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 Introduction

• Objective: ab initio calculation of scattering and reactions involving two clusters. 
Processes with alpha-clusters are involved in stellar nucleosynthesis.
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Science objectives 

Ab initio calculations of scattering and reactions relevant to 
alpha processes in stellar evolution and Type Ia supernovae 

Challenges 

How to reduce computational scaling with number of nucleons in 
participating nuclei?  Can we provide useful ab initio input for 
halo/cluster EFT calculations? 
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Grundlagen der Quantenmechanik und Statistik,
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Anwesenheitsaufgaben
Blatt 7

1 Drehimpuls Operatoren

LEFT(/⇡) (1.1)

In der Vorlesung wurde der Drehimpulsoperator definiert als ˆLj = �i~
P
kl
✏jklrk

@
@rl

. Zeige die

folgenden Beziehungen

a. Den Kommutator:
h
ˆLi, ˆLj

i
= i~

X

k

✏ijk ˆLk.

b. Das Quadrat des Drehimpulsoperators:

ˆ~L2
=

ˆ~r2ˆ~p2 � (

ˆ~r · ˆ~p)2 + i~ˆ~r · ˆ~p.

c. Die Relation für den Fall, dass ˆ~a, ˆ~b und ˆ~L untereinander kommutieren.
h
ˆ~a · ˆ~L,ˆ~b · ˆ~L

i
= i~

⇣
ˆ~a⇥ ˆ~b

⌘
· ˆ~L.

2 Rotator

Betrachte den Hamiltonoperator ˆH =

1
2J

ˆ~L2, wobei J das Trägheitsmoment ist.

a. Berechne die Eigenwerte, Eigenfunktionen und Entartungsgrade.

b. Gib die Wahrscheinlichkeitsdichte, ausgedrückt in Kugelkoordinaten, des Eigenzustandes
zu ˆ~L2 und ˆLz mit den Eigenwerten l = 1 und mz = 1 an.

c. Zu einem bestimmten Zeitpunkt sei die Wellenfunktion bekannt

 (✓,�) = ↵
�
cos

2 ✓ + sin

2 ✓ cos 2�
�

Mit welcher Wahrscheinlichkeit liefert eine Messung von ˆ~L2 die Werte 6~2, 2~2, 0?

d. Mit welcher Wahrscheinlichkeit ergibt die gleichzeitige Messung von ˆ~L2 und ˆLz das Wertepaar
(6~2,�2~)?

• Example:                                              (see next talk)

• Lattice effective field theory!
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2

systems [16–18]. In this paper we concentrate on the adiabatic projection method for cal-
culating nuclear reactions from lattice simulations in the framework of chiral e↵ective field
theory (EFT). See [19–22] for some recent results using lattice EFT. The general strategy
in the adiabatic projection formalism as formulated in the pioneering work [23–25] involves
two steps. First, one uses the Euclidean time projection method to determine an adiabatic
Hamiltonian for the participating nuclei starting from the microscopic Hamiltonian derived
in chiral EFT. In the second step, one uses a technique such as Lüscher’s finite-volume
method [26, 27] to extract the corresponding scattering phase shifts [24] .

The adiabatic projection formalism has been successfully benchmarked against continuum
calculations for fermion-dimer scattering. However for heavier systems, Lüscher’s finite-
volume energy approach for extracting scattering phase shifts is expected to su↵er from
potentially large errors due to stochastic and systematic uncertainties in the lattice Monte
Carlo energies. In this paper, we explore various techniques to access scattering on the
lattice that do not require a high-accuracy determination of the energy spectrum. For
simple three-body systems in one and three dimensions, we demonstrate that scattering
phase shifts can be reliably extracted from the asymptotic cluster wave functions within the
adiabatic projection method.

Our paper is organized as follows. We begin with introducing the adiabatic projection
method in some detail in section II. Section III describes Lüscher’s finite volume method,
while section IV describes the extraction of the asymptotic cluster wave functions on the
lattice. The microscopic Hamiltonian used in our work is specified in section V, which also
provides details on the computation of the adiabatic Hamiltonian. Various approaches for
extracting the two-cluster elastic scattering phase shifts in one and three spatial dimensions
on the lattice are introduced and applied in sections VI and VII, respectively. Finally, the
main results of our study are summarized in section VIII.

II. THE ADIABATIC PROJECTION METHOD

The adiabatic projection method treats the cluster-cluster scattering problem on the lattice
by using Euclidean time projection to determine an adiabatic Hamiltonian for the partici-
pating clusters. When the temporal lattice spacing is nonzero, an adiabatic transfer matrix
rather than the Hamiltonian is constructed, but the method is essentially the same. We
start with an L3 periodic lattice and set of two-cluster states |~Ri labeled by their separation
vector ~R, as illustrated in Fig. 1. In general, there are spin and flavor indices for these states,
but we suppress writing the indices for notational simplicity. The exact form of these two-
cluster states is not important except that they are localized so that for large separations
they factorize as a tensor product of two individual clusters,

|~Ri =
X

~r

|~r + ~Ri1 ⌦ |~ri2. (1)

These states are propagated in Euclidean time to form dressed cluster states,

|~Ri⌧ = exp(�H⌧)|~Ri. (2)

17"

• Euclidean time propagation with full 
microscopic Hamiltonian to calculate 
dressed cluster states

• First Step: low-energy cluster Hamiltonian

• Set of initial states labeled by relative 
cluster separation
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3

From this a Hermitian adiabatic Hamiltonian matrix can be defined using the inverse square root
of the norm matrix,

[Ha
⌧ ]~R,~R0 =

X

~R00,~R000

h

⌧ h~R|~R00i⌧
i

�1/2 h

⌧ h~R00|H|~R000i⌧
i h

⌧ h~R000|~R0i⌧
i

�1/2

. (1.5)

[Ha
⌧ ]~R,~R0 =

X

~R00,~R000

⇥

N�1/2
⌧

⇤

~R,~R00 [H⌧ ]~R00,~R000

⇥

N�1/2
⌧

⇤

~R000,~R0 . (1.6)

In the limit of large ⌧ , the spectrum of Ha
⌧ exactly reproduces the low-energy finite volume spec-

trum of our microscropic Hamiltonian H . So for elastic phase shifts, one can take the spectrum of
Ha

⌧ and apply the finite-volume scaling analysis developed by Lüscher [1, 2]. We give the details
of such calculations later in our discussion.

Lüscher’s method is a useful and commonly used tool for calculating scattering parameters.
For examples of recent extensions and generalizations of Lüscher’s original work see [3–11]. The
simple elegance of Lüscher’s method is that all of the information regarding scattering phase shifts
is encoded into finite-volume energy values. This simplicity can however be a weakness when
applied to scattering processes of relevance to low-energy nuclear physics. The problem is that
the binding energies of the scattering nuclei can be anywhere from a few MeV to tens or hundreds
of MeV, while the shifts in scattering energy can be as small as a few keV. The problem is even
more difficult in lattice QCD calculations where the rest energy of the nucleons are also part of the
calculations.

So while the scattering data is encoded in the finite-volume energy and waiting to be extracted,
the finite-volume energy value is prone to several potentially large sources of error. In Fig. 2 we
show the lowest-lying energy state for a dimer-fermion system versus projection time ⌧ for various
L3 periodic lattices. The dimer energy is �2.2246 MeV and the lattice spacing is 1.97 fm. We
consider this example in detail later in our discussion. The point we emphasize here is that in order
to measure the S-wave scattering phase shift to an error of a few degrees, we need to measure the
finite-volume energy to an accuracy of about 10 keV. In this simple three-particle calculation we
are using exact matrix methods, and there are no stochastic errors. However in a typical large-scale
Monte Carlo calculation there are stochastic errors that grow exponentially with projection time
⌧ . In addition to these issues, there are also corrections to the binding energies of the scattering
nuclei due to the finite volume [12–16].

In view of the problems with finite-volume energy calculations for low-energy nuclear scat-
tering, we introduce in this paper another approach to extracting scattering phase shifts which
directly analyzes cluster wave functions generated by the adiabatic Hamiltonian. This approach
has the advantage of being far less sensitive to small errors in reproducing the binding energy and
detailed structure of the participating nuclei.

II. ASYMPTOTIC CLUSTER WAVE FUNCTIONS

In order to explain the various time and length scales for our asymptotic wave function analysis,
it is useful to first specify a relative error tolerance, ✏, for all steps in our cluster-cluster scattering
calculation. As we project to large Euclidean time, the dressed cluster states for very widely
separated clusters are simply two non-overlapping wave packets with less and less contamination
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systems [16–18]. In this paper we concentrate on the adiabatic projection method for cal-
culating nuclear reactions from lattice simulations in the framework of chiral e↵ective field
theory (EFT). See [19–22] for some recent results using lattice EFT. The general strategy
in the adiabatic projection formalism as formulated in the pioneering work [23–25] involves
two steps. First, one uses the Euclidean time projection method to determine an adiabatic
Hamiltonian for the participating nuclei starting from the microscopic Hamiltonian derived
in chiral EFT. In the second step, one uses a technique such as Lüscher’s finite-volume
method [26, 27] to extract the corresponding scattering phase shifts [24] .

The adiabatic projection formalism has been successfully benchmarked against continuum
calculations for fermion-dimer scattering. However for heavier systems, Lüscher’s finite-
volume energy approach for extracting scattering phase shifts is expected to su↵er from
potentially large errors due to stochastic and systematic uncertainties in the lattice Monte
Carlo energies. In this paper, we explore various techniques to access scattering on the
lattice that do not require a high-accuracy determination of the energy spectrum. For
simple three-body systems in one and three dimensions, we demonstrate that scattering
phase shifts can be reliably extracted from the asymptotic cluster wave functions within the
adiabatic projection method.

