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In this talk we shall not use string theory explicitly, but ...

– string theory makes it respectable to discuss S-matrix
involving gravitons

– soft theorem can be applied to string theory.

In particular soft graviton theorem can be applied to
Veneziano amplitude

– relates an amplitude with four open string tachyons and
an arbitrary number of low momentum gravitons to the
Veneziano amplitude.

Although we focus on soft graviton theorem, similar
results exist for soft photon theorems as well.
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What is soft graviton theorem?

Take a general coordinate invariant quantum theory of
gravity coupled to matter fields

Consider an S-matrix element involving

– arbitrary number N of external particles of finite
momentum p1, · · ·pN

– M external gravitons carrying small momentum k1, · · · kM.

Soft graviton theorem: Expansion of this amplitude in
power series in k1, · · · kM in terms of the amplitude without
the soft gravitons.
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Plan

1. Results in quantum theory: D>4

2. Classical limit: D>4

3. D=4
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Results in quantum theory

There are many explicit results in field theory and string
theory

Weinberg; . . .

White; Cachazo, Strominger; Bern, Davies, Di Vecchia, Nohle; Elvang, Jones, Naculich; . . .

Klose, McLoughlin, Nandan, Plefka, Travaglini; Saha

Bianchi, Guerrieri; Di Vecchia, Marotta, Mojaza; . . .

There are general arguments based on asymptotic
symmetry (mostly in D=4)

Strominger; Strominger, Zhiboedov; Campiglia, Laddha; . . .

In D=4 there are also problems since the S-matrix is IR
divergent

Bern, Davies, Nohle; Cachazo, Yuan; He, Kapec, Raclariu, Strominger
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Under some assumptions one can give a completely
general derivation of soft graviton theorem

A.S.; Laddha, A.S.; Chakrabarti, Kashyap, Sahoo, A.S., Verma

– generic theory

– generic number of dimensions

– arbitrary mass and spin of elementary / composite finite
momentum external states

e.g. gravitons, photons, electrons, massive string states,
nuclei, molecules, planets, stars, black holes
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Assumptions

1. The scattering is described by a general coordinate
invariant one particle irreducible (1PI) effective action

– tree amplitudes computed from this give the full quantum
results

2. The vertices do not contribute powers of soft
momentum in the denominator

– breaks down in D=4

In D=4 the results will be valid only at tree level

– to be partially rectified at the end
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Note: In string theory we do not compute amplitudes from
Feynman diagrams

– but we could, using string field theory

– can introduce 1PI effective action exactly as in an
ordinary quantum field theory

The existence of such a 1PI effective action is sufficient for
our analysis

We do not need its explicit form
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Strategy

1. Assume a general form of the gauge invariant 1PI
effective action of the theory

2. Expand the action in powers of all fields, including the
metric fluctuations, around the extremum of the action

– assumed to have zero cosmological constant

3. Require the gauge fixing terms to be manifestly Lorentz
invariant.
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General form of the action + gauge fixing terms

∑
n≥2

∫ n∏
i=1

dDpi

(2π)D (2π)Dδ(D)(p1 + · · ·+ pn) V(n)
α1···αn (p1, · · ·pn)φα1 (p1) · · ·φαn (pn)

{φα}: set of all the fields (in momentum space)

V(n): fixed for a given theory

This action is Lorentz invariant but not general coordinate
invariant since we have gauge fixed.

This action is used to compute vertices and propagators of
finite energy external states but not of soft gravitons.
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4. To calculate the coupling of the soft graviton Sµν to the
rest of the fields, we covariantize the gauge fixed action.

a. Replace the background metric ηµν by ηµν + 2 Sµν

b. Replace all space-time derivatives by covariant
derivatives computed with the metric ηµν + 2 Sµν

⇒ coupling of soft graviton determined from the ‘hard
vertices’ V(n).
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A technical point

We are normally familiar with covariantization in position
space, e.g.

∂a ⇒ E µ
a (∂µ + iωbc

µ Σbc)

E µ
a = δµa − S µ

a : inverse vielbein

ωbc
µ : spin connection , Σbc: Generator of spin

We need to translate this into appropriate operations in
momentum space e.g. by replacing ∂µ by pµ
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This procedure misses terms involving Riemann tensor
computed from the metric ηµν + 2 Sµν

– begins contributing at the subsubleading order

– must be added explicitly for subsubleading order
calculations.

