Alexander Rokash

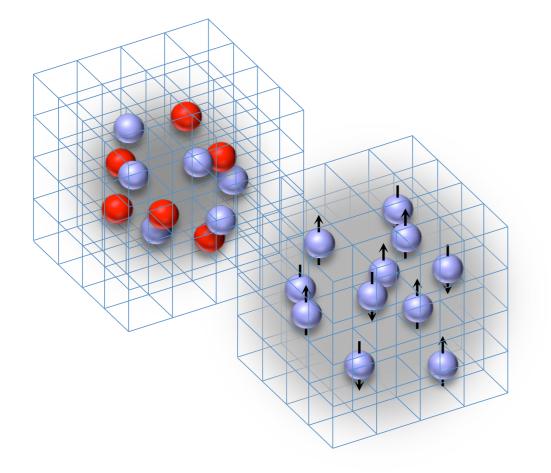
RUB

The 8th International Workshop on Chiral Dynamics, 29 June-03 July 2015

1

Scattering cluster wave functions on the lattice using

the adiabatic projection method



Serdar Elhatisari - Bonn Michelle Pine - NC State Dean Lee - NC State Evgeny Epelbaum - RUB Hermann Krebs - RUB

RUBScattering cluster wave functions on the lattice
using the adiabatic projection method

<u>Outline</u>

- Introduction
- Adiabatic projection method
- Asymptotic cluster wave functions
- One and three dimensional examples
- Summary

Introduction

- CD2015
- Objective: ab initio calculation of scattering and reactions involving two clusters. Processes with alpha-clusters are involved in stellar nucleosynthesis.

Introduction

- Objective: ab initio calculation of scattering and reactions involving two clusters.
 Processes with alpha-clusters are involved in stellar nucleosynthesis.
 - Example: ${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$ (see next talk) $ie + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$ ${}^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O} + \gamma$ ${}^{20}\text{Ne} + {}^{4}\text{He} \rightarrow {}^{24}\text{Mg} + \gamma$ ${}^{20}\text{Ne} + {}^{4}\text{He} \rightarrow {}^{24}\text{Mg} + \gamma$ ${}^{12}\text{C} + {}^{12}\text{C} \rightarrow {}^{20}\text{Ne} + {}^{4}\text{He}$ ${}^{16}\text{O} + {}^{16}\text{O} \rightarrow {}^{28}\text{Si} + {}^{4}\text{He}$

Introduction

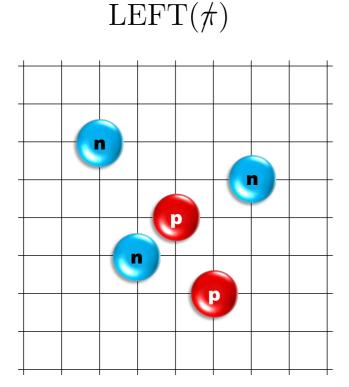
- Objective: ab initio calculation of scattering and reactions involving two clusters.
 Processes with alpha-clusters are involved in stellar nucleosynthesis.
 - **Example**: ${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$
 - Lattice effective field theory $\gamma + \gamma$

 20 Ne + ⁴He \rightarrow ²⁴Mg + γ 12 C + ¹²C \rightarrow ²⁰Ne + ⁴He (see next talk) $e^{4}He^{-3^{12}C+\gamma}$ $^{16}O + {}^{4}He^{-3^{20}Ne+\gamma}$ $^{24}Mg + {}^{4}He^{-3^{28}Si+\gamma}$ $^{16}O + {}^{16}O - {}^{28}Si + {}^{4}He$

Introduction

- Objective: ab initio calculation of scattering and reactions involving two clusters.
 Processes with alpha-clusters are involved in stellar nucleosynthesis.
 - **Example**: ${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$
 - Lattice effective field theory $\gamma + \gamma$

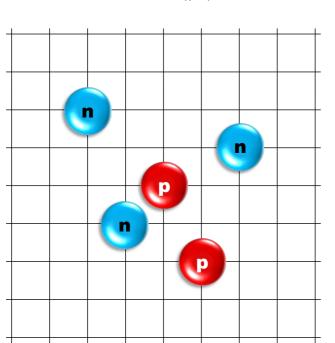
 20 Ne + ⁴He \rightarrow ²⁴Mg + γ 12 C + ¹²C \rightarrow ²⁰Ne + ⁴He (see next talk) $e^{4}He \rightarrow {}^{12}C + \gamma$ ${}^{16}O + {}^{4}He \rightarrow {}^{20}Ne + \gamma$ ${}^{24}Mg + {}^{4}He \rightarrow {}^{28}Si + \gamma$ ${}^{16}O + {}^{16}O \rightarrow {}^{28}Si + {}^{4}He$

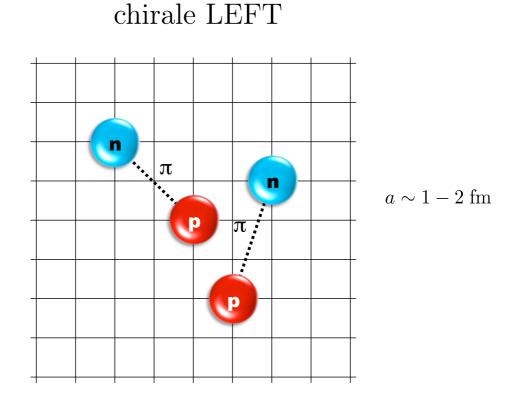


Introduction

- Objective: ab initio calculation of scattering and reactions involving two clusters.
 Processes with alpha-clusters are involved in stellar nucleosynthesis.
 - **Example:** ${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$
 - Lattice effective field theory $\gamma + \gamma$

 20 Ne + ⁴He \rightarrow ²⁴Mg + γ 12 C + ¹²C \rightarrow ²⁰Ne + ⁴He (see next talk) $e^{4}He \rightarrow {}^{12}C + \gamma$ ${}^{16}O + {}^{4}He \rightarrow {}^{20}Ne + \gamma$ ${}^{24}Mg + {}^{4}He \rightarrow {}^{28}Si + \gamma$ ${}^{16}O + {}^{16}O \rightarrow {}^{28}Si + {}^{4}He$



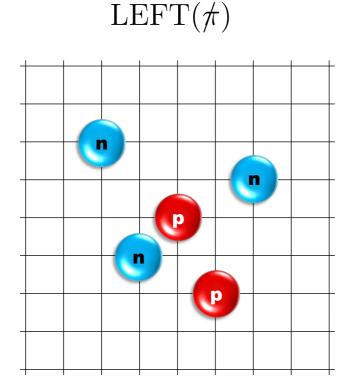


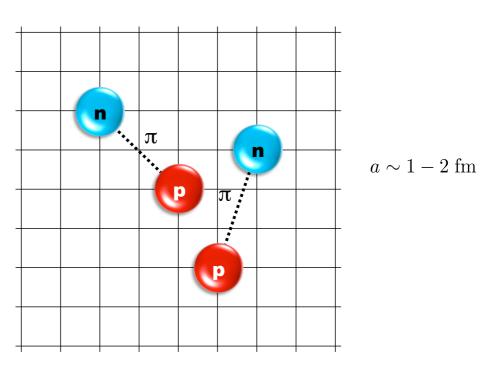
Introduction

- Objective: ab initio calculation of scattering and reactions involving two clusters.
 Processes with alpha-clusters are involved in stellar nucleosynthesis.
 - Example: ${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$ (see next talk) $e + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$
 - Lattice effective field theory $\gamma + \gamma$
 - Direct calculation to computationally demanding $\frac{24}{2}$ Mg/4+1) $\frac{4}{2}$ $\frac{4}{2}$ $\frac{29}{2}$ $\frac{12}{12}$ $C + \frac{12}{12}$ $C \rightarrow \frac{20}{10}$ $Ne + \frac{4}{10}$ He $\frac{16}{10}$ $O \rightarrow \frac{28}{10}$ $Si + \frac{4}{10}$ He