Our paper is organized as follows. We begin with introducing the adiabatic projection
method in some detail in section II. Section III describes Lüscher’s finite volume method,
while section IV describes the extraction of the asymptotic cluster wave functions on the
lattice. The microscopic Hamiltonian used in our work is specified in section V, which also
provides details on the computation of the adiabatic Hamiltonian. Various approaches for
extracting the two-cluster elastic scattering phase shifts in one and three spatial dimensions
on the lattice are introduced and applied in sections VI and VII, respectively. Finally, the
main results of our study are summarized in section VIII.

II. THE ADIABATIC PROJECTION METHOD

The adiabatic projection method treats the cluster-cluster scattering problem on the lattice
by using Euclidean time projection to determine an adiabatic Hamiltonian for the partici-
pating clusters. When the temporal lattice spacing is nonzero, an adiabatic transfer matrix
rather than the Hamiltonian is constructed, but the method is essentially the same. We
start with an L3 periodic lattice and set of two-cluster states |~Ri labeled by their separation
vector ~R, as illustrated in Fig. 1. In general, there are spin and flavor indices for these states,
but we suppress writing the indices for notational simplicity. The exact form of these two-
cluster states is not important except that they are localized so that for large separations
they factorize as a tensor product of two individual clusters,

|~Ri =
X

~r

|~r + ~Ri1 ⌦ |~ri2. (1)

These states are propagated in Euclidean time to form dressed cluster states,

|~Ri⌧ = exp(�H⌧)|~Ri. (2)
3

From this a Hermitian adiabatic Hamiltonian matrix can be defined using the inverse square root
of the norm matrix,

[Ha
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In the limit of large ⌧ , the spectrum of Ha
⌧ exactly reproduces the low-energy finite volume spec-

trum of our microscropic Hamiltonian H . So for elastic phase shifts, one can take the spectrum of
Ha

⌧ and apply the finite-volume scaling analysis developed by Lüscher [1, 2]. We give the details
of such calculations later in our discussion.

Lüscher’s method is a useful and commonly used tool for calculating scattering parameters.
For examples of recent extensions and generalizations of Lüscher’s original work see [3–11]. The
simple elegance of Lüscher’s method is that all of the information regarding scattering phase shifts
is encoded into finite-volume energy values. This simplicity can however be a weakness when
applied to scattering processes of relevance to low-energy nuclear physics. The problem is that
the binding energies of the scattering nuclei can be anywhere from a few MeV to tens or hundreds
of MeV, while the shifts in scattering energy can be as small as a few keV. The problem is even
more difficult in lattice QCD calculations where the rest energy of the nucleons are also part of the
calculations.

So while the scattering data is encoded in the finite-volume energy and waiting to be extracted,
the finite-volume energy value is prone to several potentially large sources of error. In Fig. 2 we
show the lowest-lying energy state for a dimer-fermion system versus projection time ⌧ for various
L3 periodic lattices. The dimer energy is �2.2246 MeV and the lattice spacing is 1.97 fm. We
consider this example in detail later in our discussion. The point we emphasize here is that in order
to measure the S-wave scattering phase shift to an error of a few degrees, we need to measure the
finite-volume energy to an accuracy of about 10 keV. In this simple three-particle calculation we
are using exact matrix methods, and there are no stochastic errors. However in a typical large-scale
Monte Carlo calculation there are stochastic errors that grow exponentially with projection time
⌧ . In addition to these issues, there are also corrections to the binding energies of the scattering
nuclei due to the finite volume [12–16].

In view of the problems with finite-volume energy calculations for low-energy nuclear scat-
tering, we introduce in this paper another approach to extracting scattering phase shifts which
directly analyzes cluster wave functions generated by the adiabatic Hamiltonian. This approach
has the advantage of being far less sensitive to small errors in reproducing the binding energy and
detailed structure of the participating nuclei.

II. ASYMPTOTIC CLUSTER WAVE FUNCTIONS

In order to explain the various time and length scales for our asymptotic wave function analysis,
it is useful to first specify a relative error tolerance, ✏, for all steps in our cluster-cluster scattering
calculation. As we project to large Euclidean time, the dressed cluster states for very widely
separated clusters are simply two non-overlapping wave packets with less and less contamination
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systems [16–18]. In this paper we concentrate on the adiabatic projection method for cal-
culating nuclear reactions from lattice simulations in the framework of chiral e↵ective field
theory (EFT). See [19–22] for some recent results using lattice EFT. The general strategy
in the adiabatic projection formalism as formulated in the pioneering work [23–25] involves
two steps. First, one uses the Euclidean time projection method to determine an adiabatic
Hamiltonian for the participating nuclei starting from the microscopic Hamiltonian derived
in chiral EFT. In the second step, one uses a technique such as Lüscher’s finite-volume
method [26, 27] to extract the corresponding scattering phase shifts [24] .

The adiabatic projection formalism has been successfully benchmarked against continuum
calculations for fermion-dimer scattering. However for heavier systems, Lüscher’s finite-
volume energy approach for extracting scattering phase shifts is expected to su↵er from
potentially large errors due to stochastic and systematic uncertainties in the lattice Monte
Carlo energies. In this paper, we explore various techniques to access scattering on the
lattice that do not require a high-accuracy determination of the energy spectrum. For
simple three-body systems in one and three dimensions, we demonstrate that scattering
phase shifts can be reliably extracted from the asymptotic cluster wave functions within the
adiabatic projection method.

Our paper is organized as follows. We begin with introducing the adiabatic projection
method in some detail in section II. Section III describes Lüscher’s finite volume method,
while section IV describes the extraction of the asymptotic cluster wave functions on the
lattice. The microscopic Hamiltonian used in our work is specified in section V, which also
provides details on the computation of the adiabatic Hamiltonian. Various approaches for
extracting the two-cluster elastic scattering phase shifts in one and three spatial dimensions
on the lattice are introduced and applied in sections VI and VII, respectively. Finally, the
main results of our study are summarized in section VIII.

II. THE ADIABATIC PROJECTION METHOD

The adiabatic projection method treats the cluster-cluster scattering problem on the lattice
by using Euclidean time projection to determine an adiabatic Hamiltonian for the partici-
pating clusters. When the temporal lattice spacing is nonzero, an adiabatic transfer matrix
rather than the Hamiltonian is constructed, but the method is essentially the same. We
start with an L3 periodic lattice and set of two-cluster states |~Ri labeled by their separation
vector ~R, as illustrated in Fig. 1. In general, there are spin and flavor indices for these states,
but we suppress writing the indices for notational simplicity. The exact form of these two-
cluster states is not important except that they are localized so that for large separations
they factorize as a tensor product of two individual clusters,

|~Ri =
X
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|~r + ~Ri1 ⌦ |~ri2. (1)

These states are propagated in Euclidean time to form dressed cluster states,

|~Ri⌧ = exp(�H⌧)|~Ri. (2)
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From this a Hermitian adiabatic Hamiltonian matrix can be defined using the inverse square root
of the norm matrix,
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In the limit of large ⌧ , the spectrum of Ha
⌧ exactly reproduces the low-energy finite volume spec-

trum of our microscropic Hamiltonian H . So for elastic phase shifts, one can take the spectrum of
Ha

⌧ and apply the finite-volume scaling analysis developed by Lüscher [1, 2]. We give the details
of such calculations later in our discussion.

Lüscher’s method is a useful and commonly used tool for calculating scattering parameters.
For examples of recent extensions and generalizations of Lüscher’s original work see [3–11]. The
simple elegance of Lüscher’s method is that all of the information regarding scattering phase shifts
is encoded into finite-volume energy values. This simplicity can however be a weakness when
applied to scattering processes of relevance to low-energy nuclear physics. The problem is that
the binding energies of the scattering nuclei can be anywhere from a few MeV to tens or hundreds
of MeV, while the shifts in scattering energy can be as small as a few keV. The problem is even
more difficult in lattice QCD calculations where the rest energy of the nucleons are also part of the
calculations.

So while the scattering data is encoded in the finite-volume energy and waiting to be extracted,
the finite-volume energy value is prone to several potentially large sources of error. In Fig. 2 we
show the lowest-lying energy state for a dimer-fermion system versus projection time ⌧ for various
L3 periodic lattices. The dimer energy is �2.2246 MeV and the lattice spacing is 1.97 fm. We
consider this example in detail later in our discussion. The point we emphasize here is that in order
to measure the S-wave scattering phase shift to an error of a few degrees, we need to measure the
finite-volume energy to an accuracy of about 10 keV. In this simple three-particle calculation we
are using exact matrix methods, and there are no stochastic errors. However in a typical large-scale
Monte Carlo calculation there are stochastic errors that grow exponentially with projection time
⌧ . In addition to these issues, there are also corrections to the binding energies of the scattering
nuclei due to the finite volume [12–16].

In view of the problems with finite-volume energy calculations for low-energy nuclear scat-
tering, we introduce in this paper another approach to extracting scattering phase shifts which
directly analyzes cluster wave functions generated by the adiabatic Hamiltonian. This approach
has the advantage of being far less sensitive to small errors in reproducing the binding energy and
detailed structure of the participating nuclei.

II. ASYMPTOTIC CLUSTER WAVE FUNCTIONS

In order to explain the various time and length scales for our asymptotic wave function analysis,
it is useful to first specify a relative error tolerance, ✏, for all steps in our cluster-cluster scattering
calculation. As we project to large Euclidean time, the dressed cluster states for very widely
separated clusters are simply two non-overlapping wave packets with less and less contamination
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systems [16–18]. In this paper we concentrate on the adiabatic projection method for cal-
culating nuclear reactions from lattice simulations in the framework of chiral e↵ective field
theory (EFT). See [19–22] for some recent results using lattice EFT. The general strategy
in the adiabatic projection formalism as formulated in the pioneering work [23–25] involves
two steps. First, one uses the Euclidean time projection method to determine an adiabatic
Hamiltonian for the participating nuclei starting from the microscopic Hamiltonian derived
in chiral EFT. In the second step, one uses a technique such as Lüscher’s finite-volume
method [26, 27] to extract the corresponding scattering phase shifts [24] .

