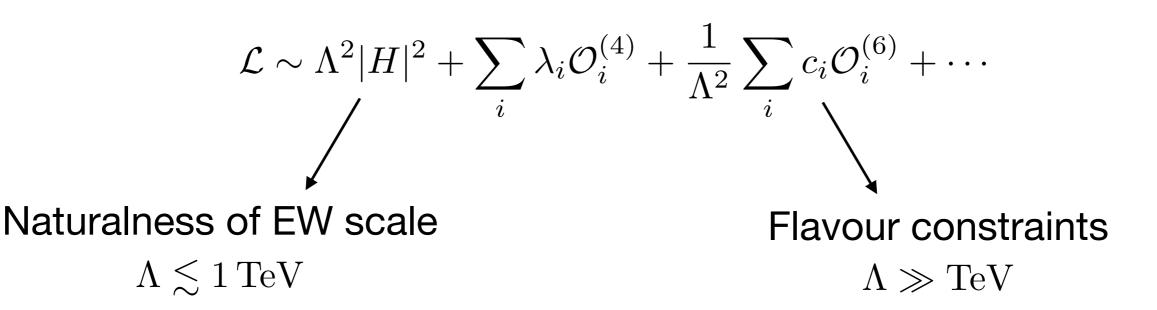


Building models for B physics anomalies

Dario Buttazzo


based on work with A. Greljo, G. Isidori, D. Marzocca

Istituto Nazionale di Fisica Nucleare

Rencontres de Physique de la Vallée d'Aoste – La Thuile, 28.2.2018

Introduction

- low Λ, small c's: flavour problem
- high Λ, c's ~ O(1): hierarchy problem

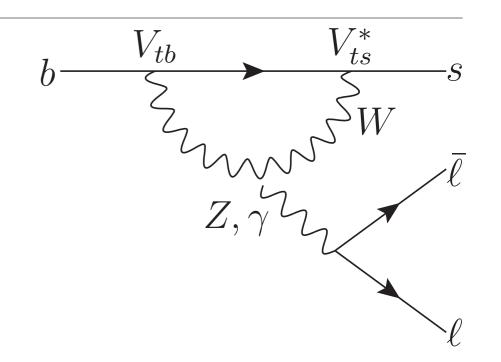
Pre-LHC:

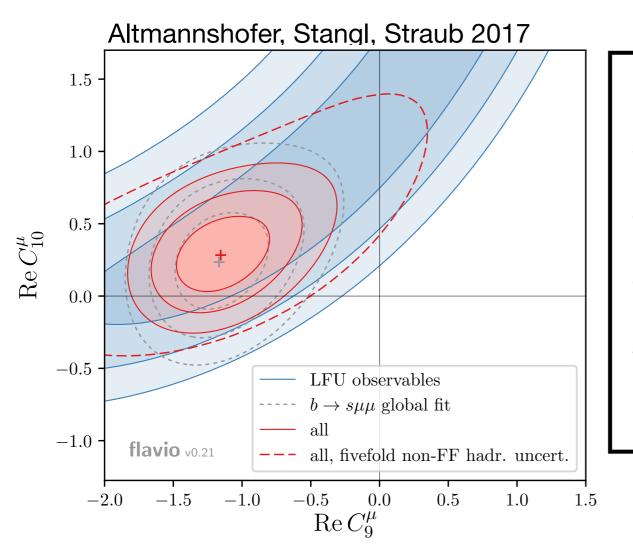
exciting phenomena in high-pT experiments: ATLAS, CMS

boring flavour physics (MFV)

Post-LHC:

no light on-shell resonances


very interesting anomalies in flavour observables


Semi-leptonic b to s decays

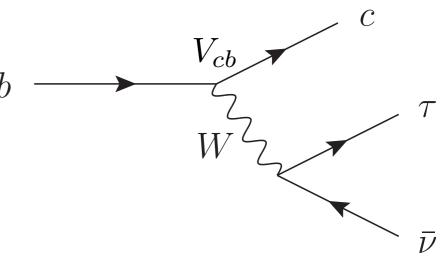
FCNC: occurs only at **loop-level** in the SM + **CKM** suppressed

Semi-leptonic effective Lagrangian:

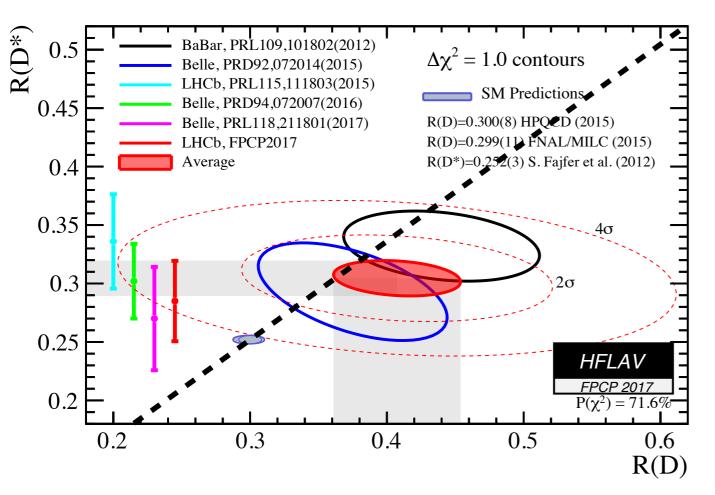
 $\mathcal{L} = \frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} V_{tb}^* V_{ts} \sum_i C_i \mathcal{O}_i + C_i' \mathcal{O}_i'$