 $C + C \rightarrow Ne + C$

 $^{16}\text{O} + {}^{4}\text{He} \rightarrow {}^{20}\text{Ne} + \gamma$





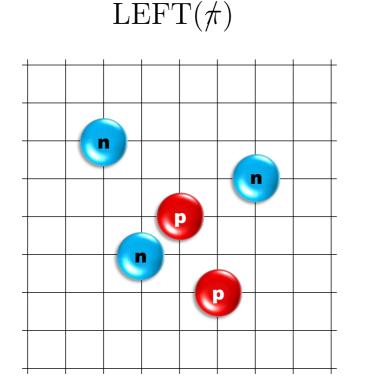
chirale LEFT

Introduction

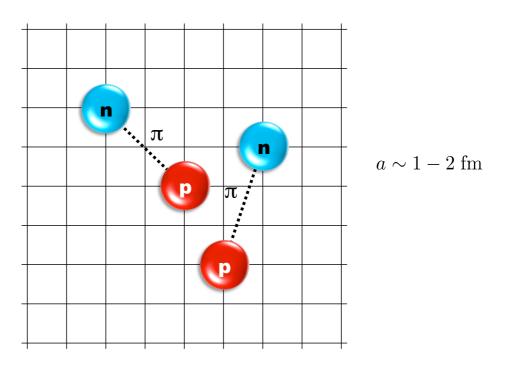
- Objective: ab initio calculation of scattering and reactions involving two clusters.
 Processes with alpha-clusters are involved in stellar nucleosynthesis.
 - Example: ${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$ (see next talk) $e + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$
 - Lattice effective field theory $\gamma + \gamma$
 - Direct calculation to be computationally demanding $Mg^{4+1}Mg^{4+1}$ is $S_{i} + \gamma$
 - Adiabatic projection $\operatorname{method}^{12}$ L^{4}

M. Pine, DCLee and C. Rupak: Eu2 Phys. J. A4(2013) 49: 151 G. Rupak and D. Lee, Phys. Rev. Lett. 111, no. 3 (2013), 032502 S. Elhatisari and D. Lee: Phys. Rev. C 90, no. 6 (2014), 064001

 $^{16}\text{O} + {}^{4}\text{He} \rightarrow {}^{20}\text{Ne} + \gamma$



chirale LEFT

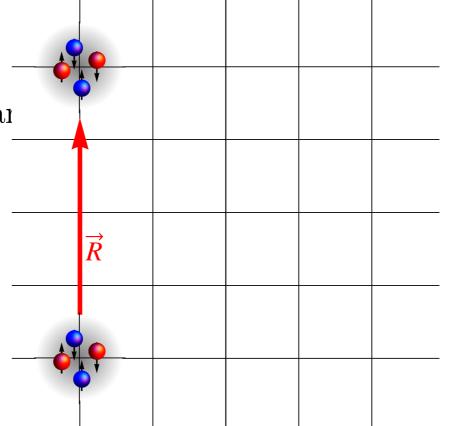


CD2015

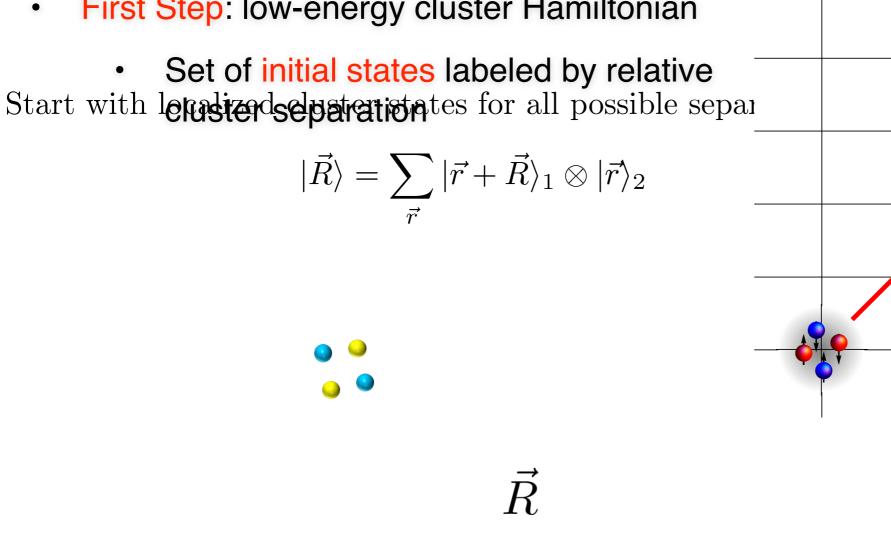
• First Step: low-energy cluster Hamiltonian

• First Step: low-energy cluster Hamiltonian • Set of initial states labeled by relative Start with lowsized separation tes for all possible separation $|\vec{R}\rangle = \sum_{\vec{r}} |\vec{r} + \vec{R}\rangle_1 \otimes |\vec{r}\rangle_2$

RUB



 \vec{R}



RUB

4

 \vec{R}

RUB

• Set of initial states labeled by relative Start with lewsterds eparation tes for all possible separation vectors I

$$ert ec{R}
angle = \sum_{ec{r}} ert ec{r} + ec{R}
angle_1 \otimes ec{r}
angle_2$$

ration vectors
$$\vec{R}$$

4

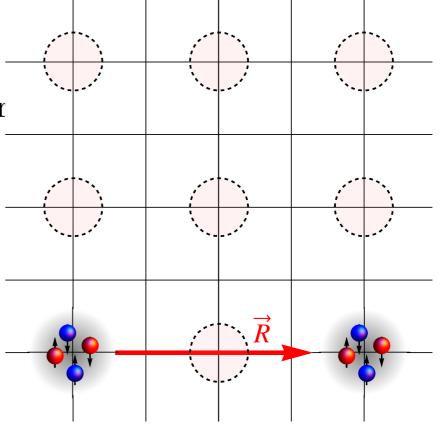
• First Step: low-energy cluster Hamiltonian

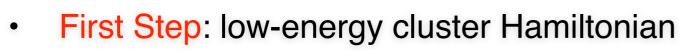
RUB

• Set of initial states labeled by relative Start with lensing departments for all possible separ

$$\vec{R}\rangle = \sum_{\vec{r}} |\vec{r} + \vec{R}\rangle_1 \otimes |\vec{r}\rangle_2$$

 \vec{R}





RUB

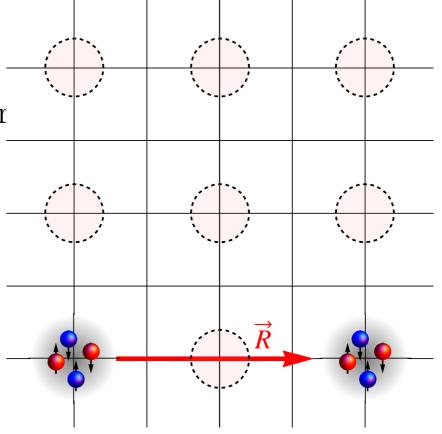
• Set of initial states labeled by relative Start with levelse depatration tes for all possible separ

$$|\vec{R}\rangle = \sum_{\vec{r}} |\vec{r} + \vec{R}\rangle_1 \otimes |\vec{r}\rangle_2$$