The adiabatic projection formalism has been successfully benchmarked against continuum
calculations for fermion-dimer scattering. However for heavier systems, Lüscher’s finite-
volume energy approach for extracting scattering phase shifts is expected to su↵er from
potentially large errors due to stochastic and systematic uncertainties in the lattice Monte
Carlo energies. In this paper, we explore various techniques to access scattering on the
lattice that do not require a high-accuracy determination of the energy spectrum. For
simple three-body systems in one and three dimensions, we demonstrate that scattering
phase shifts can be reliably extracted from the asymptotic cluster wave functions within the
adiabatic projection method.

Our paper is organized as follows. We begin with introducing the adiabatic projection
method in some detail in section II. Section III describes Lüscher’s finite volume method,
while section IV describes the extraction of the asymptotic cluster wave functions on the
lattice. The microscopic Hamiltonian used in our work is specified in section V, which also
provides details on the computation of the adiabatic Hamiltonian. Various approaches for
extracting the two-cluster elastic scattering phase shifts in one and three spatial dimensions
on the lattice are introduced and applied in sections VI and VII, respectively. Finally, the
main results of our study are summarized in section VIII.

II. THE ADIABATIC PROJECTION METHOD

The adiabatic projection method treats the cluster-cluster scattering problem on the lattice
by using Euclidean time projection to determine an adiabatic Hamiltonian for the partici-
pating clusters. When the temporal lattice spacing is nonzero, an adiabatic transfer matrix
rather than the Hamiltonian is constructed, but the method is essentially the same. We
start with an L3 periodic lattice and set of two-cluster states |~Ri labeled by their separation
vector ~R, as illustrated in Fig. 1. In general, there are spin and flavor indices for these states,
but we suppress writing the indices for notational simplicity. The exact form of these two-
cluster states is not important except that they are localized so that for large separations
they factorize as a tensor product of two individual clusters,

|~Ri =
X
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|~r + ~Ri1 ⌦ |~ri2. (1)

These states are propagated in Euclidean time to form dressed cluster states,

|~Ri⌧ = exp(�H⌧)|~Ri. (2)
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From this a Hermitian adiabatic Hamiltonian matrix can be defined using the inverse square root
of the norm matrix,
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In the limit of large ⌧ , the spectrum of Ha
⌧ exactly reproduces the low-energy finite volume spec-

trum of our microscropic Hamiltonian H . So for elastic phase shifts, one can take the spectrum of
Ha

⌧ and apply the finite-volume scaling analysis developed by Lüscher [1, 2]. We give the details
of such calculations later in our discussion.

Lüscher’s method is a useful and commonly used tool for calculating scattering parameters.
For examples of recent extensions and generalizations of Lüscher’s original work see [3–11]. The
simple elegance of Lüscher’s method is that all of the information regarding scattering phase shifts
is encoded into finite-volume energy values. This simplicity can however be a weakness when
applied to scattering processes of relevance to low-energy nuclear physics. The problem is that
the binding energies of the scattering nuclei can be anywhere from a few MeV to tens or hundreds
of MeV, while the shifts in scattering energy can be as small as a few keV. The problem is even
more difficult in lattice QCD calculations where the rest energy of the nucleons are also part of the
calculations.

So while the scattering data is encoded in the finite-volume energy and waiting to be extracted,
the finite-volume energy value is prone to several potentially large sources of error. In Fig. 2 we
show the lowest-lying energy state for a dimer-fermion system versus projection time ⌧ for various
L3 periodic lattices. The dimer energy is �2.2246 MeV and the lattice spacing is 1.97 fm. We
consider this example in detail later in our discussion. The point we emphasize here is that in order
to measure the S-wave scattering phase shift to an error of a few degrees, we need to measure the
finite-volume energy to an accuracy of about 10 keV. In this simple three-particle calculation we
are using exact matrix methods, and there are no stochastic errors. However in a typical large-scale
Monte Carlo calculation there are stochastic errors that grow exponentially with projection time
⌧ . In addition to these issues, there are also corrections to the binding energies of the scattering
nuclei due to the finite volume [12–16].

In view of the problems with finite-volume energy calculations for low-energy nuclear scat-
tering, we introduce in this paper another approach to extracting scattering phase shifts which
directly analyzes cluster wave functions generated by the adiabatic Hamiltonian. This approach
has the advantage of being far less sensitive to small errors in reproducing the binding energy and
detailed structure of the participating nuclei.

II. ASYMPTOTIC CLUSTER WAVE FUNCTIONS

In order to explain the various time and length scales for our asymptotic wave function analysis,
it is useful to first specify a relative error tolerance, ✏, for all steps in our cluster-cluster scattering
calculation. As we project to large Euclidean time, the dressed cluster states for very widely
separated clusters are simply two non-overlapping wave packets with less and less contamination
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function for a short range interaction and the periodicity of the system. The one-dimensional
result of this ansatz is [26]

e2iδ(p) = e−ipL , (6)

where p is the relative momenta between two clusters1, δ(p) is the scattering phase shift, and
we assume the total momentum of the two-cluster system to be zero. In three dimensions,
the situation is more complicated due to breaking of the rotational invariance by the cubic
symmetry of finite periodic box. The scattering phase shifts are directly related to the
momentum via the formula [26, 27]

p cot δℓ(p) =
1

π L
S(η) for ℓ = 0, 1 , (7)

where η =
(

Lp
2π

)2
and S(η) is three-dimensional zeta function,

S(η) = lim
Λ→∞

[
Λ∑

n⃗

θ (Λ2 − n⃗2)

n⃗2 − η
− 4π Λ

]
, (8)

or, in the exponentially accelerated form [26–28],

S(η) = 2π3/2eη(2η − 1) + eη
∑

n⃗

e−|n⃗|2

|n⃗|2 − η
− π3/2

∫ 1

0

dλ
eλη

λ3/2

(
4λ2η2 −

∑

n⃗

e−π2|n⃗|2/λ

)
. (9)

The relation between the relative momentum appearing in Eq. (7)–(9) and the finite-volume
energies for ℓ = 0 is given by [35, 36]

E(p, L) =
p2

2µ
− B1 − B2 + τ1(η)∆E1(L) + τ2(η)∆E2(L) , (10)

where µ is the reduced mass of the system, Bi is the binding energy of the cluster i = {1, 2}
in the infinite volume limit, ∆Ei(L) = Ei(L) + Bi is the finite volume energy shifts of the
clusters in the rest frame, and τi(η) is the topological correction factor to the energy of the
cluster i,

τ(η) =
1

∑
k⃗

(
k⃗2 − η

)−2

∑

k⃗

∑3
i=1 cos (2πki α)

3
(
k⃗2 − η

)2 . (11)

In Ref. [25], it was found that for ℓ > 0, the topological corrections are suppressed by the
size of the finite volume, τ(η) = 1 + O(1/L), so that Eq. (10) becomes

E(p, L) =
p2

2µ
+ E1(L) + E2(L) . (12)

1 Clusters refer to either a point-like particle or a composite particle as a bound state of several particles.
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|n⃗|2 − η
− π3/2

∫ 1

0

dλ
eλη

λ3/2

(
4λ2η2 −

∑

n⃗

e−π2|n⃗|2/λ

)
. (9)

The relation between the relative momentum appearing in Eq. (7)–(9) and the finite-volume
energies for ℓ = 0 is given by [35, 36]

E(p, L) =
p2

2µ
− B1 − B2 + τ1(η)∆E1(L) + τ2(η)∆E2(L) , (10)

where µ is the reduced mass of the system, Bi is the binding energy of the cluster i = {1, 2}
in the infinite volume limit, ∆Ei(L) = Ei(L) + Bi is the finite volume energy shifts of the
clusters in the rest frame, and τi(η) is the topological correction factor to the energy of the
cluster i,

τ(η) =
1

∑
k⃗

(
k⃗2 − η

)−2

∑

k⃗

∑3
i=1 cos (2πki α)

3
(
k⃗2 − η

)2 . (11)

In Ref. [25], it was found that for ℓ > 0, the topological corrections are suppressed by the
size of the finite volume, τ(η) = 1 + O(1/L), so that Eq. (10) becomes

E(p, L) =
p2

2µ
+ E1(L) + E2(L) . (12)

1 Clusters refer to either a point-like particle or a composite particle as a bound state of several particles.
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Lüscher’s finite volume formula

Phase shifts can’t be calculated
directly on the lattice
M. Lüscher derived a relation
between two-body energy levels
in a finite box with periodical
boundary condition and phase
shifts in the infinite volume
Varying L we find the effective
range function
The formula was derived for
elementary particles!
What about composite particles?
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 Adiabatic projection method (III)

• There is an exponentially small error in energy 
levels due to Euclidean time projection!

• In larger systems there is a statistical error due to 
Monte Carlo methods
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Figure 3: Left panel: Finite-volume energies extracted from the full microscopic Hamiltonian
and the two-cluster adiabatic Hamiltonian for the particle-dimer system in one dimension. Right
panel: The particle-dimer scattering phase shifts calculated from the data in the left panel using
Lüscher’s method. Color online: Red (blue) symbols show the results corresponding to the original
(adiabatic) Hamiltonian.

where at is a time step parameter and ⌧ = atLt. For the one-dimensional particle-dimer
system we have

|�~Ri⌧ = (1� atH)Lt |�~Ri . (25)

For the three-dimensional fermion-dimer system we have

| ~Ri⌧ = (1� atH)Lt | ~Ri . (26)

For large ⌧ we obtain an accurate representation of the low-energy spectrum of H using the
adiabatic Hamiltonian [Ha

⌧ ]~R,~R0 defined in Eq. (5).