Deviations from SM in several observables

- Angular distributions in $B \rightarrow K^* \mu \mu$
- Various branching ratios $B_{(s)} \rightarrow X_s \mu \mu$
- LFU in R(K) and R(K*) (very clean prediction!)
- ~ 20% NP contribution to LH current

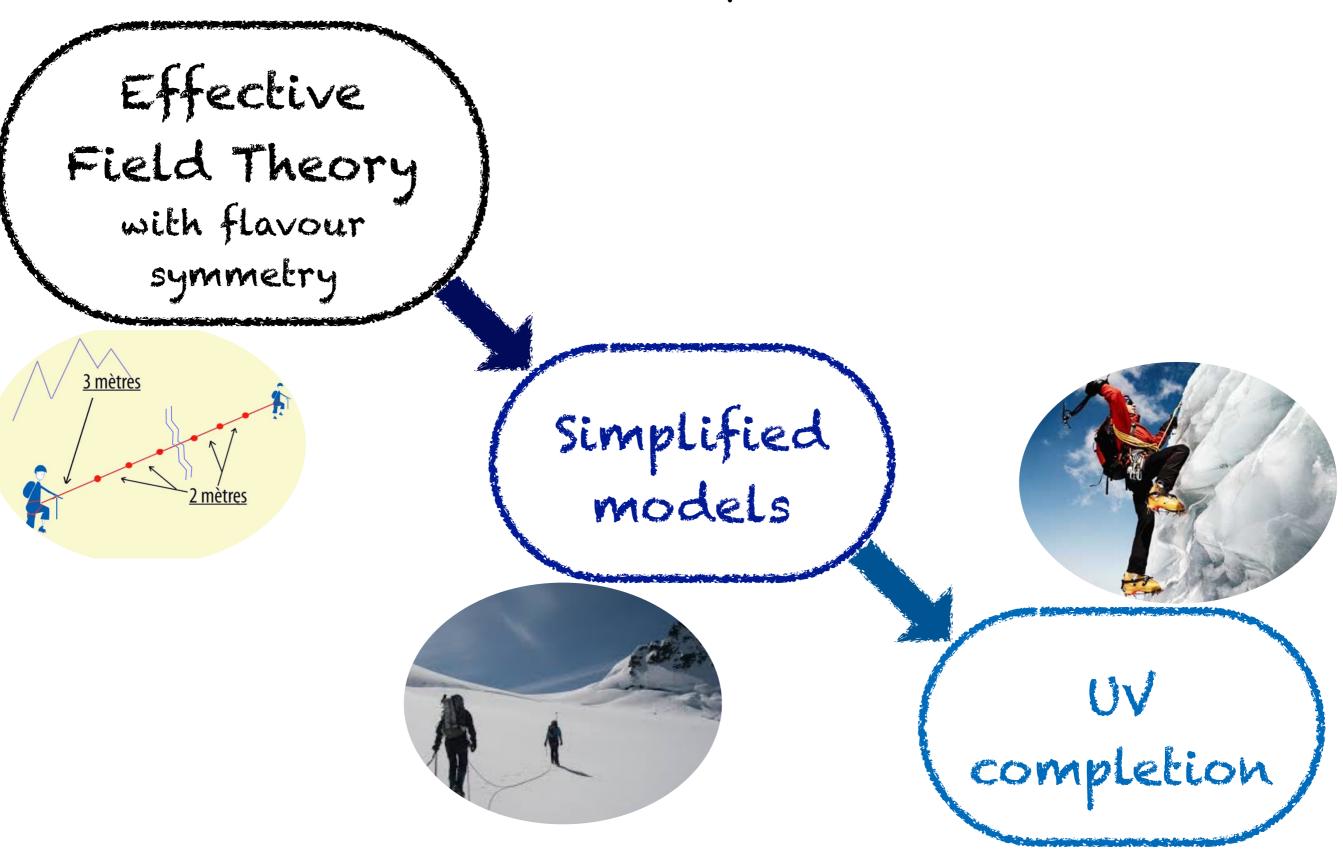

Globally 5-6σ

➡ see Nazila's talk


Semi-leptonic b to c decays

Charged-current interaction: **tree-level** effect in the SM, with mild CKM suppression

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{cb}^* (\bar{b}_L \gamma_\mu c_L) (\bar{\tau}_L \gamma^\mu \nu_\tau)$$


LFU ratios: $R_{D^{(*)}} = \frac{\text{BR}(B \to D^{(*)} \tau \bar{\nu})/\text{SM}}{\text{BR}(B \to D^{(*)} \ell \bar{\nu})/\text{SM}} = 1.237 \pm 0.053$

~ 20% enhancement in LH currents ~ 4σ from SM

- RH & scalar currents disfavoured
- SM predictions robust: form factors cancel in the ratio (to a good extent)
- Consistent results by three very different experiments, in different channels
- Large backgrounds & systematic errors

Is it possible to explain the whole set of anomalies in a coherent picture?

Lepton Flavour Universality

 (Lepton) flavour universality is an accidental property of the gauge Lagrangian, not a fundamental symmetry of nature

• The only non-gauge interaction in the SM violates LFU maximally

 $\mathcal{L}_{\text{Yuk}} = \bar{q}_L Y_u u_R H^* + \bar{d}_L Y_d d_R H + \bar{\ell}_L Y_e e_R H \qquad Y_{u,d,e} \approx \text{diag}(0,0,1)$