 Euclidean time propagation with full microscopic Hamiltonian to calculate dressed cluster states

$$\vec{R}\rangle_{\tau} = \exp(-H\tau)|\vec{R}\rangle$$

 \vec{R}



• First Step: low-energy cluster Hamiltonian

RUB

• Set of initial states labeled by relative Start with lengesterds of all possible separ

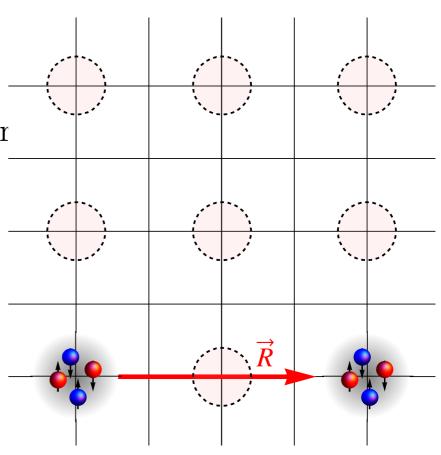
$$|\vec{R}\rangle = \sum_{\vec{r}} |\vec{r} + \vec{R}\rangle_1 \otimes |\vec{r}\rangle_2$$

 Euclidean time propagation with full microscopic Hamiltonian to calculate dressed cluster states

$$\vec{R}\rangle_{\tau} = \exp(-H\tau)|\vec{R}\rangle$$

- The dressed cluster states span the low-energy subspace below the break-up scale of the clusters.
- Adiabatic Hamiltonian:

$$[H^a_{\tau}]_{\vec{R},\vec{R}'} = \sum_{\vec{R}'',\vec{R}'''} \left[\left. {}_{\tau} \langle \vec{R} | \vec{R}'' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | H | \vec{R}''' \rangle_{\tau} \right] \left[\left. {}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{$$



• First Step: low-energy cluster Hamiltonian

RUB

• Set of initial states labeled by relative Start with lengesterds elevented for all possible separ

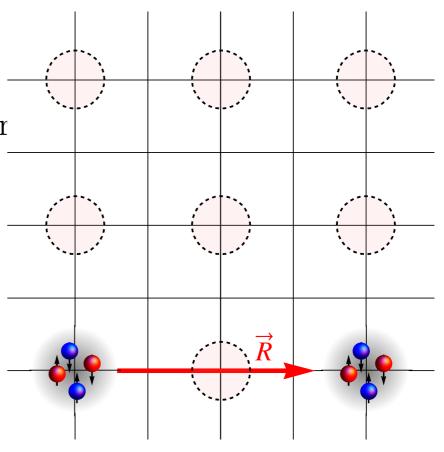
$$|\vec{R}\rangle = \sum_{\vec{r}} |\vec{r} + \vec{R}\rangle_1 \otimes |\vec{r}\rangle_2$$

 Euclidean time propagation with full microscopic Hamiltonian to calculate dressed cluster states

$$\vec{R}\rangle_{\tau} = \exp(-H\tau)|\vec{R}\rangle$$

- The dressed cluster states span the low-energy subspace below the break-up scale of the clusters.
- Adiabatic Hamiltonian:

$$[H^a_{\tau}]_{\vec{R},\vec{R}'} = \sum_{\vec{R}'',\vec{R}'''} \left[\left. {}_{\tau} \langle \vec{R} | \vec{R}'' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | H | \vec{R}''' \rangle_{\tau} \right] \left[\left. {}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[\left. {}_{\tau} \langle \vec{$$



Matrix elements of dressed cluster states

• First Step: low-energy cluster Hamiltonian

RUB

• Set of initial states labeled by relative Start with lengested separation tes for all possible separ

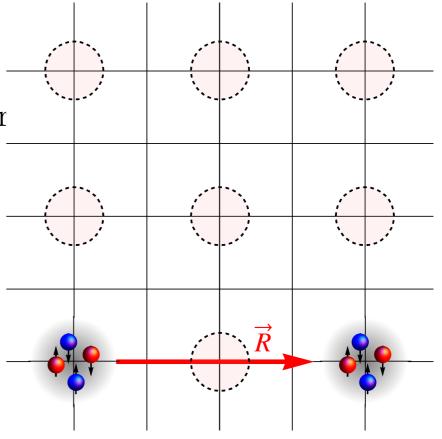
$$|\vec{R}
angle = \sum_{\vec{r}} |\vec{r} + \vec{R}
angle_1 \otimes |\vec{r}
angle_2$$

 Euclidean time propagation with full microscopic Hamiltonian to calculate dressed cluster states

$$\vec{R}\rangle_{\tau} = \exp(-H\tau)|\vec{R}\rangle$$

- The dressed cluster states span the low-energy subspace below the break-up scale of the clusters.
- Adiabatic Hamiltonian:

$$[H^{a}_{\tau}]_{\vec{R},\vec{R}'} = \sum_{\vec{R}'',\vec{R}'''} \begin{bmatrix} \tau \langle \vec{R} | \vec{R}'' \rangle_{\tau} \end{bmatrix}^{-1/2} \bullet \left[\tau \langle \vec{R}'' | H | \vec{R}''' \rangle_{\tau} \right] \begin{bmatrix} \tau \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \end{bmatrix}^{-1/2}$$
Norm matrix
Matrix elements of dressed cluster states



• First Step: low-energy cluster Hamiltonian

RUB

• Set of initial states labeled by relative Start with lengesterds of all possible separ

$$|\vec{R}
angle = \sum_{\vec{r}} |\vec{r} + \vec{R}
angle_1 \otimes |\vec{r}
angle_2$$

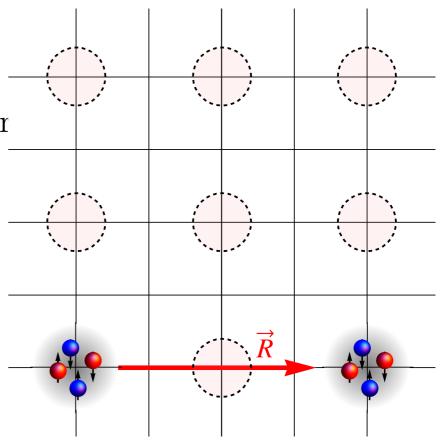
 Euclidean time propagation with full microscopic Hamiltonian to calculate dressed cluster states

$$\vec{R}\rangle_{\tau} = \exp(-H\tau)|\vec{R}\rangle$$

- The dressed cluster states span the low-energy subspace below the break-up scale of the clusters.
- Adiabatic Hamiltonian:

$$[H^{a}_{\tau}]_{\vec{R},\vec{R}'} = \sum_{\vec{R}'',\vec{R}'''} \begin{bmatrix} \tau \langle \vec{R} | \vec{R}'' \rangle_{\tau} \end{bmatrix}^{-1/2} \bullet \left[\tau \langle \vec{R}'' | H | \vec{R}''' \rangle_{\tau} \end{bmatrix} \begin{bmatrix} \tau \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \end{bmatrix}^{-1/2}$$

similar to NCSM
Navratil, Quaglioni, Phys. Rev. C 83, 044609 (2011).
Norm matrix
Norm matrix
Matrix elements of dressed cluster states



• 2 Step: Extracting phase shifts

CD2015

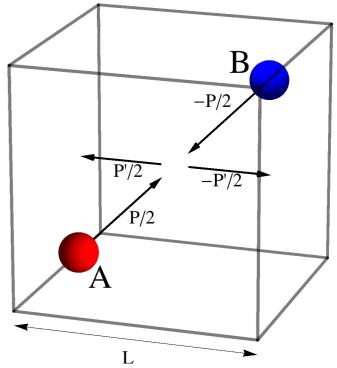
• 2 Step: Extracting phase shifts

RUB

 Lüscher's method: Relation between energy levels in a finite periodic box and the infinite volume scattering phase shifts

