Must space-time be singular?

Ward Struyve

Quandrops group University of Liege, Belgium

Einstein's general relativity:

space-time singularities (such as Big Bang) are unavoidable (under some mild assumptions)

 \rightarrow Signals breakdown of the theory?

Does quantum gravity eliminate the singularities?

- \rightarrow Depends on approach to quantum gravity.
 - E.g. Wheeler-DeWitt quantization, loop quantum gravity, ...
- \rightarrow Depends also on approach to quantum theory.
 - E.g. Collapse theory, Everett, Bohmian mechanics, ...

Some recent results for mini-superspace:

- Standard quantum theory (Ashtekar, Corichi, Pawloski, Singh)
 - Wheeler-DeWitt quantization: singularities for generic states
 - $-\operatorname{Loop}$ quantum gravity: no singularities for generic states
- Consistent histories (Craig, Singh)
 - Wheeler-DeWitt quantization: singularities for generic states
 - $-\operatorname{Loop}$ quantum gravity: no singularities for generic states

Some recent results for mini-superspace:

- Standard quantum theory (Ashtekar, Corichi, Pawloski, Singh)
 - Wheeler-DeWitt quantization: singularities for generic states
 - $-\operatorname{Loop}$ quantum gravity: no singularities for generic states
- Consistent histories (Craig, Singh)
 - Wheeler-DeWitt quantization: singularities for generic states
 - Loop quantum gravity: no singularities for generic states

In this talk:

- Bohmian mechanics (with F. Falciano and N. Pinto-Neto, PRD 91, 043524, 2015)
 - Wheeler-DeWitt quantization: *sometimes* singularities
 - Loop quantum gravity: no singularities

I. INTRODUCTIONS TO BOHMIAN MECHANICS (a.k.a. pilot-wave theory, de Broglie-Bohm theory, ...)

• De Broglie (1927), Bohm (1952)

- Particles moving under influence of the wave function.
- Dynamics:

$$\frac{d\mathbf{X}_k(t)}{dt} = \mathbf{v}_k^{\psi_t}(X_1(t), \dots, X_N(t))$$

where

$$\mathbf{v}_{k}^{\psi} = \frac{\hbar}{m_{k}} \operatorname{Im} \frac{\boldsymbol{\nabla}_{k} \psi}{\psi} = \frac{1}{m_{k}} \boldsymbol{\nabla}_{k} S, \qquad \psi = |\psi| e^{\mathrm{i}S/\hbar}$$

$$i\hbar\partial_t\psi_t(x) = \left(-\sum_{k=1}^N \frac{\hbar^2}{2m_k}\nabla_k^2 + V(x)\right)\psi_t(x), \qquad x = (\mathbf{x}_1, \dots, \mathbf{x}_N)$$

• Double Slit experiment:

• Quantum equilibrium:

- for an ensemble of systems with wave function $\boldsymbol{\psi}$
- distribution of particle positions $\rho(x) = |\psi(x)|^2$

Quantum equilibrium is preserved by the particle motion (= equivariance), i.e.

$$\rho(x,t_0) = |\psi(x,t_0)|^2 \qquad \Rightarrow \qquad \rho(x,t) = |\psi(x,t)|^2 \qquad \forall t$$

Agreement with quantum theory in quantum equilibrium.

• Classical limit:

$$\dot{\mathbf{x}} = \frac{1}{m} \boldsymbol{\nabla} S \qquad \Rightarrow \qquad m \ddot{\mathbf{x}} = -\boldsymbol{\nabla} (V + Q)$$
$$\psi = |\psi| e^{\mathbf{i}S/\hbar}, \qquad Q = -\frac{\hbar^2}{2m} \frac{\nabla^2 |\psi|}{|\psi|} = \text{quantum potential}$$

Classical trajectories when $|\nabla Q| \ll |\nabla V|$.

• "Surreal" trajectories

Suppose $\psi = \psi_1$

Suppose $\psi = \psi_2$

Suppose
$$\psi = \frac{1}{\sqrt{2}}(\psi_1 + \psi_2)$$

Consistent histories:

Bouncing droplets:

with Boris Filoux, Nicolas Vandewalle (quandrops Liege, Belgium)

II. SINGULARITIES

• Quantum gravity

Canonical quantization of Einstein's theory for gravity:

 $g^{(3)}(x) \to \widehat{g}^{(3)}(x)$

In functional Schrödinger picture:

$$\Psi = \Psi(g^{(3)})$$

Satisfies the Wheeler-De Witt equation:

$$\mathbf{i}\frac{\partial\Psi}{\partial t} = \widehat{H}\Psi = 0$$

• Quantum gravity

Canonical quantization of Einstein's theory for gravity:

 $g^{(3)}(x) \to \widehat{g}^{(3)}(x)$

In funcional Schrödinger picture:

$$\Psi = \Psi(g^{(3)})$$

Satisfies the Wheeler-De Witt equation:

$$\mathbf{i}\frac{\partial\Psi}{\partial t} = \widehat{H}\Psi = 0$$

• Conceptual problems:

- 1. Measurement problem: We are considering the whole universe. There are no outside observers or measurement devices.
- 2. Problem of time: There is no time evolution, the wave function is static.(How can we tell the universe is expanding or contracting?)