 LFU approximately satisfied in SM processes because Yukawa couplings are small

$$y_{\mu} \approx 10^{-3} \qquad \qquad y_{\tau} \approx 10^{-2}$$

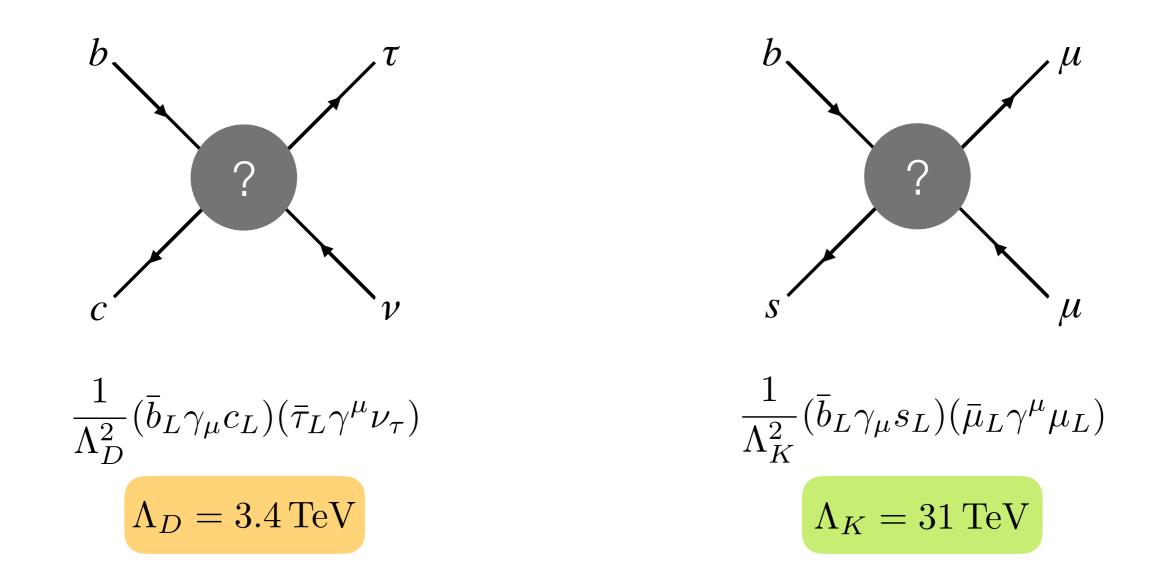
natural to expect LFU and flavour violations in BSM physics

What do we know?

1. Anomalies seen only in semi-leptonic processes: quarks x leptons

nothing observed in pure quark or lepton processes

 Large effect in 3rd generation: b quarks, τν competes with SM treelevel


smaller non-zero effect in 2nd generation: $\mu\mu$ competes with SM FCNC,

no effect in 1st generation

- 3. Flavour alignment with down-quark mass basis (to avoid large FCNC)
- 4. Left-handed four-fermion interactions

RH and scalar currents disfavoured: can be present, but do not fit the anomalies (both in charged and neutral current), Higgs-current small or not relevant

Simultaneous explanations

- I. "vertical" structure: the two operators can be related by SU(2)_L $(\bar{q}_L \gamma_\mu \sigma^a q_L)(\bar{\ell}_L \gamma^\mu \sigma^a \ell_L)$
- II. "horizontal" structure: NP structure reminds of the Yukawa hierarchy

 $\Lambda_D \ll \Lambda_K, \qquad \lambda_{\tau\tau} \gg \lambda_{\mu\mu}$

$$\begin{array}{c} & \downarrow \\ & \downarrow \\ & \Lambda_D \simeq 3.4 \, \mathrm{TeV} \\ \hline \Lambda_D \simeq 3.4 \, \mathrm{TeV} \\ \hline \Lambda_D \simeq 3.4 \, \mathrm{TeV} \\ \hline \Lambda_L \delta_{\mu\nu} \ \mu_L + h.c. \ \Lambda_{R_{\mu}} = 34 \, \mathrm{TeV} \\ \hline \lambda_{L} \delta_{\mu\nu} \ \mu_L + h.c. \ \Lambda_{R_{\mu}} = 34 \, \mathrm{TeV} \\ \hline \lambda_{L} \delta_{\mu\nu} \ \mu_L + h.c. \ \Lambda_{R_{\mu}} = 34 \, \mathrm{TeV} \\ \hline \lambda_{L} \delta_{\mu\nu} \ \mu_L + h.c. \ \Lambda_{R_{\mu}} = 34 \, \mathrm{TeV} \\ \hline \lambda_{L} \delta_{\mu\nu} \ \mu_L + h.c. \ \Lambda_{R_{\mu}} = 34 \, \mathrm{TeV} \\ \hline \lambda_{L} \delta_{\mu\nu} \ \mu_L \ \lambda_{L} \delta_{\mu\nu} \ \mu_L \\ \hline \lambda_{L} \delta_{\mu\nu} \ \mu_L \ \lambda_{L} \delta_{\mu\nu} \ \mu_L \\ \hline \lambda_{L} \delta_{\mu\nu} \ \lambda_{L} \ \lambda_{L} \delta_{\mu\nu} \ \lambda_{L} \\ \hline \lambda_{L} \delta_{\mu\nu} \ \lambda_{L} \ \lambda_{L} \ \lambda_{L} \ \lambda_{\mu\nu} \$$

Table I: A set of simplified models generating $b \to c \tau \nu$ tran-

Constructing the Effective Field Theory

1. Left-handed four-fermion interactions: two possible operators in SM-EFT

 $C_S(\bar{q}_L^i \gamma_\mu q_L^j)(\bar{\ell}_L^\alpha \gamma^\mu \ell_L^\beta)$ - SU(2) singlet -

 $C_T(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j)(\bar{\ell}_L^\alpha \gamma^\mu \sigma^a \ell_L^\beta)$