M.Lüscher, Commun. Math. Phys. 105 (1986), 153

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta), \quad \eta = \frac{p(L)^2 L^2}{4\pi^2}$$
$$S(\eta) = \lim_{\Lambda \to \infty} \left[\sum_{\vec{k} \in \mathbb{Z}^3} \frac{\theta(\Lambda^2 - \vec{k}^2)}{\vec{k}^2 - \eta} - 4\pi\Lambda \right]$$



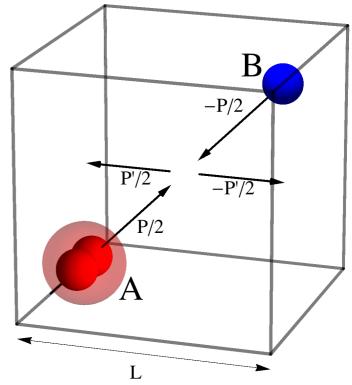
• 2 Step: Extracting phase shifts

RUB

 Lüscher's method: Relation between energy levels in a finite periodic box and the infinite volume scattering phase shifts

M.Lüscher, Commun. Math. Phys. 105 (1986), 153

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta), \quad \eta = \frac{p(L)^2 L^2}{4\pi^2}$$
$$S(\eta) = \lim_{\Lambda \to \infty} \left[\sum_{\vec{k} \in \mathbb{Z}^3} \frac{\theta(\Lambda^2 - \vec{k}^2)}{\vec{k}^2 - \eta} - 4\pi\Lambda \right]$$



CD2015

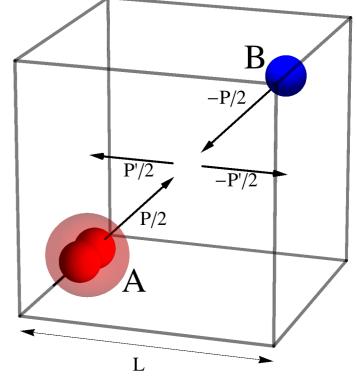
• 2 Step: Extracting phase shifts

RUB

 Lüscher's method: Relation between energy levels in a finite periodic box and the infinite volume scattering phase shifts

M.Lüscher, Commun. Math. Phys. 105 (1986), 153

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta), \quad \eta = \frac{p(L)^2 L^2}{4\pi^2}$$
$$S(\eta) = \lim_{\Lambda \to \infty} \left[\sum_{\vec{k} \in \mathbb{Z}^3} \frac{\theta(\Lambda^2 - \vec{k}^2)}{\vec{k}^2 - \eta} - 4\pi\Lambda \right]$$



 Topological corrections due to cluster character

$$E(p,L) = \frac{p^2}{2\mu} - B_1 - B_2 + \tau_1(\eta)\Delta E_1(L) + \tau_2(\eta)\Delta E_2(L)$$

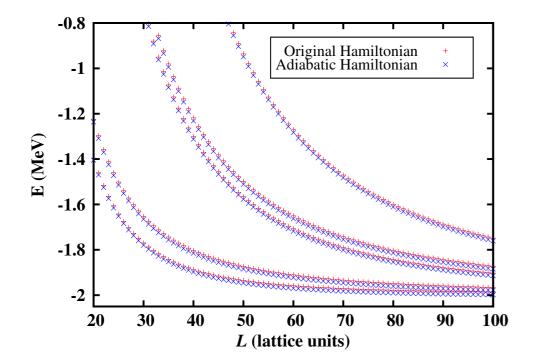
$$\tau(\eta) = \frac{1}{\sum_{\vec{k}} (\vec{k}^2 - \eta)^{-2}} \sum_{\vec{k}} \frac{\sum_{i=1}^3 \cos(2\pi k_i \alpha)}{3(\vec{k}^2 - \eta)^2}$$

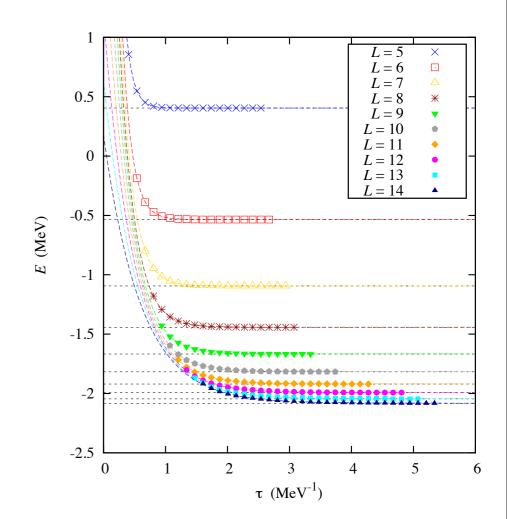
S. Bour, S. König, D. Lee, H.-W. Hammer and U.-G. Meißner, Phys. Rev. D 84 (2011), 091503 S. Bour, H.-W. Hammer, D. Lee and U.-G. Meißner, Phys. Rev. C 86 (2012), 034003

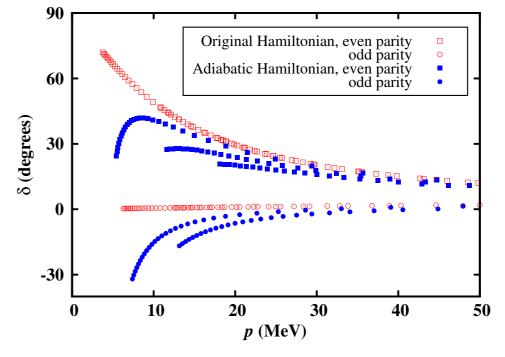
 There is an exponentially small error in energy levels due to Euclidean time projection

RUB

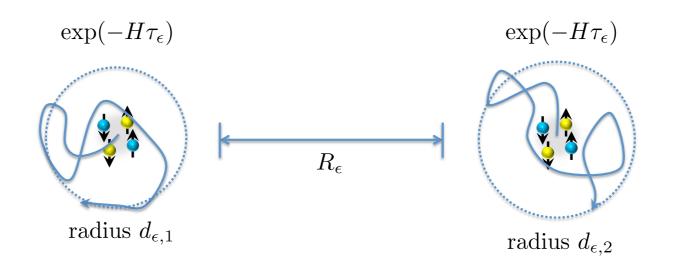
- In larger systems there is a statistical error due to Monte Carlo methods
 - Lüscher's method is unfortunately very sensitive to small errors in energy levels!