5. Once we have determined the action, we analyze various
amplitudes by representing them as sum over Feynman
diagrams.

We need to compute only tree amplitudes with this action
since we begin with 1PI effective action.
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Notations

We denote the amplitude without the soft graviton by

ε1,α1(p1) . . . εN,αN(pN) Γα1...αN(p1, . . . ,pN)

εi,αi: polarisation tensor of i-th external state

pi: momentum of i-th external state, counted as positive if
ingoing

Γα1···αN includes the δ(D)(p1 + · · ·pN) factor.
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Final result for the amplitude with

– same set of finite energy external states

– a single soft graviton with polarization ε and momentum
k

to subsubleading order in k:

N∏
j=1

εj,αj(pj)
[{

S(0)Γ
}α1...αN

+
{

S(1)Γ
}α1...αN

+
{

S(2)Γ
}α1...αN

]
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{S(0)Γ}α1...αN ≡
N∑

i=1

(pi · k)−1 εab pa
i pb

i Γα1...αN

{
S(1)Γ

}α1...αN
≡

N∑
i=1

(pi · k)−1 εab pa
i kc

(
pb

i
∂

∂pic
− pc

i
∂

∂pib

)
Γα1···αN

+i
N∑

i=1

(pi · k)−1 εab pa
i kc (Σcb) αi

γ Γα1···αi−1γαi+1···αN

Σcb: spin angular momentum

Note: S(0) and S(1) do not depend on V(n)
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{
S(2)Γ

}α1...αN
=

1
2

N∑
i=1

(pi · k)−1εi,αεackbkd[{
pb

i
∂

∂pia
− pa

i
∂

∂pib

}
δ αi
β + i (Σab) αi

β

]
[{

pd
i
∂

∂pic
− pc

i
∂

∂pid

}
δ βγ + i (Σcd) βγ

]
Γα1···αi−1γαi+1···αN

+
1
2

(εabkckd − εadkbkc − εbckdka + εcdkakb)

N∑
i=1

(pi · k)−1 (M(i))
αi
γ;acbd(−pi) Γα1···αi−1γαi+1···αN

M(i): Theory dependent non-universal term
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Multiple soft gravitons to subleading order
Klose, McLoughlin, Nandan, Plefka, Travaglini; Saha

Chakrabarti, Kashyap, Sahoo, A.S, Verma

Take the same set of finite energy particles and M soft
gravitons with polarisation {εr} and momenta {kr}:

Result:

{
N∏

i=1

εi,αi (pi)

} [{
M∏

r=1

S(0)
r

}
Γα1···αN +

M∑
s=1

{
M∏

r=1
r6=s

S(0)
r

} [
S(1)

s Γ
]α1···αN

+
M∑

r,u=1
r<u

{
M∏

s=1
s 6=r,u

S(0)
s

} {
N∑

j=1

{pj · (kr + ku)}−1 M(pj; εr,kr, εu,ku)

}
Γα1···αN

]

S(0)
r ,S(1)

r : Soft factors defined earlier for r-th soft graviton

M: ‘contact term’ 18



M(pi; ε1,k1, ε2,k2)

= (pi · k1)−1(pi · k2)−1

{
− k1 · k2 pi · ε1 · pi pi · ε2 · pi

+ 2 pi · k2 pi · ε1 · pi pi · ε2 · k1 + 2 pi · k1 pi · ε2 · pi pi · ε1 · k2

−2 pi · k1 pi · k2 pi · ε1 · ε2 · pi

}

+ (k1 · k2)−1

{
− (k2 · ε1 · ε2 · pi)(k2 · pi)− (k1 · ε2 · ε1 · pi)(k1 · pi)

+ (k2 · ε1 · ε2 · pi)(k1 · pi) + (k1 · ε2 · ε1 · pi)(k2 · pi)

−εγδ1 ε2γδ(k1 · pi)(k2 · pi)− 2(pi · ε1 · k2)(pi · ε2 · k1)

+(pi · ε2 · pi)(k2 · ε1 · k2) + (pi · ε1 · pi)(k1 · ε2 · k1)

}
.
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Classical limit Weinberg

Strominger, Zhiboedov; Pasterski, Strominger, Zhiboedov

Pate, Raclariu, Strominger

Laddha, A.S.