- SU(2) triplet -

- 2. Flavour structure:
 - Large effect in 3rd generation
 - Smaller effect in 2nd generation
 - Flavour alignment with CKM

connection with Yukawa coupling hierarchies: U(2) symmetry

U(2) flavour symmetry

SM Yukawa couplings exhibit an approximate U(2)³ flavour symmetry:

1. Good approximation of SM spectrum: $m_{light} \sim 0$, $V_{CKM} \sim 1$

Breaking
pattern:
$$Y_{u,d} \approx \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow Y_{u,d} \approx \begin{pmatrix} \Delta & V_q \\ 0 & 1 \end{pmatrix} \qquad \frac{\Delta \sim (\mathbf{2}, \mathbf{2}, \mathbf{1})}{V_q \sim (\mathbf{2}, \mathbf{1}, \mathbf{1})}$$

Barbieri et al. 2011, 2012

- 2. The assumption of a single spurion V_q connecting the 3rd generation with the other two ensures MFV-like FCNC protection
- 3. The most general symmetry that gives "CKM-like" interactions in a modelindependent way

Constructing the Effective Field Theory

1. Left-handed four-fermion interactions: two possible operators in SM-EFT

 $C_{S}(\bar{q}_{L}^{i}\gamma_{\mu}q_{L}^{j})(\bar{\ell}_{L}^{\alpha}\gamma^{\mu}\ell_{L}^{\beta}) \qquad C_{T}(\bar{q}_{L}^{i}\gamma_{\mu}\sigma^{a}q_{L}^{j})(\bar{\ell}_{L}^{\alpha}\gamma^{\mu}\sigma^{a}\ell_{L}^{\beta}) \\ - \text{SU(2) singlet} - \qquad - \text{SU(2) triplet} -$

Q

2. Flavour structure: minimally broken $U(2)_q \times U(2)_\ell$ symmetry

 $U(2)_q \ge U(2)_\ell$ breaking pattern: $V_q = (V_{td}^*, V_{ts}^*)$ $V_\ell \approx (0, V_{\tau\mu})$ CKM structure for quarks $V_\ell \approx (0, V_{\tau\mu})$ strong LFV constraints for electrons

no flavour-conserving coupling to light generations

$$V_L^{(3)} \sim \begin{pmatrix} V_{ib}^* u_L^i \\ b_L \end{pmatrix}$$

+ small terms (~ V_{CKM})

$$\lambda_{ij}^{q} \approx \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \gamma_{ts}^{\alpha} & V_{ts} \\ \cdot & V_{ts}^{*} & 1 \end{pmatrix} \qquad \lambda_{\alpha\beta}^{\ell} \approx \begin{pmatrix} \cdot & \gamma_{ts}^{\alpha} & \cdot & \cdot \\ \cdot & \gamma_{\tau\mu}^{\beta} & V_{\tau\mu}^{\beta} \\ \cdot & V_{\tau\mu}^{*} & 1 \end{pmatrix}$$

B, Greljo, Isidori, Marzocca, 2017

Constructing the Effective Field Theory

1. Left-handed four-fermion interactions: two possible operators in SM-EFT

2. Flavour structure: minimally broken $U(2)_q \times U(2)_\ell$ symmetry

 $U(2)_q \ge U(2)_\ell$ breaking pattern: $V_q = (V_{td}^*, V_{ts}^*)$ $V_\ell \approx (0, V_{\tau\mu})$ CKM structure for quarks $V_\ell \approx (0, V_{\tau\mu})$ strong LFV constraints for electrons

no flavour-conserving coupling to light generations

$$Q_L^{(3)} \sim \begin{pmatrix} V_{ib}^* u_L^i \\ b_L \end{pmatrix}$$

+ small terms (~ V_{СКМ})

 $\lambda_{ij}^{q} \approx \begin{pmatrix} \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots \\ \vdots & V_{ts}^{*} & \ddots \end{pmatrix} \qquad \lambda_{\alpha\beta}^{\ell} \approx \begin{pmatrix} \vdots & \ddots & \ddots \\ \vdots & V_{\tau\mu}^{*} |^{2} & \ddots \\ \vdots & V_{-\cdots}^{*} & \ddots \end{pmatrix}$

B, Greljo, Isidori, Marzocca, 2017

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^\ell \left[C_T(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j) (\bar{\ell}_L^\alpha \gamma^\mu \sigma^a \ell_L^\beta) + C_S(\bar{q}_L^i \gamma_\mu q_L^j) (\bar{\ell}_L^\alpha \gamma^\mu \ell_L^\beta) \right] \\ \frac{B, \text{ Greljo, Isidori, Marzocca, 2017}}{B, \text{ Greljo, Isidori, Marzocca, 2017}}$$

LFU ratios in $b \rightarrow c$ charged currents:

• **T**:
$$R_{D^{(*)}}^{\tau\ell} \simeq 1 + 2C_T \left(1 + \frac{\lambda_{bs}^q}{V_{cb}}\right) = 1.237 \pm 0.053$$

•
$$\mu$$
 vs. e: $R_{D^{(*)}}^{\mu e} \simeq 1 + 2C_T \left(1 + \frac{\lambda_{bs}^q}{V_{cb}}\right) \lambda_{\mu\mu} < 0.02 \longrightarrow \lambda_{\mu\mu} \lesssim 0.1$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^\ell \left[C_T(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j) (\bar{\ell}_L^\alpha \gamma^\mu \sigma^a \ell_L^\beta) + C_S(\bar{q}_L^i \gamma_\mu q_L^j) (\bar{\ell}_L^\alpha \gamma^\mu \ell_L^\beta) \right]$$

B, Greljo, Isidori, Marzocca, 2017

LFU ratios in $b \rightarrow c$ charged currents:

• T:
$$R_{D^{(*)}}^{\tau\ell} \simeq 1 + 2C_T \left(1 + \frac{\lambda_{bs}^q}{V_{cb}}\right) = 1.237 \pm 0.053$$

• μ vs. e: $R_{D^{(*)}}^{\mu e} \simeq 1 + 2C_T \left(1 + \frac{\lambda_{bs}^q}{V_{cb}}\right) \lambda_{\mu\mu} < 0.02$

 $\rightarrow \lambda_{\mu\mu} \lesssim 0.1$

Neutral currents: $b \rightarrow sv_{\tau}v_{\tau}$ transitions not suppressed by lepton spurion

$$\Delta C_{\nu} \simeq \frac{\pi}{\alpha V_{ts}^* V_{tb}} \lambda_{sb}^q (C_S - C_T) \qquad \text{strong bounds from } B \to K^* v v$$
$$\longrightarrow \quad C_T \sim C_S$$

 $b \rightarrow s\tau\tau \sim C_T + C_S$ is large (100 x SM), weak experimental constraints

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^\ell \left[C_T(\bar{q}_L^i \gamma_\mu \sigma^a q_L^j) (\bar{\ell}_L^\alpha \gamma^\mu \sigma^a \ell_L^\beta) + C_S(\bar{q}_L^i \gamma_\mu q_L^j) (\bar{\ell}_L^\alpha \gamma^\mu \ell_L^\beta) \right]$$

<u>B, Greljo, Isidori, Marzocca, 2017</u>

LFU ratios in $b \rightarrow c$ charged currents:

• **T**:
$$R_{D^{(*)}}^{\tau\ell} \simeq 1 + 2C_T \left(1 + \frac{\lambda_{bs}^q}{V_{cb}}\right) = 1.237 \pm 0.053$$

•
$$\mu$$
 vs. e: $R_{D^{(*)}}^{\mu e} \simeq 1 + 2C_T \left(1 + \frac{\lambda_{bs}}{V_{cb}}\right) \lambda_{\mu\mu} < 0.02 \longrightarrow \lambda_{\mu\mu} \lesssim 0.1$

Neutral currents: $b \rightarrow sv_{\tau}v_{\tau}$ transitions not suppressed by lepton spurion

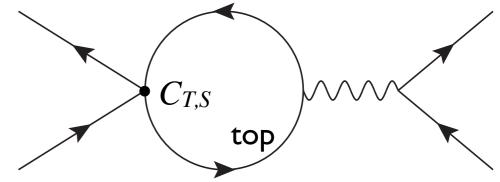
$$\Delta C_{\nu} \simeq \frac{\pi}{\alpha V_{ts}^* V_{tb}} \lambda_{sb}^q (C_S - C_T) \qquad \text{strong bounds from } B \to K^* v v$$
$$\longrightarrow \quad C_T \sim C_S$$

 $b \rightarrow s\tau\tau \sim C_T + C_S$ is large (100 x SM), weak experimental constraints

b \rightarrow *sµµ* is an independent quantity: fixes the size of $\lambda_{\mu\mu}$

$$\Delta C_{9,\mu} = -\frac{\pi}{\alpha V_{ts}^* V_{tb}} \lambda_{sb}^q \lambda_{\mu\mu} (C_T + C_S)$$

Radiative corrections


Purely leptonic operators generated at the EW scale by RG evolution

Feruglio et al. 2015

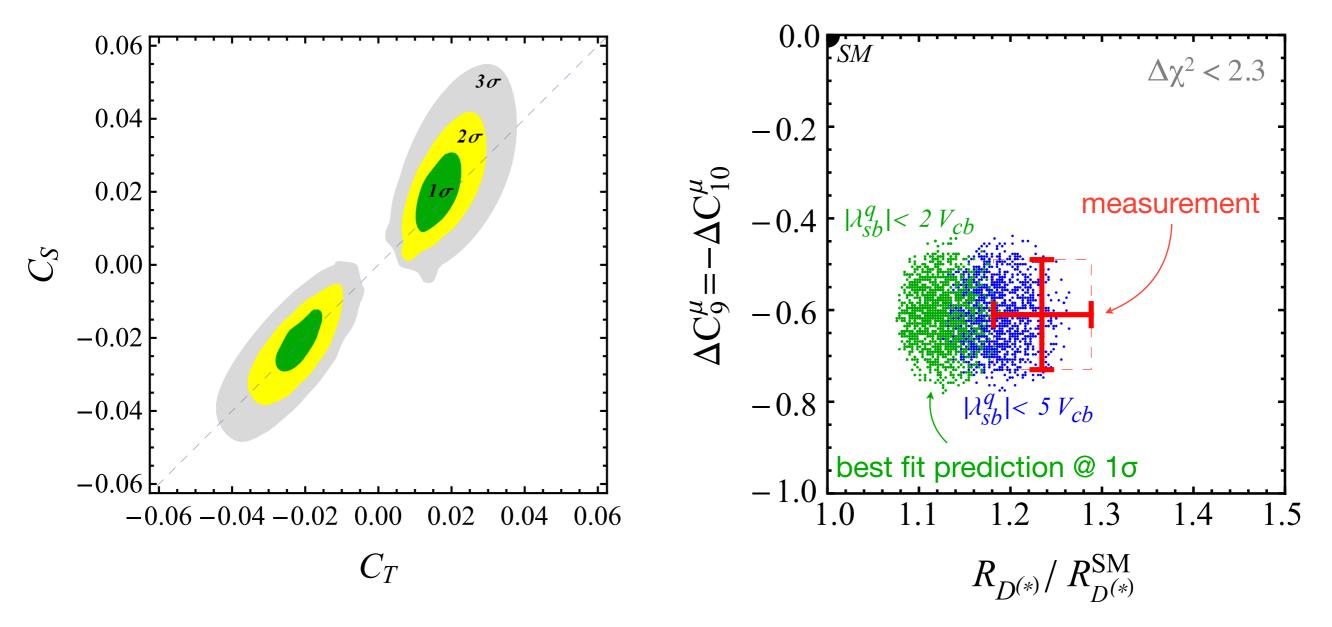
• LFU in τ decays $\tau \rightarrow \mu v v$ vs. $\tau \rightarrow e v v$ (effectively deviation in W couplings)