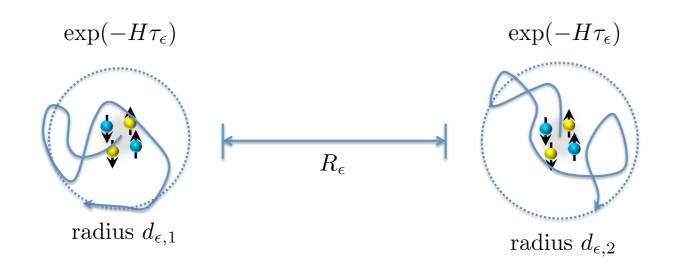




RUB



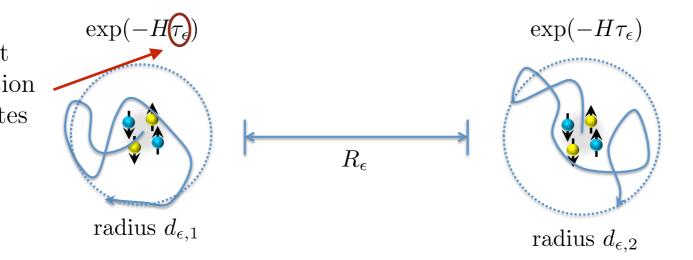
RUB



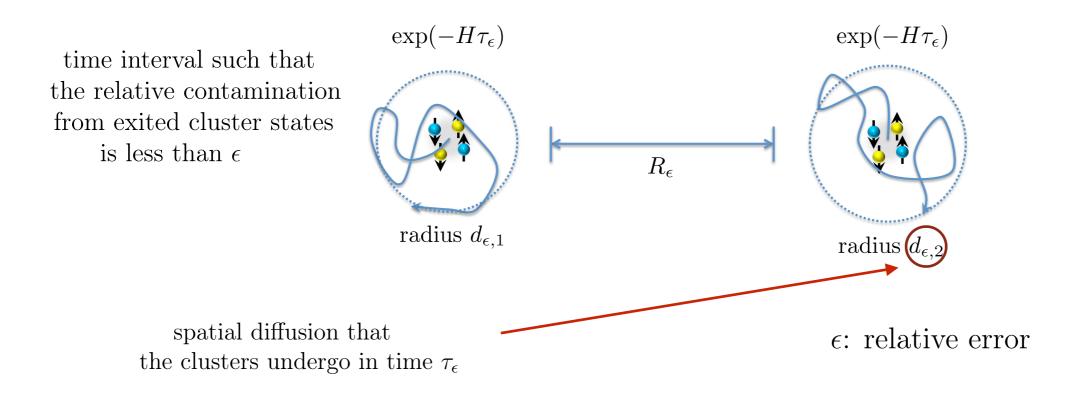
 $\epsilon :$ relative error

time interval such that the relative contamination from exited cluster states is less than ϵ

RUB



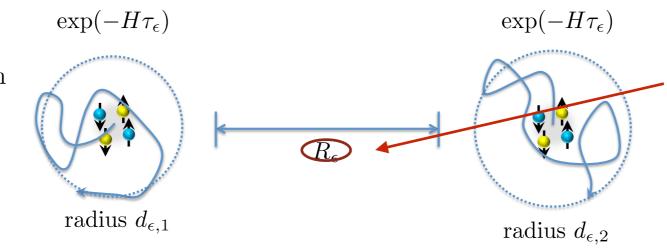
 $\epsilon :$ relative error



RUB

time interval such that the relative contamination from exited cluster states is less than ϵ

RUB



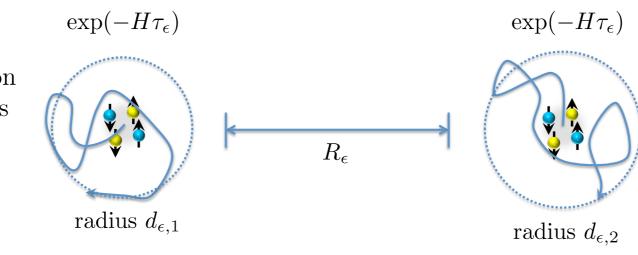
asymptotic distance such that the overlap between clusters is less than ϵ

spatial diffusion that the clusters undergo in time τ_{ϵ}

 $\epsilon:$ relative error

time interval such that the relative contamination from exited cluster states is less than ϵ

RUB



asymptotic distance such that the overlap between clusters is less than ϵ

spatial diffusion that the clusters undergo in time τ_{ϵ}

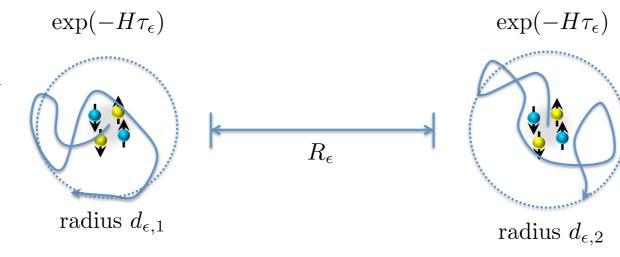
 ϵ : relative error

For $L > R_{\epsilon} \gg d_{\epsilon,1}, d_{\epsilon,2}$ in the asymptotic region $|\vec{R}| > R_{\epsilon}$ the Hamiltonian is similar to a free lattice Hamiltonian H_{eff}

$$[H^a_{\tau}]_{\vec{R},\vec{R}'} = \sum_{\vec{R}'',\vec{R}'''} \left[{}_{\tau} \langle \vec{R} | \vec{R}'' \rangle_{\tau} \right]^{-1/2} \left[{}_{\tau} \langle \vec{R}'' | H | \vec{R}''' \rangle_{\tau} \right] \left[{}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2}$$

time interval such that the relative contamination from exited cluster states is less than ϵ

RUB



asymptotic distance such that the overlap between clusters is less than ϵ

spatial diffusion that the clusters undergo in time τ_{ϵ}

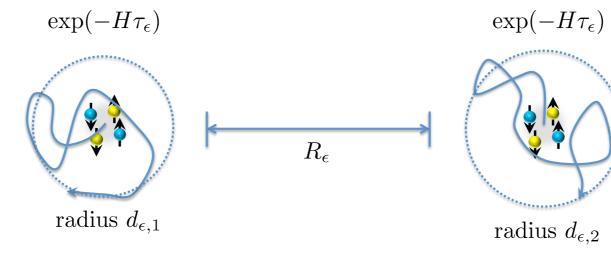
 ϵ : relative error

For $L > R_{\epsilon} \gg d_{\epsilon,1}, d_{\epsilon,2}$ in the asymptotic region $|\vec{R}| > R_{\epsilon}$ the Hamiltonian is similar to a free lattice Hamiltonian H_{eff}

$$[H^a_{\tau}]_{\vec{R},\vec{R}'} = \sum_{\vec{R}'',\vec{R}'''} \left[\begin{array}{c} {}_{\tau} \langle \vec{R} | \vec{R}'' \rangle_{\tau} \end{array} \right]^{-1/2} \left[{}_{\tau} \langle \vec{R}'' | H | \vec{R}''' \rangle_{\tau} \right] \left[{}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[\left[{}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[{}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[{}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[{}_{\tau} \langle \vec{R}''' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \right]^{-1/2} \left[{}_{\tau} \langle \vec{R}'' | \vec{R}' \rangle_{\tau} \right]^{-1/2} \left[{}_{\tau} \langle \vec{R}' | \vec{R}' \rangle_{\tau} \right$$

time interval such that the relative contamination from exited cluster states is less than ϵ

RUB



asymptotic distance such that the overlap between clusters is less than ϵ

spatial diffusion that the clusters undergo in time τ_{ϵ}

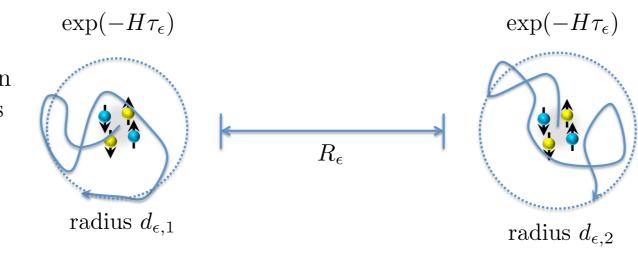
 ϵ : relative error

For $L > R_{\epsilon} \gg d_{\epsilon,1}, d_{\epsilon,2}$ in the asymptotic region $|\vec{R}| > R_{\epsilon}$ the Hamiltonian is similar to a free lattice Hamiltonian H_{eff}

$$[H^{a}_{\tau}]_{\vec{R},\vec{R}'} = \sum_{\vec{R}'',\vec{R}'''} \left[\langle \vec{R} | e^{-2H_{\text{eff}}\tau} | \vec{R}'' \rangle \right]^{-\frac{1}{2}} \langle \vec{R''} | e^{-H_{\text{eff}}\tau} H_{\text{eff}} e^{-H_{\text{eff}}\tau} | \vec{R}''' \rangle \left[\langle \vec{R}''' | e^{-2H_{\text{eff}}\tau} | \vec{R}' \rangle \right]^{-\frac{1}{2}}$$

time interval such that the relative contamination from exited cluster states is less than ϵ