C. Scattering phase shifts from periodic-volume energy levels

In Fig. 3, we compare the energy spectrum of the full microscopic Hamiltonian and the
full two-cluster adiabatic Hamiltonian for the particle-dimer system in one dimension for
⌧ = 0.30 MeV�1. We use the finite-volume energies to calculate the particle-dimer scattering
phase shifts employing Lüscher’s method. Comparative results for the scattering phase
shifts are shown in the right panel of Fig. 3. Although the energy spectra of the adiabatic
Hamiltonian and microscopic Hamiltonian are very similar, the resulting phase shifts have
large di↵erences at low energies. We also see a disagreement at low energies among phase
shifts determined using di↵erent adiabatic Hamiltonian energy levels. This is because low-
energy phase shifts are computed using very large box sizes L where the level spacing is
small, and this magnifies any small discrepancies in the energy values.

We have performed a similar analysis for the fermion-dimer system in three dimensions.
In Table I, we compare the lowest-lying energy states and resulting phase shifts computed
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Figure 2: The lowest-lying energy state for a dimer-fermion system versus projection time τ for
various L3 periodic lattices. The dimer energy is −2.2246 MeV and the lattice spacing is 1.97 fm.

To minimize potential errors in the calculations using the Lüscher’s method, we also take
into account the effective mass of the clusters on the lattice. Lüscher’s method is a useful and
commonly used tool for calculating scattering parameters. For examples of recent extensions
and generalizations of Lüscher’s original work see Ref. [11–15, 28–31].

The simple elegance of Lüscher’s method is that all of the information regarding scattering
phase shifts is encoded into finite-volume energy values. This simplicity can, however, be a
weakness when applied to scattering processes relevant to low-energy nuclear physics. The
problem is that the binding energies of the scattering nuclei can be anywhere from a few
MeV to tens or hundreds of MeV, while the finite-volume scattering energy shifts can be as
small as a few keV. The problem is even more difficult in lattice QCD calculations where
the rest energy of the nucleons is also part of the calculations.

Thus, while the scattering data is encoded in the finite-volume energy and waiting to be
extracted, the finite-volume energy value is prone to several sources of potentially large
errors. In Fig. 2, we show the lowest-lying energy state for a dimer-fermion system versus
projection time τ for various L3 periodic lattices. The dimer energy is set to be −2.2246 MeV
and the lattice spacing is 1.97 fm. We consider this example in detail later in our discussion.
The point we emphasize here is that in order to measure the s-wave scattering phase shift
to an error of a few degrees, we need to measure the finite-volume energy to an accuracy of
about 10 keV. In this simple three-particle calculation we are using exact matrix methods,
and there are no stochastic errors. However, in a typical large-scale Monte Carlo calculation,
there are stochastic errors that grow exponentially with projection time τ . In addition to
these issues, there are also corrections to the binding energies of the scattering nuclei due

Lüscher’s method is unfortunately very !
sensitive to small errors in energy levels!
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From this a Hermitian adiabatic Hamiltonian matrix can be defined using the inverse square root
of the norm matrix,

[Ha
⌧ ]~R,~R0 =

X

~R00,~R000

h

⌧ h~R|~R00i⌧
i

�1/2 h

⌧ h~R00|H|~R000i⌧
i h

⌧ h~R000|~R0i⌧
i

�1/2

. (1.5)

[Ha
⌧ ]~R,~R0 =

X

~R00,~R000

⇥

N�1/2
⌧

⇤

~R,~R00 [H⌧ ]~R00,~R000

⇥

N�1/2
⌧

⇤

~R000,~R0 . (1.6)

In the limit of large ⌧ , the spectrum of Ha
⌧ exactly reproduces the low-energy finite volume spec-

trum of our microscropic Hamiltonian H . So for elastic phase shifts, one can take the spectrum of
Ha

⌧ and apply the finite-volume scaling analysis developed by Lüscher [1, 2]. We give the details
of such calculations later in our discussion.

Lüscher’s method is a useful and commonly used tool for calculating scattering parameters.
For examples of recent extensions and generalizations of Lüscher’s original work see [3–11]. The
simple elegance of Lüscher’s method is that all of the information regarding scattering phase shifts
is encoded into finite-volume energy values. This simplicity can however be a weakness when
applied to scattering processes of relevance to low-energy nuclear physics. The problem is that
the binding energies of the scattering nuclei can be anywhere from a few MeV to tens or hundreds
of MeV, while the shifts in scattering energy can be as small as a few keV. The problem is even
more difficult in lattice QCD calculations where the rest energy of the nucleons are also part of the
calculations.

So while the scattering data is encoded in the finite-volume energy and waiting to be extracted,
the finite-volume energy value is prone to several potentially large sources of error. In Fig. 2 we
show the lowest-lying energy state for a dimer-fermion system versus projection time ⌧ for various
L3 periodic lattices. The dimer energy is �2.2246 MeV and the lattice spacing is 1.97 fm. We
consider this example in detail later in our discussion. The point we emphasize here is that in order
to measure the S-wave scattering phase shift to an error of a few degrees, we need to measure the
finite-volume energy to an accuracy of about 10 keV. In this simple three-particle calculation we
are using exact matrix methods, and there are no stochastic errors. However in a typical large-scale
Monte Carlo calculation there are stochastic errors that grow exponentially with projection time
⌧ . In addition to these issues, there are also corrections to the binding energies of the scattering
nuclei due to the finite volume [12–16].

In view of the problems with finite-volume energy calculations for low-energy nuclear scat-
tering, we introduce in this paper another approach to extracting scattering phase shifts which
directly analyzes cluster wave functions generated by the adiabatic Hamiltonian. This approach
has the advantage of being far less sensitive to small errors in reproducing the binding energy and
detailed structure of the participating nuclei.

II. ASYMPTOTIC CLUSTER WAVE FUNCTIONS

In order to explain the various time and length scales for our asymptotic wave function analysis,
it is useful to first specify a relative error tolerance, ✏, for all steps in our cluster-cluster scattering
calculation. As we project to large Euclidean time, the dressed cluster states for very widely
separated clusters are simply two non-overlapping wave packets with less and less contamination
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the Hamiltonian is similar to a free lattice Hamiltonian Heff

[H⌧ ]~R,~R0 = ⌧ h~R|H|~R0i⌧ . (1.12)

[N⌧ ]~R,~R0 = ⌧ h~R|~R0i⌧ . (1.13)
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trum of our microscropic Hamiltonian H . So for elastic phase shifts, one can take the spectrum of
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⌧ and apply the finite-volume scaling analysis developed by Lüscher [1, 2]. We give the details
of such calculations later in our discussion.

Lüscher’s method is a useful and commonly used tool for calculating scattering parameters.
For examples of recent extensions and generalizations of Lüscher’s original work see [3–11]. The
simple elegance of Lüscher’s method is that all of the information regarding scattering phase shifts
is encoded into finite-volume energy values. This simplicity can however be a weakness when
applied to scattering processes of relevance to low-energy nuclear physics. The problem is that
the binding energies of the scattering nuclei can be anywhere from a few MeV to tens or hundreds
of MeV, while the shifts in scattering energy can be as small as a few keV. The problem is even
more difficult in lattice QCD calculations where the rest energy of the nucleons are also part of the
calculations.

So while the scattering data is encoded in the finite-volume energy and waiting to be extracted,
the finite-volume energy value is prone to several potentially large sources of error. In Fig. 2 we
show the lowest-lying energy state for a dimer-fermion system versus projection time ⌧ for various
L3 periodic lattices. The dimer energy is �2.2246 MeV and the lattice spacing is 1.97 fm. We
consider this example in detail later in our discussion. The point we emphasize here is that in order
to measure the S-wave scattering phase shift to an error of a few degrees, we need to measure the
finite-volume energy to an accuracy of about 10 keV. In this simple three-particle calculation we
are using exact matrix methods, and there are no stochastic errors. However in a typical large-scale
Monte Carlo calculation there are stochastic errors that grow exponentially with projection time
⌧ . In addition to these issues, there are also corrections to the binding energies of the scattering
nuclei due to the finite volume [12–16].

In view of the problems with finite-volume energy calculations for low-energy nuclear scat-
tering, we introduce in this paper another approach to extracting scattering phase shifts which
directly analyzes cluster wave functions generated by the adiabatic Hamiltonian. This approach
has the advantage of being far less sensitive to small errors in reproducing the binding energy and
detailed structure of the participating nuclei.

II. ASYMPTOTIC CLUSTER WAVE FUNCTIONS

In order to explain the various time and length scales for our asymptotic wave function analysis,
it is useful to first specify a relative error tolerance, ✏, for all steps in our cluster-cluster scattering
calculation. As we project to large Euclidean time, the dressed cluster states for very widely
separated clusters are simply two non-overlapping wave packets with less and less contamination

2

systems [16–18]. In this paper we concentrate on the adiabatic projection method for cal-
culating nuclear reactions from lattice simulations in the framework of chiral e↵ective field
theory (EFT). See [19–22] for some recent results using lattice EFT. The general strategy
in the adiabatic projection formalism as formulated in the pioneering work [23–25] involves
two steps. First, one uses the Euclidean time projection method to determine an adiabatic
Hamiltonian for the participating nuclei starting from the microscopic Hamiltonian derived
in chiral EFT. In the second step, one uses a technique such as Lüscher’s finite-volume
method [26, 27] to extract the corresponding scattering phase shifts [24] .