We take the limit in which

1. Energies of each finite energy external state becomes
large (compared to Mpl)

2. The scattering is such that the total energy radiated is
small compared to the energies of the finite energy
particles.
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In this limit the soft theorem simplifies in many ways

1. We can make the replacement

−i
{

pb
i
∂

∂pia
− pa

i
∂

∂pib

}
δ αβ + (Σab) αβ ⇒ Jab

i δ αβ

where Jab
i is the classical angular momentum of the i-th

external particle

2. The contact termM can be ignored compared to the
other terms

– has more powers of pi in the denominator than the
non-contact terms.
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In this limit the multiple soft theorem takes the form{
M∏

i=1

Sgr(εr,kr)

}
Γα1···αn Sgr = S(0) + S(1) + S(2)

S(0) ≡
N∑

i=1

(pi · k)−1 εab pa
i pb

i

S(1) = i
N∑

i=1

(pi · k)−1 εab pa
i kc Jcb

i

S(2) = −1
2

N∑
i=1

(pi · k)−1εackbkdJab
i Jcd

i + non-universal terms

⇒ Sgr is large in the classical limit.

While working to subsubleading order we can work with large
impact parameter so that the non-universal terms are small
compared to the J J term
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Amplitude: Γsoft ≡
{∏M

r=1 Sgr(εr,kr)
}

Γ

Probability of producing M soft gravitons of

• polarisation ε,

• energy between ω and ω(1 + δ)

• within a solid angle Ω around a unit vector n̂

1
M!
|Γsoft|2 ×

{
1

(2π)D−1
1

2ω
ωD−2 (ω δ) Ω

}M

= |Γ|2 AM/M! ,

A ≡ |Sgr(ε,k)|2 1
(2π)D−1

1
2ω

ωD−2 (ω δ) Ω

≡ 2−D π1−D |Sgr(ε,k)|2ωD−2 Ω δ .

k = −ω(1, n̂)

Note: A is large in the classical limit
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|Γ|2 AM/M!

is maximised at

∂

∂M
ln
{
|Γ|2 AM/M!

}
= 0

Assuming that M is large,

⇒ ∂

∂M
(M ln A−M ln M + M) = 0

⇒ M = A

In the classical limit M is large since A is large

Probability distribution of M is sharply peaked

Note: the value of M does not change if we allow soft
radiation in other bins. 24



no. of gravitons = A =
1

2DπD−1 |Sgr(ε,k)|2ωD−2 Ω δ

Total energy radiated in this bin

Aω =
1

2DπD−1 |Sgr(ε,k)|2ωD−1 Ω δ

This can be related to the radiative part of the metric field

⇒ gives a prediction for the low frequency radiative part of
the metric field during classical scattering

(up to overall phase and gauge transformation)
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Define

h̃αβ(t, ~x) ≡
∫

dt
2π

eiωt(gαβ − ηαβ)/2,

ẽαβ(ω,~x) ≡ h̃αβ(ω,~x)− 1
2
ηαβ h̃

γ

γ (ω,~x)

R ≡ |~x|, n̂ = ~x/|~x| ,

N ≡ eiωR
( ω

2πiR

)(D−2)/2 1
2ω

, k ≡ −ω(1, n̂) .

Then

εαβ ẽαβ(ω,~x) = N Sgr(ε,k) ,

Note: Sgr is determined in terms of initial and final particle
trajectories and spin

– does not require knowledge of the forces operating on the
systems during the scattering. 26



How to keep the energy carried away in radiation small?

– two possibilities.

1. Impact parameter large compared to Schwarzschild radii

– also ensures that in the subsubleading order the J J term
dominates over the non-universal term

2. Probe approximation:

– one object has mass much larger than the other
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Test:

1. Consider a classical scattering of either type

2. Calculate radiative part of the gravitational field

3. Compare with the prediction of the soft theorem

– need to compute Jµνi

If in the far past / future the object has trajectory

xµ = cµi + m−1
i pµi τ

then

Jµνi = (xµi pνi − xνi pµi ) + spin = (cµi pνi − cνi pµi ) + spin
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Examples studied:

1. Multiple inelastic scattering:

The D-momentum is assumed to be conserved at each
vertex.

