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Science objectives

Ab initio calculations of scattering and reactions relevant to
alpha processes in stellar evolution and Type Ia supernovae
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Challenges

How to reduce computational scaling with number of nucleons in
participating nuclei? Can we provide useful ab initio input for
halo/cluster EFT calculations?
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Lattice chiral effective field theory
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Review: D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009)



Chiral effective field theory

Construct the effective potential order by order
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Fuclidean time projection




Auxiliary field method

We can write exponentials of the interaction using a Gaussian
integral identity

exp [—%(NTN)QI >< (NTN)?
— \/;/_O; ds exp [—%SM\QS(NTN)] > sNTN

We remove the interaction between nucleons and replace it
with the interactions of each nucleon with a background field.



Gij(sa ST, ﬂ-I)
det G(s, sy, mr)

Sign oscillations in determinant suppressed by approximate
Wigner SU(4) symmetry



Carbon-12

0F, 2F 03, 25

Compact triangular Bent-arm structure

a=197fm

PRL 106, 192501, 2011; PRL 109, 252501, 2012
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Oxvegen-16

05, 2{

Tetrahedral structure

a=1.97 fm

PRL 112, 102501, 2014

Square-like structure
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Adiabatic projection method

Development inspired by progress using no-core shell model with
resonating group method to describe ab initio scattering and
reactions in light nuclei.

Navratil, Roth, Quaglioni, PRC 82 034609 (2010); Navratil, Quaglioni, PRC 83 044609 (2011);
etc.

Strategy is to divide the problem into two parts. In the first
part, we use Euclidean time projection and lattice Monte Carlo
to derive an ab initio low-energy cluster Hamiltonian, called the
adiabatic Hamiltonian (adiabatic transfer matrix for nonzero
temporal lattice spacing).

In the second part, we use the adiabatic Hamiltonian to compute
scattering phase shifts or reaction amplitudes.
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Start with localized cluster states for all possible separation vectors R
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Cluster evolution with Euclidean time
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Use projection Monte Carlo to propagate cluster wavefunctions
in Fuclidean time to form dressed cluster states

|R), = exp(—HT)|R)

Evaluate matrix elements of the full microscopic Hamiltonian
with respect to the dressed cluster states,

[HT]E,E/ - T<E|H‘é/>7

Since the dressed cluster states are in general not orthogonal, we
construct a norm matrix given by the inner product

[NT]E,EI — T<ﬁ|é’>7
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The adiabatic Hamiltonian is defined by the matrix product

One can see the similarity to no-core shell model with resonating
group method. But in the adiabatic projection method we don’t
need to include excitations of the participating nuclei unless the

energy is above the corresponding inelastic threshold.

Distortion and polarization of the nuclear wave functions are
automatically produced by the Euclidean time projection.

As we increase the projection time, the adiabatic Hamiltonian
exactly reproduces the low-energy spectrum of the full
microscopic Hamiltonian.
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Quartet neutron-deuteron scattering (pionless EFT)

Convergence L=7, b=1/100 MeV
25
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Pine, D.L., Rupak, EPJA 49 (2013)



Lischer’s finite-volume formula

Liischer, Comm. Math. Phys. 105 (1986) 153; NPB 354 (1991) 531

Two-particle energy levels near threshold in a periodic cube are
related to the elastic phase shifts

1 Lp\ 2
peotéo(p) = S,  n=(5)
L 27 I
, O(A2 — 72)
— ] y — 47
S(?]) A1—>H;o [ = ﬁQ —n d L
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Signal-to-noise problems for finite-volume energy extraction

Nuclear binding

energy
shift

|

free
scattering
energy




Asymptotic cluster scattering wave functions

In the far asymptotic region where our dressed clusters are
widely separated, they interact only through infinite-range forces
such as the Coulomb interaction. Therefore we can describe
everything with an effective cluster Hamiltonian H°" that

is nothing more than a free lattice Hamiltonian for two point
particles plus any infinite-range interactions inherited from the
full microscopic Hamiltonian. So in the asymptotic region we
have

Rokash, Pine, Elhatisari, D.L., Epelbaum, Krebs, arXiv:1505.02967
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Since

we conclude that the adiabatic Hamiltonian coincides with the
effective cluster Hamiltonian in the asymptotic region

In the asymptotic region, we are inverting the diffusion process
when computing the adiabatic Hamiltonian and are left with
an effective cluster Hamiltonian in position space basis.
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We use projections onto spherical harmonics defined on sets of
lattice points with the same distance from the origin.

[R)e = Z Y. (R/)5R,|§/| [R)
R’
Lu, Lahde, Lee, Meifiner, arXiv:1506.05652

New algorithm developed for auxiliary field updates and
initial /final state updates

Hybrid Monte Carlo updates

L,L, L,L,
[Znt,LO]R,R/ = b= (R R')

Metropolis updates
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two cluster simulations

L3 ~ (16 fm)3
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single cluster simulations

Rywan

L3 ~

(120 fm)3
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‘He + ‘He — *He + *He

We now present ab initio results for alpha-alpha scattering
up to NNLO with lattice spacing 1.97 fm.

Elhatisari, Epelbaum, Krebs, Lahde, Lee, Luu, Meifiner, Rupak, arXiv:1506.03513

We did calculations for the S-wave and for the L =2, L, =10
D-wave projections.
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Summary and outlook

More work needs to be done. But alpha processes now appear
to be in reach of ab initio methods. Since the sign oscillations
are mild for alpha nuclei, the scaling is very favorable.

For an A;-body + As-body scattering or reaction process
the computational scaling is typically ~ (A; + A3)2.

For mass and charge transfer processes, we do the same steps
but consider coupled channel scattering. For capture reactions,
we include one-photon matrix elements and compute overlaps
between bound states and scattering states.

Rupak, D.L., PRL 111 032502 (2013)
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Could be useful and interesting to explore connections with
halo/cluster EFT calculations. In cases where the separation
of scales is good, halo/cluster EFT calculations should agree
with adiabatic projection method. In cases where the
separation of scales is not large, the halo/cluster EFT
calculations can use the adiabatic projection method as
guidance.

Would be interesting to see if some of these methods can be
used for calculations in relativistic field theories, in particular

lattice QCD.
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