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Einstein’s general relativity:

space-time singularities (such as Big Bang) are unavoidable (under some mild as-

sumptions)

→ Signals breakdown of the theory?

Does quantum gravity eliminate the singularities?

→ Depends on approach to quantum gravity.

E.g. Wheeler-DeWitt quantization, loop quantum gravity, . . .

→ Depends also on approach to quantum theory.

E.g. Collapse theory, Everett, Bohmian mechanics, . . .
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Some recent results for mini-superspace:

• Standard quantum theory (Ashtekar, Corichi, Pawloski, Singh)

– Wheeler-DeWitt quantization: singularities for generic states

– Loop quantum gravity: no singularities for generic states

• Consistent histories (Craig, Singh)

– Wheeler-DeWitt quantization: singularities for generic states

– Loop quantum gravity: no singularities for generic states
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Some recent results for mini-superspace:

• Standard quantum theory (Ashtekar, Corichi, Pawloski, Singh)

– Wheeler-DeWitt quantization: singularities for generic states

– Loop quantum gravity: no singularities for generic states

• Consistent histories (Craig, Singh)

– Wheeler-DeWitt quantization: singularities for generic states

– Loop quantum gravity: no singularities for generic states

In this talk:

• Bohmian mechanics (with F. Falciano and N. Pinto-Neto, PRD 91, 043524, 2015)

– Wheeler-DeWitt quantization: sometimes singularities

– Loop quantum gravity: no singularities
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I. INTRODUCTIONS TO BOHMIAN MECHANICS

(a.k.a. pilot-wave theory, de Broglie-Bohm theory, . . . )

• De Broglie (1927), Bohm (1952)

• Particles moving under influence of the wave function.

• Dynamics:

dXk(t)

dt
= vψtk (X1(t), . . . , XN(t))

where

vψk =
~
mk

Im
∇kψ

ψ
=

1

mk
∇kS, ψ = |ψ|eiS/~

i~∂tψt(x) =

(
−

N∑
k=1

~2

2mk
∇2
k + V (x)

)
ψt(x) , x = (x1, . . . ,xN)
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• Double Slit experiment:
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•Quantum equilibrium:

- for an ensemble of systems with wave function ψ

- distribution of particle positions ρ(x) = |ψ(x)|2

Quantum equilibrium is preserved by the particle motion (= equivariance), i.e.

ρ(x, t0) = |ψ(x, t0)|2 ⇒ ρ(x, t) = |ψ(x, t)|2 ∀t

Agreement with quantum theory in quantum equilibrium.
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•Classical limit:

ẋ =
1

m
∇S ⇒ mẍ = −∇(V + Q)

ψ = |ψ|eiS/~, Q = − ~2

2m

∇2|ψ|
|ψ|

= quantum potential

Classical trajectories when |∇Q| � |∇V |.
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• “Surreal” trajectories

Suppose ψ = ψ1

ψ1
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Bohmian trajectories:
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Suppose ψ = ψ2

ψ2
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Bohmian trajectories:
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Suppose ψ = 1√
2
(ψ1 + ψ2)

ψ1 ψ2
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Bohmian trajectories:
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Bohmian trajectories:

Consistent histories:
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Bouncing droplets:

with Boris Filoux, Nicolas Vandewalle (quandrops Liege, Belgium)
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II. SINGULARITIES

• Quantum gravity

Canonical quantization of Einstein’s theory for gravity:

g(3)(x)→ ĝ(3)(x)

In functional Schrödinger picture:

Ψ = Ψ(g(3))

Satisfies the Wheeler-De Witt equation:

i
∂Ψ

∂t
= ĤΨ = 0
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• Quantum gravity

Canonical quantization of Einstein’s theory for gravity:

g(3)(x)→ ĝ(3)(x)

In funcional Schrödinger picture:

Ψ = Ψ(g(3))

Satisfies the Wheeler-De Witt equation:

i
∂Ψ

∂t
= ĤΨ = 0

• Conceptual problems:

1. Measurement problem: We are considering the whole universe. There are no

outside observers or measurement devices.

2. Problem of time: There is no time evolution, the wave function is static.

(How can we tell the universe is expanding or contracting?)
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• Bohmian approach

In a Bohmian approach we have an actual 3-metric g(3) which satisfies:

ġ(3) = vΨ(g(3))

This solves problems 1.

It also solves problem 2:

We can tell whether the universe is expanding or not, whether it goes into a

singularity or not, etc.: It depends on the actual metric.
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• Singularities

What does it mean to have a space-time singularity in quantum gravity?