Total gravitational radiation = sum of contributions from
each leg

– perfect agreement with soft theorem to subsubleading
order.
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2. Coulomb scattering of a light particle by a heavy particle
with impact parameter >> the Schwarzschild radius of the
heavy particle.

a. Assume that the scattering is dominated by the
Coulomb interaction.

b. Compute gravitational radiation due to the energy
momentum tensor of the particles and the electromagnetic
field.

Result agrees perfectly with soft graviton theorem to
subsubleading order.
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D=4

The S-matrix suffers from IR divergence, making soft
factor ill-defined.

However we can still use the radiative part of the
gravitational field during classical scattering to define soft
factor.

Naive guess: Soft factor defined this way is still given by
the same formulæ:

S(0) ≡
N∑

i=1

(pi · k)−1 εab pa
i pb

i

S(1) = i
N∑

i=1

(pi · k)−1 εab pa
i kc Jcb

i

S(2) = −1
2

N∑
i=1

(pi · k)−1εackbkdJab
i Jcd

i + non-universal terms
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Due to long range force on the initial / final trajectories due
to other particles, the trajectory of i-th particle takes the
form:

xµi = cµi + m−1
i pµi τ + bµi ln |τ |

for some constants bµi .

Jµνi = (xµi pνi − xνi pµi ) = (cµi pνi − cνi pµi ) + (bµi pνi − bνi pµi ) ln |τ |

Due to the ln |τ | term, the soft factors do not have well
defined |τ | → ∞ limit
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Next guess: The soft expansion has a lnω−1 term at the
subleading order, given by S(1) with ln |τ | replaced by lnω−1.

ω ≡ k0

S(1) = i
N∑

i=1

(pi · k)−1 εµν pµi kρ Jρνi

= i
N∑

i=1

(pi · k)−1 εµν pµi kρ (bρi pνi − bνi pρi ) lnω−1

+ finite

This has been tested by studying explicit examples of
gravitational radiation during scattering in D=4.
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Example 1: Coulomb scattering of a light particle by a
heavy charged particle at large impact parameter

Ignore effect of gravitation on the scattering but compute
gravitational radiation from the scatterers and
electromagnetic field.

To subleading order the result is in perfect agreement with
soft theorem with ln |τ | replaced by lnω−1
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Example 2: Scattering of a light particle by a
Schwarzschild black hole at large impact parameter Peters

In this case gravity wave is sourced by the particles and
the gravitational field.

Again to subleading order the result is in perfect
agreement with soft theorem with ln |τ | replaced by lnω−1.
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Assuming the validity of the ln |τ | ⇒ lnω−1 rule, we can
write down the classical soft graviton factor for general
gravitational scattering

Sgr =
∑

i

εµνpµi pνi
pi.k

− i
16π

lnω−1
∑

i

εµνpνi kρ
pi.k

∑
j 6=i

ηiηj=1

pj.pi

{(pj.pi)2 −m2
i m2

j }3/2

× (pρj pµi − pµj pρi )
{

2(pj.pi)
2 − 3m2

i m2
j

}
+ finite .

Can we see this from analysis of the S-matrix?
Laddha, Sahoo, A.S., work in progress
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Conclusions

1. Up to subleading order we have universal soft graviton
theorem in all dimensions > 4, for all mass and spin of
external states.

2. At the subsubleading order there still exists a soft
theorem but it is not universal

3. Classical limit of soft theorem determines the low
frequency radiative part of the gravitational field during
classical scattering

4. The ‘classical soft theorem’ is valid also in D=4, but at
the subleading order there is a term ∝ the log of the soft
energy, determined from soft theorem
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Future

Recent interest in soft theorem began by noting its
connection to asymptotic symmetries

Soft theorems hold also in dimensions > 4 where the role
of asymptotic symmetries is less understood

On the other hand soft theorem in four dimensions
undergo modification due to long range interactions

This perhaps indicates that we need better understanding
of asymptotic symmetries, which may then tell us
something useful about quantum gravity
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