The adiabatic projection formalism has been successfully benchmarked against continuum
calculations for fermion-dimer scattering. However for heavier systems, Lüscher’s finite-
volume energy approach for extracting scattering phase shifts is expected to su↵er from
potentially large errors due to stochastic and systematic uncertainties in the lattice Monte
Carlo energies. In this paper, we explore various techniques to access scattering on the
lattice that do not require a high-accuracy determination of the energy spectrum. For
simple three-body systems in one and three dimensions, we demonstrate that scattering
phase shifts can be reliably extracted from the asymptotic cluster wave functions within the
adiabatic projection method.

Our paper is organized as follows. We begin with introducing the adiabatic projection
method in some detail in section II. Section III describes Lüscher’s finite volume method,
while section IV describes the extraction of the asymptotic cluster wave functions on the
lattice. The microscopic Hamiltonian used in our work is specified in section V, which also
provides details on the computation of the adiabatic Hamiltonian. Various approaches for
extracting the two-cluster elastic scattering phase shifts in one and three spatial dimensions
on the lattice are introduced and applied in sections VI and VII, respectively. Finally, the
main results of our study are summarized in section VIII.

II. THE ADIABATIC PROJECTION METHOD

The adiabatic projection method treats the cluster-cluster scattering problem on the lattice
by using Euclidean time projection to determine an adiabatic Hamiltonian for the partici-
pating clusters. When the temporal lattice spacing is nonzero, an adiabatic transfer matrix
rather than the Hamiltonian is constructed, but the method is essentially the same. We
start with an L3 periodic lattice and set of two-cluster states |~Ri labeled by their separation
vector ~R, as illustrated in Fig. 1. In general, there are spin and flavor indices for these states,
but we suppress writing the indices for notational simplicity. The exact form of these two-
cluster states is not important except that they are localized so that for large separations
they factorize as a tensor product of two individual clusters,

|~Ri =
X

~r

|~r + ~Ri1 ⌦ |~ri2. (1)

These states are propagated in Euclidean time to form dressed cluster states,

|~Ri⌧ = exp(�H⌧)|~Ri. (2)
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Table I: The lowest-lying energy and the corresponding scattering phase shifts for the dimer-
fermion system computed using the Lüscher’s method for various periodic lattices. The energies
E correspond to the microscopic Hamiltonian while the energies E(τ) correspond to the adiabatic
Hamiltonian with projection time τ .

L
H [Ha

τ ]R⃗,R⃗′

E (MeV) δ (degrees) τ (MeV−1) E(τ) (MeV) δ (degrees)
8 -1.4423319 -42.6 0.37 -1.4060289 -44.1
9 -1.6670941 -37.9 0.37 -1.6121233 -40.9
10 -1.8171997 -33.6 0.34 -1.7214154 -40.8
11 -1.9203247 -29.8 0.34 -1.8054714 -39.6
12 -1.9929256 -26.4 0.34 -1.8617182 -40.0

using the full microscopic Hamiltonian and adiabatic Hamiltonian for the dimer-fermion
system. The energies E correspond to the microscopic Hamiltonian, while the energies E(τ)
correspond to the adiabatic Hamiltonian. The scattering phase shifts are calculated using
Lüscher’s method. As can be seen from Table I, the accuracy of the finite-volume energies
is the range of 40–130 keV. However the relative error in the resulting phase shifts becomes
as large as 50%.

Fortunately the adiabatic Hamiltonian contains more usable information than just periodic-
lattice energy levels. As we show in Section VI, the scattering phase shifts can be determined
with far better accuracy using the properties of the asymptotic scattering wave function.

VI. SCATTERING CLUSTER WAVE FUNCTION: METHODS

Borasoy et.al. introduced a method to compute phase shifts for point-like particles on
a lattice using a spherical wall boundary [37]. A spherical hard wall of radius Rwall is
imposed on the relative separation of the two particles. In this study, we consider two-
cluster systems, and the spherical hard wall boundary is imposed on the relative separation
of the two clusters. For two clusters interacting via a potential of a finite-range R, the wave
function at distances r > R is given by

Ψ(p)
ℓ (r) = Aℓ cos(pr + δℓ − ℓπ/2) for one dimension, (27)

Ψ(p)
ℓ,mℓ

(r) = R(p)
ℓ (r) Yℓ,mℓ

(θ,φ) for three dimensions, (28)

where p is the relative momentum of the clusters. For the one-dimensional case, there is no
angular momentum, but we nevertheless use the notation ℓ = 0 for even parity and ℓ = 1
for odd parity. In three dimensions, the total wave function is decomposed into the radial
part R(p)

ℓ (r) and spherical harmonics Yℓ,mℓ
(θ,φ). The radial wave function R(p)

ℓ (r) has the
asymptotic form

R(p)
ℓ (r) = Aℓ [cos δℓ(p) jℓ(pr) − sin δℓ(p) nℓ(pr)] , (29)

where Aℓ is a normalization coefficient, and jℓ and nℓ denote spherical Bessel functions of
the first and second kinds. Therefore, the three dimensional wave function in Eq. (28) can
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Figure 6: Particle-dimer phase shifts in one dimension calculated using the Lüscher wave function
method. Left panel: An example of the wave function matching. Right panel: Comparison of
the phase shifts calculated using the Lüscher periodic-box wave function method and Lüscher’s
finite-volume method with the exact energy spectrum.
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several data points per chosen lattice volume, since we can vary the value of the wall radius,
Rwall. This represents an important computational advantage as compared to the Lüscher
wave function method, especially for calculations in three dimensions. We will consider two
versions of the spherical wall method. In the first version we do a three parameter fit of the
overall normalization, momentum and phase shift of the interacting wave functions. Fig. 7
shows the application of this approach for the case L = 50 and Rwall = 20 in lattice units. The
resulting value of the phase shift in this example is δ0(p) = −163.0 ± 0.4 for the momentum
p = 36.17 ± 0.07 MeV. This method also shows very good agreement with Lüscher’s energy

check with Lüscher’s method applied !
to full microscopic Hamiltonian 
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the phase shifts calculated using the Lüscher periodic-box wave function method and Lüscher’s
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several data points per chosen lattice volume, since we can vary the value of the wall radius,
Rwall. This represents an important computational advantage as compared to the Lüscher
wave function method, especially for calculations in three dimensions. We will consider two
versions of the spherical wall method. In the first version we do a three parameter fit of the
overall normalization, momentum and phase shift of the interacting wave functions. Fig. 7
shows the application of this approach for the case L = 50 and Rwall = 20 in lattice units. The
resulting value of the phase shift in this example is δ0(p) = −163.0 ± 0.4 for the momentum
p = 36.17 ± 0.07 MeV. This method also shows very good agreement with Lüscher’s energy
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Table II: Irreducible representations of the cubic rotation group SO(3, Z) and relation to spherical
harmonics for ℓ ≤ 2.

SO(3, Z) SO(3) Yℓ,mℓ

A1 ℓ = 0 {Y0,0}
T1 ℓ = 1 {Y1,−1, Y1,0, Y1,1}
E1 ℓ = 2

{
Y2,0, (Y2,−2 + Y2,2)/

√
2
}

T2 ℓ = 2
{
Y2,1, (Y2,−2 − Y2,2)/

√
2, Y2,−1

}

be rewritten as

Ψ(p)
ℓ,mℓ

(r) = AℓYℓ,mℓ
(θ,φ) [cos δℓ(p) jℓ(pr) − sin δℓ(p) nℓ(pr)] . (30)

In the asymptotic region, we fit Eq. (30) to the lattice wave functions emerging from imposing
the spherical hard wall at radius Rwall. We evaluate the spherical harmonics Yℓ,mℓ

(θ,φ) on
the lattice points, noting that there is no exact separation of radial and angular variables on
the lattice. One must take into account the break up of the 2ℓ+1 spin multiplets according
to irreducible representations of the cubic rotation group [38, 39]. Irreducible representations
of the SO(3, Z) cubic rotation group are given in Table II for ℓ ≤ 2 [40].

For ℓ = 0, the spherical harmonic Y0,0(θ,φ) is angle-independent, and we can directly match
Eq. (30) to the lattice wave functions. However, for ℓ > 0, the angular dependence makes
the fitting more difficult. To resolve this issue, we use the identity

ℓ∑

mℓ=−ℓ

|Yℓ,mℓ
(θ,φ)|2 =

2ℓ + 1

4π
. (31)

Since the angular dependence drops out of this expression, it is convenient to work with the
wave function probability distribution summed over mℓ,

ℓ∑

mℓ=−ℓ

∣∣∣Ψ(p)
ℓ,mℓ

(r)
∣∣∣
2

=
2ℓ + 1

4π
|Aℓ|2 [cos δℓ(p) jℓ(pr) − sin δℓ(p) nℓ(pr)]

2 . (32)

To obtain accurate results for the phase shifts within this approach, it is helpful to address
some uncertainties in the precise location of the wall radius Rwall. While we impose a very
large but finite repulsive potential at distances r ≥ Rwall, a close examination shows that
wavefunction vanishes at some slightly larger radius R′

wall = Rwall + ϵ, where ϵ is some
fraction of a lattice spacing. This is illustrated in Fig. 4 for the lowest three s- and p-states
of the fermion-dimer system in three dimensions. The hard wall potential is imposed for
r ≥ Rwall = 13.0 lattice units. We find that the first zero of the 1s wave function is at 13.32,
the second zero of the 2s wave function is at 13.32, and the third zero of the 3s wave function
is at 13.31 lattice units. For the first three lowest p-states, we find that corresponding zeros
are all at 13.32 lattice units.

One can extract the scattering phase shifts by doing a three parameter fit of the overall
normalization, momentum and phase shift to the interacting wave functions. We present
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Table I: The lowest-lying energy and the corresponding scattering phase shifts for the dimer-
fermion system computed using the Lüscher’s method for various periodic lattices. The energies
E correspond to the microscopic Hamiltonian while the energies E(τ) correspond to the adiabatic
Hamiltonian with projection time τ .