• Bohmian approach

In a Bohmian approach we have an actual 3-metric $g^{(3)}$ which satisfies:

 $\dot{g}^{(3)} = v^{\Psi}(g^{(3)})$

This solves problems 1.

It also solves problem 2:

We can tell whether the universe is expanding or not, whether it goes into a singularity or not, etc.: It depends on the actual metric.

• Singularities

What does it mean to have a space-time singularity in quantum gravity?

- $-\,\Psi$ has support on singular metrics?
- $-\,\Psi$ is peaked around singular metrics?
- $-\left\langle \Psi|\widehat{g}|\Psi
 ight
 angle$ is singular?

In the Bohmian approach: singularities if the actual metric is singular.

Mini-superspace

Friedman-Lemaître-Robertson-Walker space-time.

Restriction to homogeneous and isotropic metrics and fields:

- Gravity: $ds^2 = dt^2 a(t)^2 dx^2$
- Matter: $\phi = \phi(t)$

Singularity if a = 0

Quantum theory

Wheeler-DeWitt equation

Bohmian equations:

$$\dot{\phi} = \frac{1}{e^{3\alpha}} \partial_{\phi} S$$
, $\dot{\alpha} = -\frac{1}{e^{3\alpha}} \partial_{\alpha} S$, $\psi = |\psi| e^{iS}$

Examples.

• Ψ real, i.e., $S=0:~\alpha$ is constant, i.e. Minkowski space-time; no singularities.

• Superposition $\Psi = e^{-(\alpha - \phi)^2 + i(\alpha - \phi)} + e^{-(\alpha + \phi)^2 + i(\alpha + \phi)}$

Big bang and big crunch for trajectories on the left; bounce for trajectories on the right

• Note: no probability distribution

Regard ϕ as time variable

"Square root" of Wheeler-DeWitt equation:

$$\mathrm{i}\partial_{\phi}\psi_{\pm} = \widehat{H}_{\pm}\psi_{\pm} = \mp \sqrt{-\partial_{\alpha}^2}\psi_{\pm}$$

$$\Psi = (\psi_+, \psi_-)$$

– Probability distribution for α :

$$\rho = |\psi_+|^2 + |\psi_-|^2$$

- Bohmian dynamics preserves this distrubtion

- For $\Psi = \Psi_R$ or $\Psi = \Psi_L$: classical trajectories, hence singularity

- For superposition $\Psi = \Psi_R + \Psi_L$:

$$\frac{1}{2} \leqslant P_{\text{singularity}} < 1$$

For example, symmetric state $\Psi(\phi,\alpha)=\Psi(\phi,-\alpha)$

Big bang and big crunch for trajectories on the left; bounce for trajectories on the right

Probability for singularity is 1/2.

Probability for a bouncing universe is 1/2.

- Singularity according to
 - * Standard quantum theory, for generic states (Ashtekar, Corichi, Pawloski, Singh)
 - * Consistent histories (Craig, Singh)

Loop quantum cosmology

(Application of loop quantum gravity ideas to mini-superspace)

- Different from Wheeler-DeWitt quantization
- \bullet Scale factor a takes discrete values.

States $\psi(\nu,\phi)\text{, where }\nu\sim a^3\text{ and }\nu=4\lambda n\text{, }n\in\mathbb{N}$

• Wave equation becomes difference equation:

$$\mathrm{i}\partial_{\phi}\psi(\nu,\phi) = -\sqrt{\Theta}\psi(\nu,\phi)$$

$$\begin{split} \Theta\psi(\nu,\phi)\sim\sqrt{|\nu(\nu+4\lambda)|}|\nu+2\lambda|\psi(\nu+4\lambda,\phi)-2\nu^{2}\psi(\nu,\phi)\\ +\sqrt{|\nu(\nu-4\lambda)|}|\nu-2\lambda|\psi(\nu-4\lambda,\phi) \end{split}$$

• No singularities according to

- Standard quantum theory, for generic states (Ashtekar, Corichi, Pawloski, Singh)

- Consistent histories, for generic states (Craig, Singh)

Main reason. $\psi(0,\phi) = 0 \implies P(\nu = 0,\phi) = |\psi(0,\phi)|^2 = 0$

- Bohmian approach.
 - There is an actual value for the scale factor.
 - Takes discrete values $a^3 \sim n \in \mathbb{N}$
 - Bohmian dynamics is stochastic. (Proposed by Bell for QFT.)
 - Probability for $a^3 \sim \nu$ at time ϕ is $|\psi(\nu,\phi)|^2$

 $|\psi(0,\phi)|^2=0$, so probability to have a singularity is zero

Conclusions:

- We need a precise version of quantum theory to address the issue of singularities in quantum gravity
- Different versions may give different answers
- According to Bohmian mechanics:
 - Wheeler-DeWitt quantization: Depends on the wave function. For a generic wave function there is a non-zero probability for absence of singularities
 - Loop quantum gravity: No singularities

Question:

Results are only for mini-superspace. What happens in the more general quantum space-times?