– Ψ has support on singular metrics?

– Ψ is peaked around singular metrics?

– 〈Ψ|ĝ|Ψ〉 is singular?

In the Bohmian approach: singularities if the actual metric is singular.
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Mini-superspace

Friedman-Lemâıtre-Robertson-Walker space-time.

Restriction to homogeneous and isotropic metrics and fields:

– Gravity: ds2 = dt2 − a(t)2dx2

– Matter: φ = φ(t)

Singularity if a = 0
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Classical theory (4πG/3 = 1)

φ̇ = ± c

e3α
, α̇ =

c

e3α
with a = eα c constant

Always singularity

(a = 0 or α→ −∞)
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Quantum theory

Wheeler-DeWitt equation

(∂2
α − ∂2

φ)Ψ = 0 , a = eα

Solutions Ψ = ΨR + ΨL; ΨR = ΨR(α− φ), ΨL = ΨL(α + φ):

ψR
ψL

α

φ
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Bohmian equations:

φ̇ =
1

e3α
∂φS , α̇ = − 1

e3α
∂αS , ψ = |ψ|eiS

Examples.

• Ψ real, i.e., S = 0: α is constant, i.e. Minkowski space-time; no singularities.

• Ψ = ΨR(α− φ) = e−(α−φ)2−i(α−φ)

classical trajectories

always singular (big bang)
α

φ

• Ψ = ΨL(α− φ) = e−(α+φ)2+i(α+φ)

classical trajectories, hence singularity

always singular (big crunch)
α

φ
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• Superposition Ψ = e−(α−φ)2+i(α−φ) + e−(α+φ)2+i(α+φ)

Is symmetric: Ψ(φ, α) = Ψ(φ,−α)

α

φ

Big bang and big crunch for trajectories on the left; bounce for trajectories on

the right

• Note: no probability distribution
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Regard φ as time variable

“Square root” of Wheeler-DeWitt equation:

i∂φψ± = Ĥ±ψ± = ∓
√
−∂2

αψ±

Ψ = (ψ+, ψ−)

– Probability distribution for α:

ρ = |ψ+|2 + |ψ−|2

– Bohmian dynamics preserves this distrubtion

– For Ψ = ΨR or Ψ = ΨL: classical trajectories, hence singularity
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– For superposition Ψ = ΨR + ΨL:

1

2
6 Psingularity < 1

For example, symmetric state Ψ(φ, α) = Ψ(φ,−α)

α

φ

Big bang and big crunch for trajectories on the left; bounce for trajectories on

the right

Probability for singularity is 1/2.

Probability for a bouncing universe is 1/2.
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– Singularity according to

∗ Standard quantum theory, for generic states (Ashtekar, Corichi, Pawloski,

Singh)

∗ Consistent histories (Craig, Singh)
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Loop quantum cosmology

(Application of loop quantum gravity ideas to mini-superspace)

• Different from Wheeler-DeWitt quantization

• Scale factor a takes discrete values.

States ψ(ν, φ), where ν ∼ a3 and ν = 4λn, n ∈ N

• Wave equation becomes difference equation:

i∂φψ(ν, φ) = −
√

Θψ(ν, φ)

Θψ(ν, φ) ∼
√
|ν(ν + 4λ)||ν + 2λ|ψ(ν + 4λ, φ)− 2ν2ψ(ν, φ)

+
√
|ν(ν − 4λ)||ν − 2λ|ψ(ν − 4λ, φ)

• No singularities according to

– Standard quantum theory, for generic states (Ashtekar, Corichi, Pawloski, Singh)

– Consistent histories, for generic states (Craig, Singh)

Main reason. ψ(0, φ) = 0 ⇒ P (ν = 0, φ) = |ψ(0, φ)|2 = 0
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• Bohmian approach.

– There is an actual value for the scale factor.

– Takes discrete values a3 ∼ n ∈ N

– Bohmian dynamics is stochastic. (Proposed by Bell for QFT.)

– Probability for a3 ∼ ν at time φ is |ψ(ν, φ)|2

|ψ(0, φ)|2 = 0, so probability to have a singularity is zero
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Conclusions:

• We need a precise version of quantum theory to address the issue of singularities

in quantum gravity

• Different versions may give different answers

• According to Bohmian mechanics:

– Wheeler-DeWitt quantization: Depends on the wave function. For a generic

wave function there is a non-zero probability for absence of singularities

– Loop quantum gravity: No singularities

Question:

Results are only for mini-superspace. What happens in the more general quantum

space-times?
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