Relay
Short
L. Pulse
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Transport End ey
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cooling cooling
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Example: Scalable High-power Advanced Radiography Capability (SHARC)
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The HAPLS pump laser could be converted to a 150J, 150fs, 10Hz
e driver: SHARC

- - " : - l
Continuous 1hr run delivering Energy stability scales with output
100Joule pulses at 340W energy. Predicted <0.35% @ 200J

Energy (J)
et Enargy )

40 50 60 70
Time (mins)
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Based on HAPLS pump laser and NIF ARC technology, LLNL has
developed a concept for a Scalable High-average-power Advance
Radlographlc Capablllty (SHARC)
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SHARC is a low-risk high-TRL extension of HAPLS pump laser technology

150J, 150fs, 10Hz, 90/110 dB temporal contrast

10-Hz PW (150J/150fs) at greater efficiency than HAPLS (~5% Wall plug efficiency)

HAPLS diode-pumped Nd:Glass pump laser with broadband mixed-glass frontend and LLE’s
Short Pulse OPA seed technology

High efficiency, actively cooled MLD-grating laser pulse compressor

Application space targets proton-/neutron-particle beam and high brightness x-ray
generation



Based on HAPLS pump laser and NIF ARC technology, LLNL has
developed a concept for a Scalable High-average-power Advance

Radiographic Capability (SHARC)
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HAPLS- 1o¢a'nd HARc’po id get Us to kW to ~10kW
of average power (at Petawatt peak power).

But we need 100s of kW for TeV Collider stage.



High-Power Single-Aperture Laser Beamline Performances
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Pushing the frontiers of high-power applications and high-intensity science

requires next-generation high repetition-rate high-energy solid state lasers.
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Transitioning from Application Space to Laser Media Space

If we normalize this plot by the beam area in the final amplifier, the axes become
proportional to laser media parameters: photon energy, gain cross-section, gain
lifetime, gain bandwidth (ie transform limited pulse duration).
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Power Scaling for Energy-Storage Laser Media
(simple scaling w/o architecture considerations)
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Stored energy can be extracted from laser medium with a high
fluence single pulse, or multiple low-fluence pulses within the
radiative lifetime

Single-Pulse Multi-Pulse
Extraction Extraction

A
v

Trad Trad

Multi-pulse extraction reduces the effective fluence in the laser system and therefore

moves the operating point into a manageable regime for low cross-section materials
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Efficient Diode-Pumped Media for High-Power Lasers
(Single-pulse and Multi-Pulse Extraction)
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Power Scaling for Energy-Storage Laser Media:
Damage Limited Fluence and Multi-Pulse Extraction
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Quantum Defect and Gain Lifetime for Energy-Storage Laser Media
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High-Power Single-Aperture Laser Beamline Performances
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BAT: Big Aperture Thulium Laser. BAT is a high rep-rate PW-class
architecture which scales to 300-kW average power

« Extension of HAPLS diode-pumped gas-cooled architecture

*  Tm:YLF laser media (1.9um)
« Commercially available in sizes for 300-kW
« superior thermal wave front (-dn/dT vs thermal expansion)
« anisotropic media - de-polarization not an issue
* Pulse duration 40fs < t < 100fs TL
« Two-for-one pumping by self-quenching in Tm enables low QD
pump scheme

Tm:YLF crystal recently procured by LLNL:
Di ter ~10
*  True CW pumped: iameter ~10cm

* Tm has long lifetime which when combined with the
desired pulse repetition rates enables multi-pulse
extraction and continuous pumping
* Quasi-4-level losses are distributed among hundreds
of pulses minimizing this effect
« Efficient extraction at low fluence per pulse, low B, higher efficiency
e ~40x lower diode cost compared to HAPLS; lower electronics cost due to simplicity over QCW
« Efficient high-power pump diodes consistent with Tm pumping already on the market

We have purchased 300kW-equivalent size Tm:YLF boules, produced our first

amplifier slabs and characterizing the material further for its suitability

Lawrence Livermore National Laboratory 9.2017 — LLNL- C.Haefner-EACC 2017 Italy 34




Block diagram of BAT

Pulse shaping
and contrast
enhancement

________________________________

Diode Arrays
~$100k

v

Multipass
Pre-amp

~750kW cw-
laser diode
arrays

BAT
Output Sensor

Diode Arrays

3J @ 10kHz
miniBAT amplifier

v

38J @ 10kHz
BAT amplifier

!