RUB



asymptotic distance such that the overlap between clusters is less than ϵ

spatial diffusion that the clusters undergo in time τ_{ϵ}

 ϵ : relative error

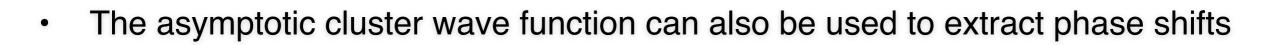
For $L > R_{\epsilon} \gg d_{\epsilon,1}, d_{\epsilon,2}$ in the asymptotic region $|\vec{R}| > R_{\epsilon}$ the Hamiltonian is similar to a free lattice Hamiltonian H_{eff}

$$[H^a_{\tau}]_{\vec{R},\vec{R}'} = [H_{\text{eff}}]_{\vec{R},\vec{R}'}$$

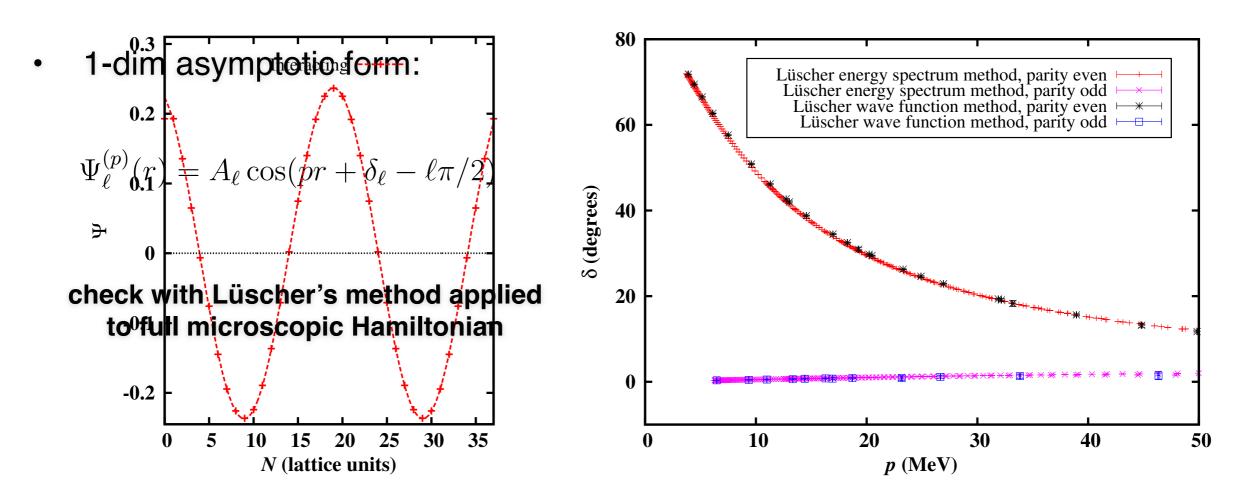
• The asymptotic cluster wave function can also be used to extract phase shifts

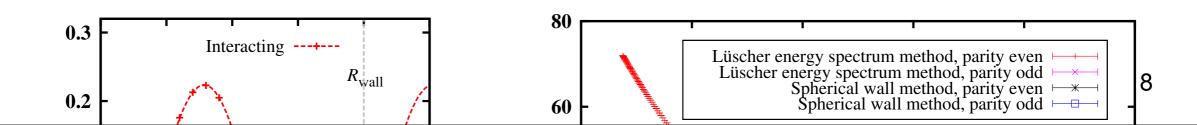
- The asymptotic cluster wave function can also be used to extract phase shifts
 - 1-dim asymptotic form:

 $\Psi_{\ell}^{(p)}(r) = A_{\ell} \cos(pr + \delta_{\ell} - \ell\pi/2)$

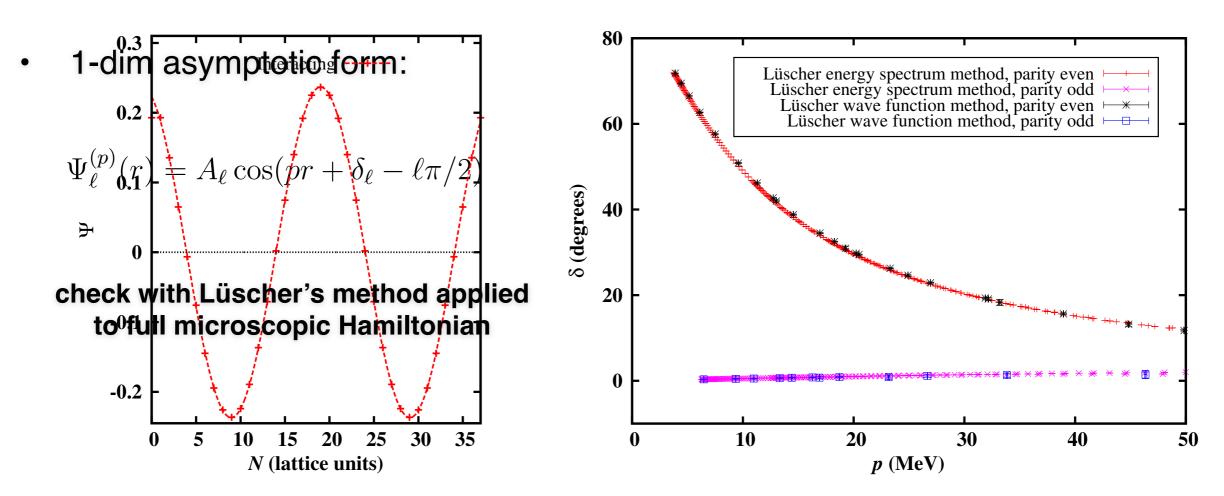


RUB



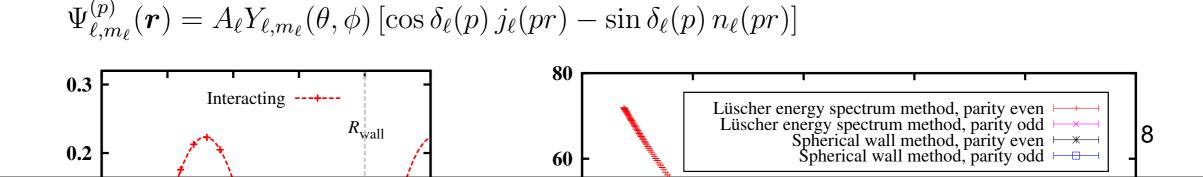


Asymptotic cluster wave functions (II)



• 3-dim asymptotic form:

RUB

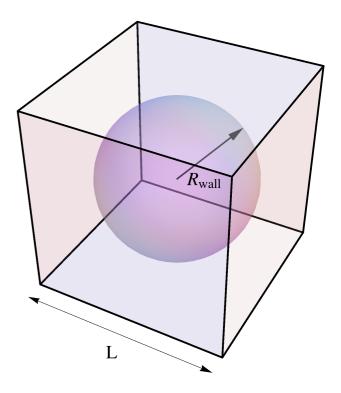


RUB

Spherical wall method (I)

• Impose a hard wall on the relative separation of two point-like particles and fit it to the asymptotic form