$$\delta g_{\tau}^{W} = -0.084 \, C_T = (9.7 \pm 9.8) \times 10^{-4}$$

• ZTT couplings

$$\delta g_{\tau_L}^Z = -0.047C_S + 0.038C_T = -0.0002 \pm 0.0006$$

• **Zvv couplings** (number of neutrinos)

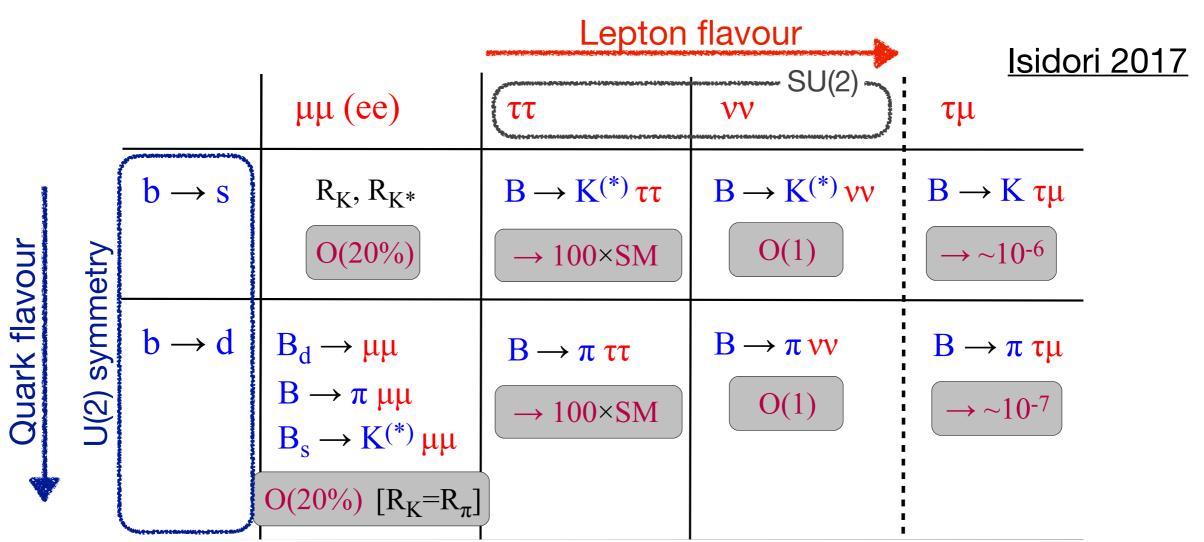

 $N_{\nu} = 3 - 0.19 C_S - 0.15 C_T = 2.9840 \pm 0.0082$

(RG-running corrections to four-quark operators suppressed by the τ mass)

strong bounds on the scale of NP ($C_{S,T} \leq 0.02-0.03$)

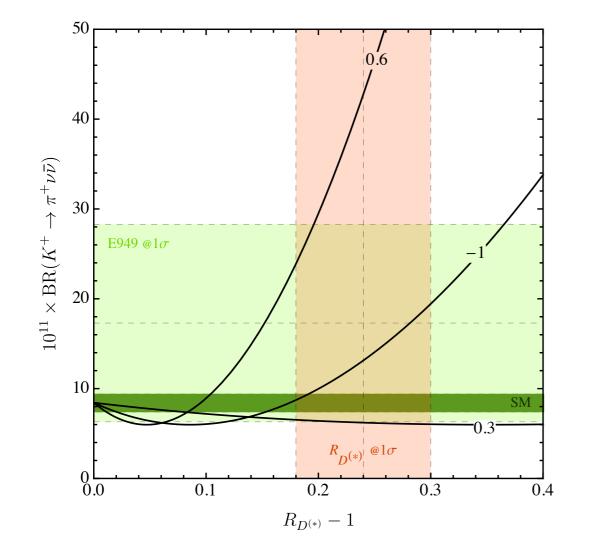
Fit results

- EFT fit to all semi-leptonic observables + radiative corrections to EWPT
- Don't include any UV contribution to other operators (they will depend on the dynamics of the specific model)

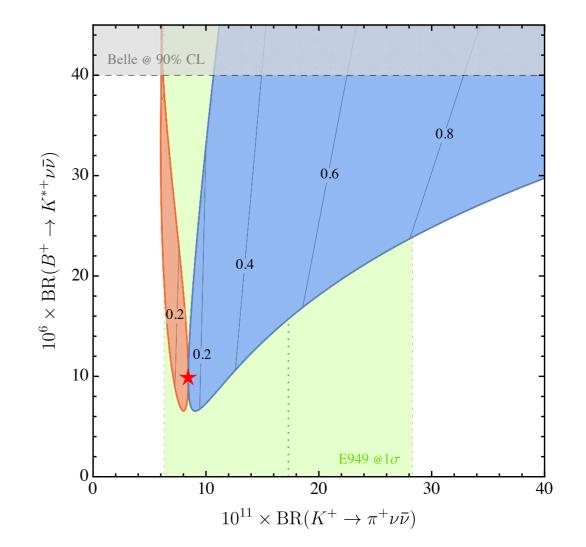

Good fit to all anomalies, with couplings compatible with the U(2) assumption

Other observables

- LH currents: universality of all $b \rightarrow c$ transitions: BR $(B \rightarrow D\tau v)$ /SM = BR $(B \rightarrow D^*\tau v)$ /SM = BR $(B_c \rightarrow \psi \tau v)$ /SM = BR $(\Lambda_b \rightarrow \Lambda_c \tau v)$ /SM ...
- U(2) symmetry: $b \rightarrow c$ vs. $b \rightarrow u$ universality: BR($B \rightarrow D^{(*)}\tau v$)/SM = BR($B \rightarrow \pi \tau v$)/SM = BR($B^+ \rightarrow \tau v$)/SM = BR($B_s \rightarrow K^*\tau v$)/SM ...