300 kW
Compressor

l

* Beam transport

| + Target
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BAT emits 300kW from a single aperture

Gain medium Tm:YLF
b7 N . . .
'//( \ Architecture Multi-pass, multi-pulse
///’/,‘,‘) } ’ }}}‘\\\\ gas cooled
Output 30J
WE ARE THE SR SNeTY
- 7cm - Repetition rate 10,000 Hz
CHAWD'ONS Average 300 kW

output power

77—

Output fluence 0.7 J/cm?
~— B integral < 0.1 radians (!!!)
(Poweramp)
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BAT laser diodes are always on!!!

Commercial pump cw-diode arrays are
available (150W/bar) from multiple vendors
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808 nm pump band matches Nd:YAG pump
wavelengths

A Diode emission

(1) Jamod

A Diode emission

(3) Jemod

HAPLS
Laser Average Power (kW) 0.3
# of arrays 4 4
Array Peak Power (kW) 800 188
Array Average Power (kW) 24 188
Emitting area (W x H cm?) 5.6 x13.4 6.6 x 28.4
Duty Cycle (%) 0.3 100
Relative Cost / array 1 1.9

Diodes for a 300 kW class BAT system are only 1.9X the cost of the HAPLS arrays
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High-Power Single-Aperture Laser Beamline Performances
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Pushing the frontiers of high-power applications and high-intensity science requires

next-generation high repetition-rate high-energy solid state lasers.
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High-Power Single-Aperture Laser Beamline Performances

Pushing the frontiers of high-power applications and high-intensity science requires

next-generation high repetition-rate high-energy solid state lasers.

‘ Lawrence Livermore National Laboratory
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Summary

= LLNL is exploring avenues to break the kW barrier for high peak power lasers to drive high flux x-
ray, y-ray, and particle beams

= Performed extensive architecture and material study. Crucially important for high average

power lasers is high wall-plug efficiency: reduce heat (once heat is in it’s expensive and hard to

pull it out) and heat effects (heating-cooling gradients cause beam deterioration, break stuff and

limit average power)

— Direct CPA increases dramatically the efficiency; beam quality and temporal pulse contrast
require additional attention

— Long radiative lifetime gain media become available through multi-pulse extraction at safe
energy extraction fluencies

— CW-pumping reduces massively the capital cost for high average power DPSSL

Efficiency

WP EO
0.4% 0.6%

2.6% 3.8%

Indirect CPA: Lamp-pumped SSL pumped Ti:S
Indirect CPA: DPSSL-pumped Ti:s| | 1 ] |

‘U g.:t:l:-:eaung : z:xg I'i-'gehattloss Direct CPA: SHARC 1-J 50% 72%
m Flourescen ce m Electronics Heat V
f ;:f::::voe":‘ed i m Refrigeration Direct CPA: BAT 1-J 21 % 30.1 %
-250 ~-200 -150 -100 = ’

Energy [J per J of short-pulse output]

Diode pumping has a significant impact on system efficiencies, but direct CPA

lasers with multi-pulse extraction and cw- pumping will have even greater impact
on efficiency and system feasibility for laser-plasma accelerator applications
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The repetition rate has a significant effect on the extraction and
system efficiencies, depending on laser media

Example: Yb-fiber Direct CPA

1.0 ] ;
3‘ Single-Pulse Extraction . Multi-Pulse Extraction | 2L
2 / Q |
O o =
& 0.6 E =4
w D ' w= |
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© - l o !
% 0.2 ! -
‘ﬁ . _‘l 11%
[
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| @ Slab Heating umi a = _
= Fouosconc b im Direct CPA: High-PRF 26% 34%
m Transport efrigeration |
|| m Unconverted Light S Direct CPA: Low-PRF < Waste Outplg_

_ 1-J

1 2.0% 2.9%

=30 -20
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-10 0
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Summary

« We have developed a conceptual design for a single-aperture, 300 kW Thulium:YLF
Petawatt-class laser “BAT” consistent with requirements for laser wakefield
accelerators

« The underlying technology is a modest extension of established LLNL gas-cooling and
rep rated Petawatt technologies

« BAT makes use of a highly simplified laser architecture, multi-pulse extraction of CW-
diode pumped Tm:YLF and thus providing good wall-plug-efficiency

«  We have developed a list of system TRLs and challenges that will inform the strategic
plan for R&D and RTP efforts

TRL Integration delivery
Challenge 5O | 0S| Pa BV | PreadPW)
7 Low 30 <30 0.3 1

HAPLS DPSSL+TiS today

SHARC DP CPA Nd:Glass 6 Low 3yrs 150 150 15 1
Mini-BAT DP CPA Tm:YLF 3-4 Medium 3-5yrs 3 41008r 3 075
) ’ 40 or
BAT DP CPATm:YLF & Medium 5-7yrs 30 100 300 75
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