Borasoy, Epelbaum, Krebs, Lee, Meißner, EPJA 34 (2007) 185

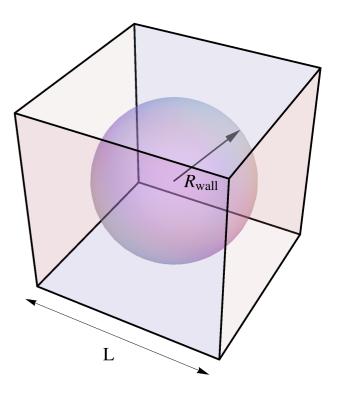


 Impose a hard wall on the relative separation of two point-like particles and fit it to the asymptotic form

Borasoy, Epelbaum, Krebs, Lee, Meißner, EPJA 34 (2007) 185

• 3-parameter fit:

RUB

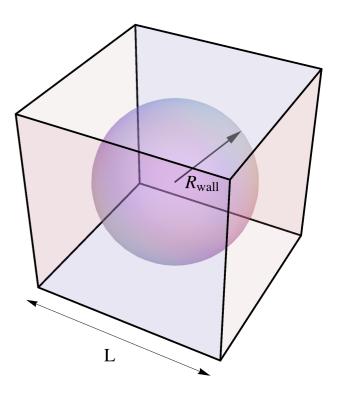


 Impose a hard wall on the relative separation of two point-like particles and fit it to the asymptotic form

Borasoy, Epelbaum, Krebs, Lee, Meißner, EPJA 34 (2007) 185

• 3-parameter fit:

RUB



 Impose a hard wall on the relative separation of two point-like particles and fit it to the asymptotic form

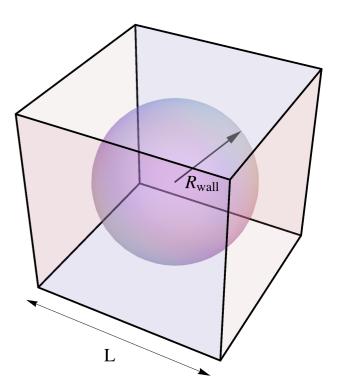
Borasoy, Epelbaum, Krebs, Lee, Meißner, EPJA 34 (2007) 185

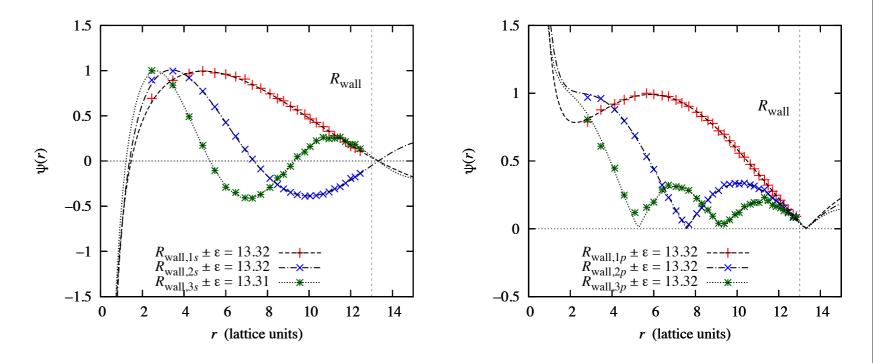
• 3-parameter fit:

RUB

 $\Psi_{\ell}^{(p)}(r) = A_{\ell} \cos(pr + \delta_{\ell} - \ell\pi/2)$

Observation: R_{wall}'= R_{wall} + ε changes very little





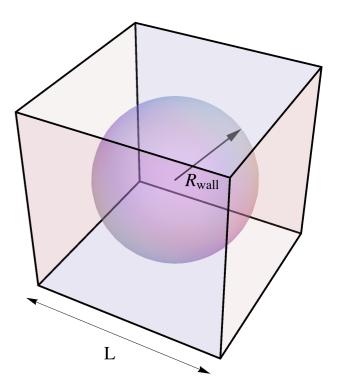
 Impose a hard wall on the relative separation of two point-like particles and fit it to the asymptotic form

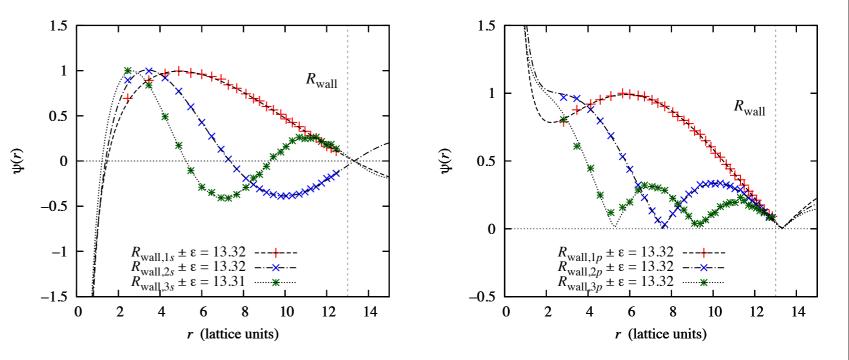
Borasoy, Epelbaum, Krebs, Lee, Meißner, EPJA 34 (2007) 185

• 3-parameter fit:

RUB

- Observation: R_{wall}'= R_{wall} + ε changes very little
- 2-parameter fit:





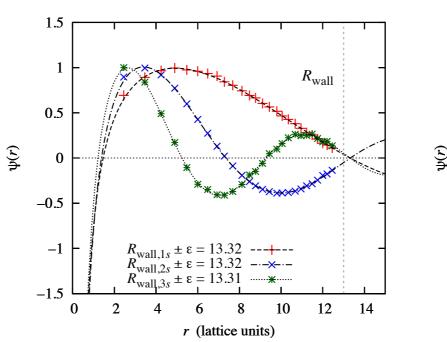
 Impose a hard wall on the relative separation of two point-like particles and fit it to the asymptotic form

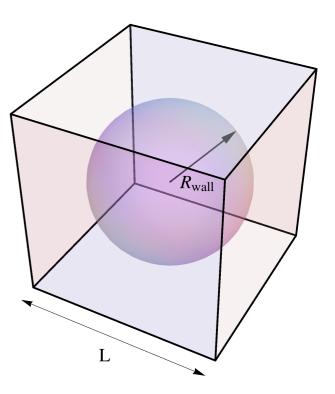
Borasoy, Epelbaum, Krebs, Lee, Meißner, EPJA 34 (2007) 185

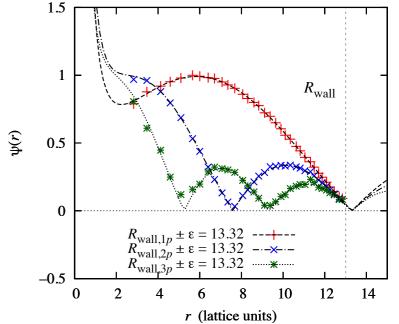
• 3-parameter fit:

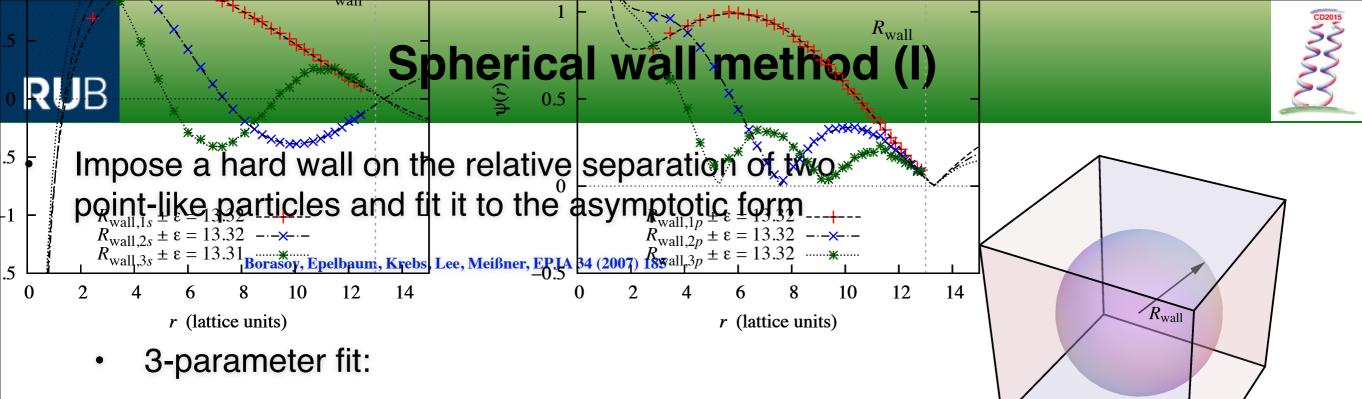
RUB

- Observation: R_{wall}'= R_{wall} + ε changes very little
- 2-parameter fit:
 - determine R_{wall}' from non-interacting system





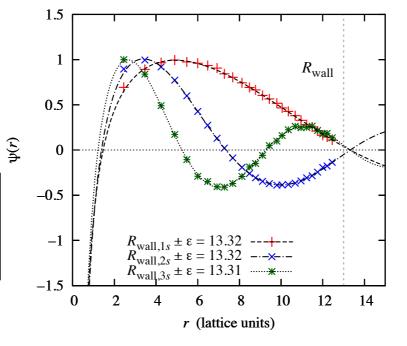


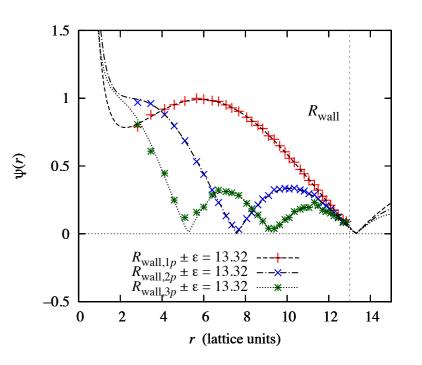


$$\Psi_{\ell}^{(p)}(r) = A_{\ell} \cos(pr + \delta_{\ell} - \ell\pi/2)$$

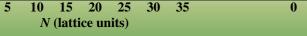
- Observation: R_{wall}'= R_{wall} + ε changes very little
- 2-parameter fit:
 - determine R_{wall}' from non-interacting system

$$\delta_{\ell}(p) = \begin{cases} -pR'_{\text{wall}} + \frac{\pi(\ell+1)}{2} \mod \pi\\ \tan^{-1} \left[\frac{j_{\ell}(pR'_{\text{wall}}/a)}{n_{\ell}(pR'_{\text{wall}}/a)} \right] \end{cases} \mod \pi$$





L



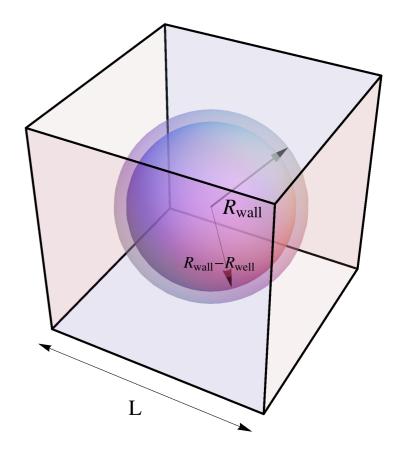
p (MeV)



 one disadvantage of the spherical wall method are large R_{wall} and L for low energies

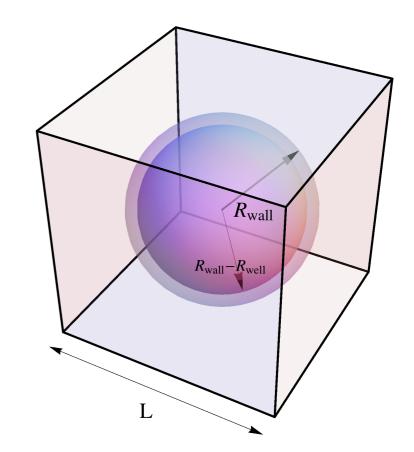
RUB

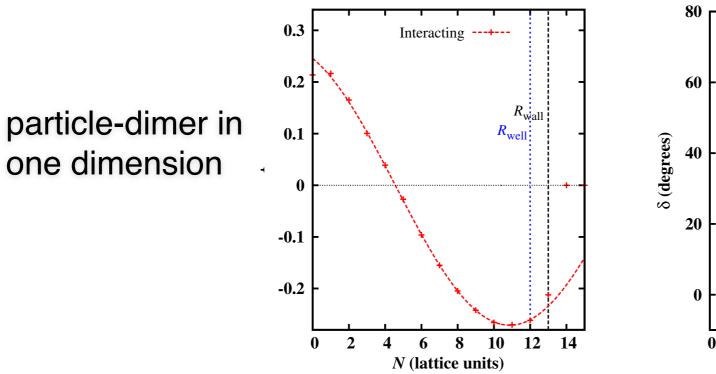
- one disadvantage of the spherical wall method are large R_{wall} and L for low energies
- additional attractive potential in front of the wall boundary to calculate phase shifts for low energies using small lattices

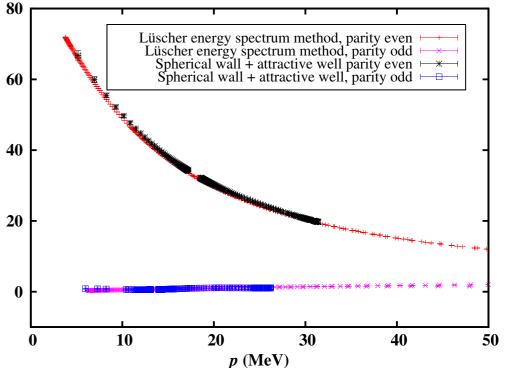


RUB

- one disadvantage of the spherical wall method are large R_{wall} and L for low energies
- additional attractive potential in front of the wall boundary to calculate phase shifts for low energies using small lattices







Summary and Outlook

• The adiabatic Hamiltonian reduces in the asymptotic region to a simple cluster Hamiltonian in a position space basis

- The adiabatic Hamiltonian reduces in the asymptotic region to a simple cluster Hamiltonian in a position space basis
- Thus the asymptotic cluster wave functions have the same asymptotics like point-particle wave function.

- The adiabatic Hamiltonian reduces in the asymptotic region to a simple cluster Hamiltonian in a position space basis
- Thus the asymptotic cluster wave functions have the same asymptotics like point-particle wave function.
- The phase shifts can be directly extracted using simple wave function methods

- The adiabatic Hamiltonian reduces in the asymptotic region to a simple cluster Hamiltonian in a position space basis
- Thus the asymptotic cluster wave functions have the same asymptotics like point-particle wave function.
- The phase shifts can be directly extracted using simple wave function methods
- In future calculations very-high-precision energy calculations are not necessary (and difficult due to Monte Carlo techniques)

- The adiabatic Hamiltonian reduces in the asymptotic region to a simple cluster Hamiltonian in a position space basis
- Thus the asymptotic cluster wave functions have the same asymptotics like point-particle wave function.
- The phase shifts can be directly extracted using simple wave function methods
- In future calculations very-high-precision energy calculations are not necessary (and difficult due to Monte Carlo techniques)

Thank you for your attention!