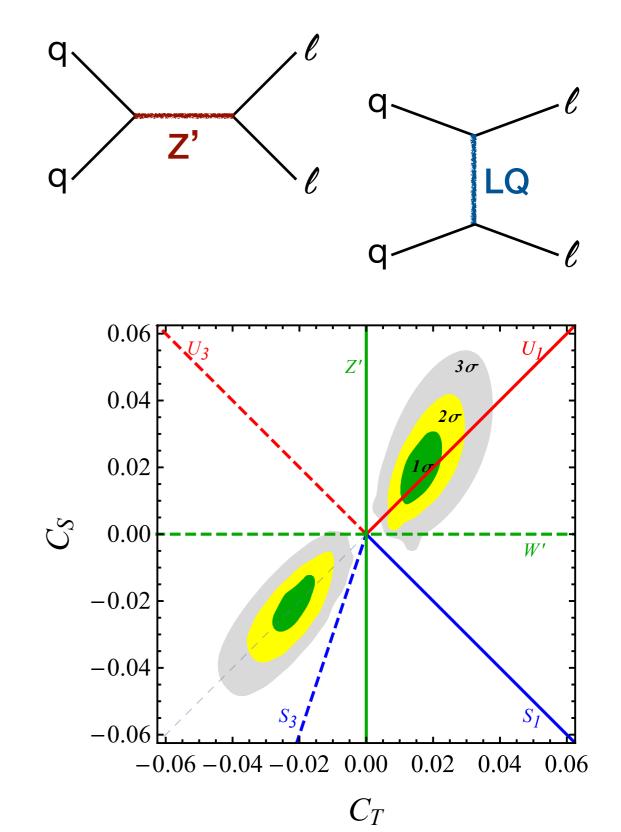

Other observables

- LH currents: universality of all $b \rightarrow c$ transitions: BR($B \rightarrow D\tau v$)/SM = BR($B \rightarrow D^*\tau v$)/SM = BR($B_c \rightarrow \psi \tau v$)/SM = BR($\Lambda_b \rightarrow \Lambda_c \tau v$)/SM ...
- U(2) symmetry: $b \rightarrow c$ vs. $b \rightarrow u$ universality: BR($B \rightarrow D^{(*)}\tau v$)/SM = BR($B \rightarrow \pi \tau v$)/SM = BR($B^+ \rightarrow \tau v$)/SM = BR($B_s \rightarrow K^*\tau v$)/SM ...
- Neutral currents: several correlated effects in many observables



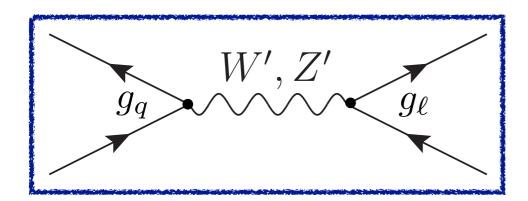
٠

- The only $s \rightarrow d$ decay with 3rd generation leptons in the final state: sizeable deviations can be expected
 - U(2) symmetry relates $b \rightarrow q$ transitions to $s \rightarrow d$ (up to modeldependent parameters of order 1): $\lambda_{sd} \sim V_q V_q^* \sim V_{ts}^* V_{td} \qquad \lambda_{bq} \sim V_q \sim V_{tq}^*$

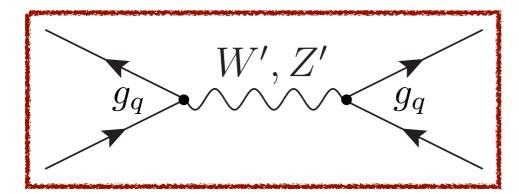

Simplified models

Mediators that can give rise to the $b \rightarrow c \ell v$ and $b \rightarrow s \ell \ell$ amplitudes:

	Spin 0	Spin 1
Colour	- 2HDM-	Vector
singlet	no LL operator	resonance
Colour	Scalar	Vector
triplet	lepto-quark	lepto-quark


Contributions to C_T and C_S from different mediators:

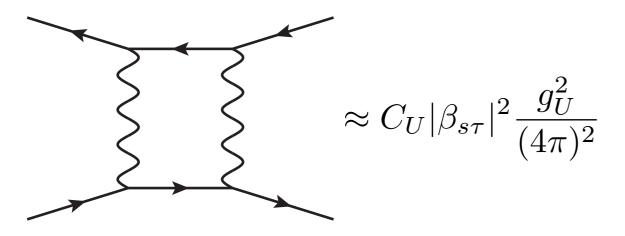
- A vector leptoquark is the only single mediator that can fit all the anomalies alone: C_T ~ C_S
- Combinations of two or more mediators also possible (often the case in concrete models)