L
H [Ha

τ ]R⃗,R⃗′

E (MeV) δ (degrees) τ (MeV−1) E(τ) (MeV) δ (degrees)
8 -1.4423319 -42.6 0.37 -1.4060289 -44.1
9 -1.6670941 -37.9 0.37 -1.6121233 -40.9
10 -1.8171997 -33.6 0.34 -1.7214154 -40.8
11 -1.9203247 -29.8 0.34 -1.8054714 -39.6
12 -1.9929256 -26.4 0.34 -1.8617182 -40.0

using the full microscopic Hamiltonian and adiabatic Hamiltonian for the dimer-fermion
system. The energies E correspond to the microscopic Hamiltonian, while the energies E(τ)
correspond to the adiabatic Hamiltonian. The scattering phase shifts are calculated using
Lüscher’s method. As can be seen from Table I, the accuracy of the finite-volume energies
is the range of 40–130 keV. However the relative error in the resulting phase shifts becomes
as large as 50%.

Fortunately the adiabatic Hamiltonian contains more usable information than just periodic-
lattice energy levels. As we show in Section VI, the scattering phase shifts can be determined
with far better accuracy using the properties of the asymptotic scattering wave function.

VI. SCATTERING CLUSTER WAVE FUNCTION: METHODS

Borasoy et.al. introduced a method to compute phase shifts for point-like particles on
a lattice using a spherical wall boundary [37]. A spherical hard wall of radius Rwall is
imposed on the relative separation of the two particles. In this study, we consider two-
cluster systems, and the spherical hard wall boundary is imposed on the relative separation
of the two clusters. For two clusters interacting via a potential of a finite-range R, the wave
function at distances r > R is given by

Ψ(p)
ℓ (r) = Aℓ cos(pr + δℓ − ℓπ/2) for one dimension, (27)

Ψ(p)
ℓ,mℓ

(r) = R(p)
ℓ (r) Yℓ,mℓ

(θ,φ) for three dimensions, (28)

where p is the relative momentum of the clusters. For the one-dimensional case, there is no
angular momentum, but we nevertheless use the notation ℓ = 0 for even parity and ℓ = 1
for odd parity. In three dimensions, the total wave function is decomposed into the radial
part R(p)

ℓ (r) and spherical harmonics Yℓ,mℓ
(θ,φ). The radial wave function R(p)

ℓ (r) has the
asymptotic form

R(p)
ℓ (r) = Aℓ [cos δℓ(p) jℓ(pr) − sin δℓ(p) nℓ(pr)] , (29)

where Aℓ is a normalization coefficient, and jℓ and nℓ denote spherical Bessel functions of
the first and second kinds. Therefore, the three dimensional wave function in Eq. (28) can
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using the full microscopic Hamiltonian and adiabatic Hamiltonian for the dimer-fermion
system. The energies E correspond to the microscopic Hamiltonian, while the energies E(τ)
correspond to the adiabatic Hamiltonian. The scattering phase shifts are calculated using
Lüscher’s method. As can be seen from Table I, the accuracy of the finite-volume energies
is the range of 40–130 keV. However the relative error in the resulting phase shifts becomes
as large as 50%.

Fortunately the adiabatic Hamiltonian contains more usable information than just periodic-
lattice energy levels. As we show in Section VI, the scattering phase shifts can be determined
with far better accuracy using the properties of the asymptotic scattering wave function.

VI. SCATTERING CLUSTER WAVE FUNCTION: METHODS

Borasoy et.al. introduced a method to compute phase shifts for point-like particles on
a lattice using a spherical wall boundary [37]. A spherical hard wall of radius Rwall is
imposed on the relative separation of the two particles. In this study, we consider two-
cluster systems, and the spherical hard wall boundary is imposed on the relative separation
of the two clusters. For two clusters interacting via a potential of a finite-range R, the wave
function at distances r > R is given by

Ψ(p)
ℓ (r) = Aℓ cos(pr + δℓ − ℓπ/2) for one dimension, (27)

Ψ(p)
ℓ,mℓ

(r) = R(p)
ℓ (r) Yℓ,mℓ

(θ,φ) for three dimensions, (28)

where p is the relative momentum of the clusters. For the one-dimensional case, there is no
angular momentum, but we nevertheless use the notation ℓ = 0 for even parity and ℓ = 1
for odd parity. In three dimensions, the total wave function is decomposed into the radial
part R(p)

ℓ (r) and spherical harmonics Yℓ,mℓ
(θ,φ). The radial wave function R(p)

ℓ (r) has the
asymptotic form

R(p)
ℓ (r) = Aℓ [cos δℓ(p) jℓ(pr) − sin δℓ(p) nℓ(pr)] , (29)

where Aℓ is a normalization coefficient, and jℓ and nℓ denote spherical Bessel functions of
the first and second kinds. Therefore, the three dimensional wave function in Eq. (28) can
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fermion system computed using the Lüscher’s method for various periodic lattices. The energies
E correspond to the microscopic Hamiltonian while the energies E(τ) correspond to the adiabatic
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using the full microscopic Hamiltonian and adiabatic Hamiltonian for the dimer-fermion
system. The energies E correspond to the microscopic Hamiltonian, while the energies E(τ)
correspond to the adiabatic Hamiltonian. The scattering phase shifts are calculated using
Lüscher’s method. As can be seen from Table I, the accuracy of the finite-volume energies
is the range of 40–130 keV. However the relative error in the resulting phase shifts becomes
as large as 50%.

Fortunately the adiabatic Hamiltonian contains more usable information than just periodic-
lattice energy levels. As we show in Section VI, the scattering phase shifts can be determined
with far better accuracy using the properties of the asymptotic scattering wave function.

VI. SCATTERING CLUSTER WAVE FUNCTION: METHODS

Borasoy et.al. introduced a method to compute phase shifts for point-like particles on
a lattice using a spherical wall boundary [37]. A spherical hard wall of radius Rwall is
imposed on the relative separation of the two particles. In this study, we consider two-
cluster systems, and the spherical hard wall boundary is imposed on the relative separation
of the two clusters. For two clusters interacting via a potential of a finite-range R, the wave
function at distances r > R is given by

Ψ(p)
ℓ (r) = Aℓ cos(pr + δℓ − ℓπ/2) for one dimension, (27)

Ψ(p)
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(r) = R(p)
ℓ (r) Yℓ,mℓ

(θ,φ) for three dimensions, (28)

where p is the relative momentum of the clusters. For the one-dimensional case, there is no
angular momentum, but we nevertheless use the notation ℓ = 0 for even parity and ℓ = 1
for odd parity. In three dimensions, the total wave function is decomposed into the radial
part R(p)

ℓ (r) and spherical harmonics Yℓ,mℓ
(θ,φ). The radial wave function R(p)

ℓ (r) has the
asymptotic form

R(p)
ℓ (r) = Aℓ [cos δℓ(p) jℓ(pr) − sin δℓ(p) nℓ(pr)] , (29)

where Aℓ is a normalization coefficient, and jℓ and nℓ denote spherical Bessel functions of
the first and second kinds. Therefore, the three dimensional wave function in Eq. (28) can
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Figure 4: First three lowest-lying s-state wave functions (left panel) and p-wave probability distri-
butions (right panel) for the fermion-dimer system in three dimensions. A spherical hard wall is
imposed at Rwall = 13.0 lattice units.

the results of this fitting procedure later in our discussion. However, we have found more
accurate results by making use of the empirical observation that R′

wall changes very little
when going from the non-interacting system to the interacting system at approximately the
same scattering energy. We first determine R′

wall from the lattice wave functions of the non-
interacting cluster-cluster system. Then, using the same value of R′

wall, we fit the interacting
wave functions using a two parameter fit to determine the phase shift of the interacting
system using the relations

δℓ(p) =

{
−pR′

wall +
π(ℓ+1)

2 mod π for one dimension

tan−1
[

jℓ(pR′
wall/a)

nℓ(pR′
wall/a)

]
for three dimensions .

(33)

In Fig. 5, we show the 1s and 2s non-interacting particle-dimer wave functions used to calcu-
late R′

wall and the corresponding interacting fermion-dimer wave functions used to determine
the s-wave scattering phase shift δ0(p).

VII. SCATTERING CLUSTER WAVE FUNCTION: PHASE SHIFT RESULTS

We now compute the scattering phase shifts using the adiabatic projection method and
scattering cluster wave functions in our one-dimensional particle-dimer system and three-
dimensional fermion-dimer system. The results are benchmarked against phase shifts ex-
tracted from the exact three-body energy spectrum obtained using Lüscher’s method. For
the three-dimensional fermion-dimer system, the three-body energies are computed using
the Lanczos iterative eigenvector method with a space of L6 basis states. These can be
viewed as exact lattice phase shifts. We note that while the adiabatic projection method
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Table I: The lowest-lying energy and the corresponding scattering phase shifts for the dimer-
fermion system computed using the Lüscher’s method for various periodic lattices. The energies
E correspond to the microscopic Hamiltonian while the energies E(τ) correspond to the adiabatic
Hamiltonian with projection time τ .
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using the full microscopic Hamiltonian and adiabatic Hamiltonian for the dimer-fermion
system. The energies E correspond to the microscopic Hamiltonian, while the energies E(τ)
correspond to the adiabatic Hamiltonian. The scattering phase shifts are calculated using
Lüscher’s method. As can be seen from Table I, the accuracy of the finite-volume energies
is the range of 40–130 keV. However the relative error in the resulting phase shifts becomes
as large as 50%.

Fortunately the adiabatic Hamiltonian contains more usable information than just periodic-
lattice energy levels. As we show in Section VI, the scattering phase shifts can be determined
with far better accuracy using the properties of the asymptotic scattering wave function.
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Borasoy et.al. introduced a method to compute phase shifts for point-like particles on
a lattice using a spherical wall boundary [37]. A spherical hard wall of radius Rwall is
imposed on the relative separation of the two particles. In this study, we consider two-
cluster systems, and the spherical hard wall boundary is imposed on the relative separation
of the two clusters. For two clusters interacting via a potential of a finite-range R, the wave
function at distances r > R is given by

Ψ(p)
ℓ (r) = Aℓ cos(pr + δℓ − ℓπ/2) for one dimension, (27)

Ψ(p)
ℓ,mℓ

(r) = R(p)
ℓ (r) Yℓ,mℓ

(θ,φ) for three dimensions, (28)

where p is the relative momentum of the clusters. For the one-dimensional case, there is no
angular momentum, but we nevertheless use the notation ℓ = 0 for even parity and ℓ = 1
for odd parity. In three dimensions, the total wave function is decomposed into the radial
part R(p)

ℓ (r) and spherical harmonics Yℓ,mℓ
(θ,φ). The radial wave function R(p)

ℓ (r) has the
asymptotic form

R(p)
ℓ (r) = Aℓ [cos δℓ(p) jℓ(pr) − sin δℓ(p) nℓ(pr)] , (29)

where Aℓ is a normalization coefficient, and jℓ and nℓ denote spherical Bessel functions of
the first and second kinds. Therefore, the three dimensional wave function in Eq. (28) can
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Figure 4: First three lowest-lying s-state wave functions (left panel) and p-wave probability distri-
butions (right panel) for the fermion-dimer system in three dimensions. A spherical hard wall is
imposed at Rwall = 13.0 lattice units.

the results of this fitting procedure later in our discussion. However, we have found more
accurate results by making use of the empirical observation that R′

wall changes very little
when going from the non-interacting system to the interacting system at approximately the
same scattering energy. We first determine R′

wall from the lattice wave functions of the non-
interacting cluster-cluster system. Then, using the same value of R′

wall, we fit the interacting
wave functions using a two parameter fit to determine the phase shift of the interacting
system using the relations

δℓ(p) =

{
−pR′

wall +
π(ℓ+1)

2 mod π for one dimension

tan−1
[

jℓ(pR′
wall/a)
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]
for three dimensions .

(33)

In Fig. 5, we show the 1s and 2s non-interacting particle-dimer wave functions used to calcu-
late R′

wall and the corresponding interacting fermion-dimer wave functions used to determine
the s-wave scattering phase shift δ0(p).

VII. SCATTERING CLUSTER WAVE FUNCTION: PHASE SHIFT RESULTS

We now compute the scattering phase shifts using the adiabatic projection method and
scattering cluster wave functions in our one-dimensional particle-dimer system and three-
dimensional fermion-dimer system. The results are benchmarked against phase shifts ex-
tracted from the exact three-body energy spectrum obtained using Lüscher’s method. For
the three-dimensional fermion-dimer system, the three-body energies are computed using
the Lanczos iterative eigenvector method with a space of L6 basis states. These can be
viewed as exact lattice phase shifts. We note that while the adiabatic projection method
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Table I: The lowest-lying energy and the corresponding scattering phase shifts for the dimer-
fermion system computed using the Lüscher’s method for various periodic lattices. The energies
E correspond to the microscopic Hamiltonian while the energies E(τ) correspond to the adiabatic
Hamiltonian with projection time τ .
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using the full microscopic Hamiltonian and adiabatic Hamiltonian for the dimer-fermion
system. The energies E correspond to the microscopic Hamiltonian, while the energies E(τ)
correspond to the adiabatic Hamiltonian. The scattering phase shifts are calculated using
Lüscher’s method. As can be seen from Table I, the accuracy of the finite-volume energies
is the range of 40–130 keV. However the relative error in the resulting phase shifts becomes
as large as 50%.

Fortunately the adiabatic Hamiltonian contains more usable information than just periodic-
lattice energy levels. As we show in Section VI, the scattering phase shifts can be determined
with far better accuracy using the properties of the asymptotic scattering wave function.

VI. SCATTERING CLUSTER WAVE FUNCTION: METHODS

Borasoy et.al. introduced a method to compute phase shifts for point-like particles on
a lattice using a spherical wall boundary [37]. A spherical hard wall of radius Rwall is
imposed on the relative separation of the two particles. In this study, we consider two-
cluster systems, and the spherical hard wall boundary is imposed on the relative separation
of the two clusters. For two clusters interacting via a potential of a finite-range R, the wave
function at distances r > R is given by

Ψ(p)
ℓ (r) = Aℓ cos(pr + δℓ − ℓπ/2) for one dimension, (27)

Ψ(p)
ℓ,mℓ

(r) = R(p)
ℓ (r) Yℓ,mℓ

(θ,φ) for three dimensions, (28)

where p is the relative momentum of the clusters. For the one-dimensional case, there is no
angular momentum, but we nevertheless use the notation ℓ = 0 for even parity and ℓ = 1
for odd parity. In three dimensions, the total wave function is decomposed into the radial
part R(p)

ℓ (r) and spherical harmonics Yℓ,mℓ
(θ,φ). The radial wave function R(p)

ℓ (r) has the
asymptotic form

R(p)
ℓ (r) = Aℓ [cos δℓ(p) jℓ(pr) − sin δℓ(p) nℓ(pr)] , (29)

where Aℓ is a normalization coefficient, and jℓ and nℓ denote spherical Bessel functions of
the first and second kinds. Therefore, the three dimensional wave function in Eq. (28) can
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Figure 4: First three lowest-lying s-state wave functions (left panel) and p-wave probability distri-
butions (right panel) for the fermion-dimer system in three dimensions. A spherical hard wall is
imposed at Rwall = 13.0 lattice units.

the results of this fitting procedure later in our discussion. However, we have found more
accurate results by making use of the empirical observation that R′

wall changes very little
when going from the non-interacting system to the interacting system at approximately the
same scattering energy. We first determine R′

wall from the lattice wave functions of the non-
interacting cluster-cluster system. Then, using the same value of R′

wall, we fit the interacting
wave functions using a two parameter fit to determine the phase shift of the interacting
system using the relations

δℓ(p) =

{
−pR′

wall +
π(ℓ+1)

2 mod π for one dimension

tan−1
[

jℓ(pR′
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nℓ(pR′
wall/a)

]
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(33)

In Fig. 5, we show the 1s and 2s non-interacting particle-dimer wave functions used to calcu-
late R′

wall and the corresponding interacting fermion-dimer wave functions used to determine
the s-wave scattering phase shift δ0(p).

VII. SCATTERING CLUSTER WAVE FUNCTION: PHASE SHIFT RESULTS

We now compute the scattering phase shifts using the adiabatic projection method and
scattering cluster wave functions in our one-dimensional particle-dimer system and three-
dimensional fermion-dimer system. The results are benchmarked against phase shifts ex-
tracted from the exact three-body energy spectrum obtained using Lüscher’s method. For
the three-dimensional fermion-dimer system, the three-body energies are computed using
the Lanczos iterative eigenvector method with a space of L6 basis states. These can be
viewed as exact lattice phase shifts. We note that while the adiabatic projection method
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E correspond to the microscopic Hamiltonian while the energies E(τ) correspond to the adiabatic
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L
H [Ha

τ ]R⃗,R⃗′

E (MeV) δ (degrees) τ (MeV−1) E(τ) (MeV) δ (degrees)
8 -1.4423319 -42.6 0.37 -1.4060289 -44.1
9 -1.6670941 -37.9 0.37 -1.6121233 -40.9
10 -1.8171997 -33.6 0.34 -1.7214154 -40.8
11 -1.9203247 -29.8 0.34 -1.8054714 -39.6
12 -1.9929256 -26.4 0.34 -1.8617182 -40.0

using the full microscopic Hamiltonian and adiabatic Hamiltonian for the dimer-fermion
system. The energies E correspond to the microscopic Hamiltonian, while the energies E(τ)
correspond to the adiabatic Hamiltonian. The scattering phase shifts are calculated using
Lüscher’s method. As can be seen from Table I, the accuracy of the finite-volume energies
is the range of 40–130 keV. However the relative error in the resulting phase shifts becomes
as large as 50%.

Fortunately the adiabatic Hamiltonian contains more usable information than just periodic-
lattice energy levels. As we show in Section VI, the scattering phase shifts can be determined
with far better accuracy using the properties of the asymptotic scattering wave function.

VI. SCATTERING CLUSTER WAVE FUNCTION: METHODS

Borasoy et.al. introduced a method to compute phase shifts for point-like particles on
a lattice using a spherical wall boundary [37]. A spherical hard wall of radius Rwall is
imposed on the relative separation of the two particles. In this study, we consider two-
cluster systems, and the spherical hard wall boundary is imposed on the relative separation
of the two clusters. For two clusters interacting via a potential of a finite-range R, the wave
function at distances r > R is given by

Ψ(p)
ℓ (r) = Aℓ cos(pr + δℓ − ℓπ/2) for one dimension, (27)

Ψ(p)
ℓ,mℓ

(r) = R(p)
ℓ (r) Yℓ,mℓ

(θ,φ) for three dimensions, (28)

where p is the relative momentum of the clusters. For the one-dimensional case, there is no
angular momentum, but we nevertheless use the notation ℓ = 0 for even parity and ℓ = 1
for odd parity. In three dimensions, the total wave function is decomposed into the radial
part R(p)

ℓ (r) and spherical harmonics Yℓ,mℓ
(θ,φ). The radial wave function R(p)

ℓ (r) has the
asymptotic form

R(p)
ℓ (r) = Aℓ [cos δℓ(p) jℓ(pr) − sin δℓ(p) nℓ(pr)] , (29)

where Aℓ is a normalization coefficient, and jℓ and nℓ denote spherical Bessel functions of
the first and second kinds. Therefore, the three dimensional wave function in Eq. (28) can
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butions (right panel) for the fermion-dimer system in three dimensions. A spherical hard wall is
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the results of this fitting procedure later in our discussion. However, we have found more
accurate results by making use of the empirical observation that R′

wall changes very little
when going from the non-interacting system to the interacting system at approximately the
same scattering energy. We first determine R′

wall from the lattice wave functions of the non-
interacting cluster-cluster system. Then, using the same value of R′

wall, we fit the interacting
wave functions using a two parameter fit to determine the phase shift of the interacting
system using the relations

δℓ(p) =

{
−pR′

wall +
π(ℓ+1)

2 mod π for one dimension

tan−1
[

jℓ(pR′
wall/a)

nℓ(pR′
wall/a)

]
for three dimensions .

(33)

In Fig. 5, we show the 1s and 2s non-interacting particle-dimer wave functions used to calcu-
late R′

wall and the corresponding interacting fermion-dimer wave functions used to determine
the s-wave scattering phase shift δ0(p).

VII. SCATTERING CLUSTER WAVE FUNCTION: PHASE SHIFT RESULTS

We now compute the scattering phase shifts using the adiabatic projection method and
scattering cluster wave functions in our one-dimensional particle-dimer system and three-
dimensional fermion-dimer system. The results are benchmarked against phase shifts ex-
tracted from the exact three-body energy spectrum obtained using Lüscher’s method. For
the three-dimensional fermion-dimer system, the three-body energies are computed using
the Lanczos iterative eigenvector method with a space of L6 basis states. These can be
viewed as exact lattice phase shifts. We note that while the adiabatic projection method
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In Fig. 5, we show the 1s and 2s non-interacting particle-dimer wave functions used to calcu-
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wall and the corresponding interacting fermion-dimer wave functions used to determine
the s-wave scattering phase shift δ0(p).
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We now compute the scattering phase shifts using the adiabatic projection method and
scattering cluster wave functions in our one-dimensional particle-dimer system and three-
dimensional fermion-dimer system. The results are benchmarked against phase shifts ex-
tracted from the exact three-body energy spectrum obtained using Lüscher’s method. For
the three-dimensional fermion-dimer system, the three-body energies are computed using
the Lanczos iterative eigenvector method with a space of L6 basis states. These can be
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Figure 6: Particle-dimer phase shifts in one dimension calculated using the Lüscher wave function
method. Left panel: An example of the wave function matching. Right panel: Comparison of
the phase shifts calculated using the Lüscher periodic-box wave function method and Lüscher’s
finite-volume method with the exact energy spectrum.

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  5  10  15  20  25

Ψ

N (lattice units)

Rwall

Interacting

 0

 20

 40

 60

 80

 0  10  20  30  40  50

δ
 (

d
eg

re
es

)

p (MeV)

Lüscher energy spectrum method, parity even
Lüscher energy spectrum method, parity odd

Spherical wall method, parity even
Spherical wall method, parity odd

Figure 7: Particle-dimer phase shifts in one dimension calculated using the spherical-wall method in
one dimension with a three-parameter fit. Left panel: An example of the wave function fits. Right
panel: Comparison of the phase shifts calculated using the spherical wall method and Lüscher’s
finite-volume method with the exact energy spectrum.

of several data points per chosen lattice volume, since we can vary the value of wall radius,
Rwall. This represents an important computational advantage as compared to the Lüscher
wave function method, especially for calculations in three dimensions. We will consider two
versions of the spherical wall method. In the first version we do a three parameter fit of the
overall normalization, momentum and phase shift of the interacting wave functions. Fig. 7
shows the application of this approach for the case L = 50 and Rwall = 20 in lattice units. The
resulting value of the phase shift in this example is δ0(p) = −163.0 ± 0.4 for the momentum
p = 36.17 ± 0.07 MeV. This method also shows very good agreement with Lüscher’s energy
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wall determined from the non-interacting wave function. Left panel: An example of the wave
function fits. Right panel: Comparison of the phase shifts calculated using the second spherical
wall approach and Lüscher’s finite-volume method with the exact energy spectrum.

spectrum method. The phase shifts are calculated for L = 50 and Rwall = 13 . . . 23 in lattice
units.

Our next approach is a second version of the spherical wall wave function method. In this
case we determine R′

wall = Rwall + ϵ from the non-interacting particle-dimer wave function.
In the example shown in Fig. 8, the boundary is set at Rwall = 17, and we find the wave
function vanishes at R′

wall = 17.901, and the momentum of the free wave function is p0 =
43.874 ± 0.02 MeV. We then do a two-parameter fit to the interacting wave function and
find δ0(p) = −165.8 ± 0.5 for the momentum p = 42.5±0.1 MeV. The phase shifts shown in
the right panel of Fig. 8 are calculated for L = 50 and Rwall = 13 . . . 23 in lattice units. The
results are in agreement with the results of the first spherical wall approach, but have smaller
error bars, especially for the odd parity phase shifts. In three dimensions this improvement
becomes more significant.

One of the disadvantages of the spherical wall method is that one needs to go to rather
large values of Rwall and L in order to probe very low energies. The last method we consider
overcomes this issue. In order to compute phase shifts at low momenta using small lattices,
we impose a spherical hard wall and add also an attractive well potential in front of the
wall boundary. We treat the depth of the well as an adjustable continuous parameter. The
example shown in Fig. 9 corresponds to the case of L = 30, Rwall = 13 and Rwell = 12 in
lattice units. The resulting value of the phase shift in this example is δ0(p) = −155.0± 1.6◦

at momentum p = 24.9 ± 0.6 MeV. The phase shifts shown in the right panel of Fig. 9
are calculated for L = 50, Rwall = 23 and different well depths. The agreement with
Lüscher’s energy spectrum method is very good, and we also obtain phase shifts for smaller
momenta. However, the additional attractive potential distorts the asymptotic form of the
wave function near the potential well. The distortion of the wave function grows with the
depth of the attractive potential, and the calculation of the phase shifts for smaller momenta
is achieved at the expense of a larger relative error. This might complicate the application
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Figure 10: (Color online) The s-wave (left panel) and p-wave (right panel) scattering phase shifts
for fermion-dimer scattering in three dimensions. We compare phase shifts calculated using the
the spherical wall approach with R′

wall determined from the non-interacting wave function with
Lüscher’s finite-volume method using the exact energy spectrum.

For the three-dimensional fermion-dimer calculation, we use only the most promising of the
four approaches explored previously for the one dimensional system. This is the spherical
wall method with R′

wall determined from the non-interacting wave function. In Fig. 10, the
squares show lattice results for the s-wave and p-wave scattering phase shifts using adiabatic
projection method with τ = 0.37 and spherical wall method. The circles are the exact
lattice results obtained using Lüscher’s method applied to the energies of the microscopic
Hamiltonian H evaluated using Lanczos eigenvector iteration. The dashed lines correspond
to leading order pionless EFT continuum results obtained using the STM equation. The
solid lines are fits of the lattice data using an effective range expansion,

p2ℓ+1 cot δℓ(p) = − 1

aℓ
+

1

2
rℓ p2 + O(p4) . (37)

We note again that these exact Lanczos benchmark calculations using the energies of H
are only possible in small systems. The adiabatic projection method is needed to probe
much larger systems via lattice Monte Carlo. We have seen in Table I that when we use
Lüscher’s method to extract phase shifts from the adiabatic Hamiltonian energies, the errors
large as 50% at low energies. In comparison with this, we observe much smaller error bars
and excellent agreement between the adiabatic Hamiltonian results and the exact lattice
phase shifts in Fig. 10. We should mention that the discrepancies between the lattice and
continuum results at large momenta are nothing more than lattice spacing artifacts and
would go away in the limit of vanishing lattice spacing.

3-parameter fit 2-parameter fit

2-parameter fit

Gabbiani, Bedaque, Grießhammer, NPA 675 (2000) 601
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Figure 9: Particle-dimer phase shifts in one dimension with the spherical wall and an attractive
well potential. Left panel: An example of the wave function matching. Right panel: Comparison
of the phase shifts calculated using the approach based on the combination of the spherical wall
and attractive well with Lüscher’s finite-volume method using the exact energy spectrum.

of this method for calculations in three dimensions where the values of Rwall are typically
smaller.

B. Fermion-dimer scattering in three dimensions

Before presenting lattice calculations for fermion-dimer scattering in three dimensions, we
first review continuum calculations of the same system in the limit of zero range interactions.
This corresponds to neutron-deuteron scattering at leading order in pionless effective field
theory [41–43]. The T -matrix is obtained by solving the Skorniakov-Ter-Martirosian (STM)
integral equation,

Tℓ(k, p) = − 8πγ

mpk
Qℓ

(
p2 + k2 − mE − i0+

pk

)

− 2

π

∫ ∞

0

dq
q

p

Tℓ(k, q)√
3q2/4 − mE − i0+ − γ

Qℓ

(
p2 + q2 − mE − i0+

pq

)
, (34)

where γ is the dimer binding momentum, E = 3p2/(4m)− γ2/m is the total energy, and Qℓ

is the Legendre function of the second kind,

Qℓ(a) =
1

2

∫ 1

−1

dx
Pℓ(x)

x + a
. (35)

The scattering phase shift can then be extracted by matching the solution of Eq. (34) with
the on-shell T -matrix

Tℓ(p, p) =
3π

m

p2ℓ

p2ℓ+1 cot δℓ − ip2ℓ+1
. (36)
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Thank you for your attention!