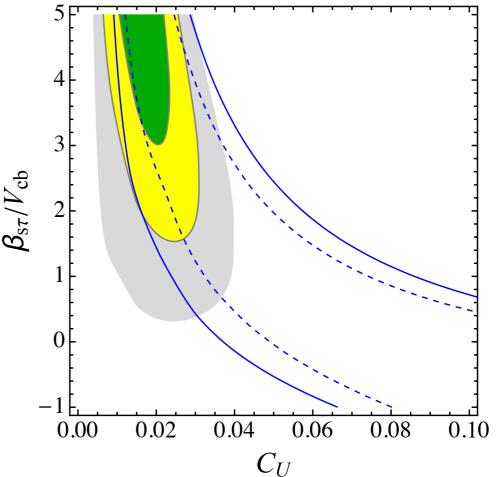


Triplet and singlet colourless vectors:

$$J^{a}_{\mu} = g_{q}\lambda^{q}_{ij} \left(\bar{Q}^{i}_{L}\gamma_{\mu}T^{a}Q^{j}_{L} \right) + g_{\ell}\lambda^{\ell}_{\alpha\beta} \left(\bar{L}^{\alpha}_{L}\gamma_{\mu}T^{a}L^{\beta}_{L} \right)$$
$$J^{0}_{\mu} = \frac{g^{0}_{q}}{2}\lambda^{q}_{ij} \left(\bar{Q}^{i}_{L}\gamma_{\mu}Q^{j}_{L} \right) + \frac{g^{0}_{\ell}}{2}\lambda^{\ell}_{\alpha\beta} \left(\bar{L}^{\alpha}_{L}\gamma_{\mu}L^{\beta}_{L} \right)$$

$$C_{T,S} = \frac{4v^2}{m_V^2} g_q g_\ell$$

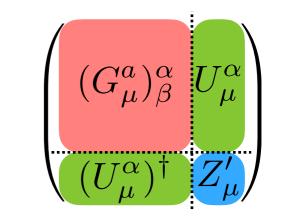

Large contribution to B_s mixing $\Delta \mathcal{A}_{B_s - \bar{B}_s} \approx \frac{v^2}{m_V^2} \lambda_{bs}^2 \left(g_q^2 + (g_q^0)^2\right)$ $\approx \left(C_T + C_S\right) \lambda_{bs}^2$


 $\mathcal{L}_{\rm int} = W^{\prime a}_{\mu} J^a_{\mu} + B^{\prime}_{\mu} J^0_{\mu}$

Problem less severe for large $C_{T,S}$ — stronger tension with EW precision tests. In models with more couplings (e.g. Higgs current) can partially cancel the contributions SU(2)_L singlet vector LQ: $U_{\mu} \sim (\mathbf{3}, \mathbf{1}, 2/3)$

$$\mathcal{L}_{\mathrm{LQ}} = g_U U_\mu \beta_{i\alpha} \left(\bar{Q}_L^i \gamma^\mu L_L^\alpha \right) + \mathrm{h.c.}$$

- $C_T = C_S$ automatically satisfied at tree-level $\mathcal{L}_{eff} \supset -\frac{1}{v^2} C_U \beta_{i\alpha} \beta_{j\beta}^* \left[(\bar{Q}^i \gamma_\mu \sigma^a Q^j) (\bar{L}^\alpha \gamma^\mu \sigma^a L^\beta) + (\bar{Q}^i \gamma_\mu Q^j) (\bar{L}^\alpha \gamma^\mu L^\beta) \right]$ $C_U = \frac{v^2 |g_U|^2}{2m_U^2}$



Leptoquark quantum numbers are consistent with Pati-Salam unification

 $SU(4) \times SU(2)_L \times SU(2)_R \supset SU(3)_c \times SU(2)_L \times U(1)_Y$

Lepton number = 4th color $\psi_L = (q_L^1, q_L^2, q_L^3, \ell_L) \sim (\mathbf{4}, \mathbf{2}, \mathbf{1}),$ $\psi_R = (q_R^1, q_R^2, q_R^3, \ell_R) \sim (\mathbf{4}, \mathbf{1}, \mathbf{2}).$

Gauge fields:
$$\mathbf{15} = \mathbf{8}_0 \oplus \mathbf{3}_{2/3} \oplus \mathbf{\overline{3}}_{-2/3} \oplus \mathbf{1}_0$$

vector leptoquark $\overline{\mathbf{6}}$

- No proton decay: protected by gauge $U(1)_{B-L} \subset SU(4)$
- U_{μ} gauge vector: unitary couplings to fermions
 - → bounds of O(100 TeV) from light fermion processes, e.g. $K \rightarrow \mu e$

UV completions: vector leptoquark

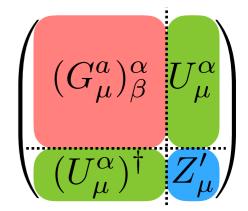
Non-universal couplings to fermions needed!

• Elementary vectors: color can't be completely embedded in SU(4)

 $SU(4) \times SU(3) \rightarrow SU(3)_c$ Di Luzio et al. 2017 Isidori et al. 2017

only the 3rd generation is charged under SU(4)

- Composite vectors: resonances of a strongly interacting sector with global $SU(4) \times SU(2) \times SU(2)$


the couplings to fermions can be different (e.g. partial compositeness)

Barbieri, Tesi 2017

In all cases, additional heavy vector resonances (color octet and Z') are present

Searches at LHC!

➡ see M. Nardecchia's talk

Composite scalar leptoquarks

- New strong interaction that confines at a scale $\Lambda \sim \text{few TeV}$ $\Psi \sim \Box, \quad \overline{\Psi} \sim \overline{\Box} \quad \text{N new (vector-like) fermions}$ $\langle \overline{\Psi}^i \Psi^j \rangle = -f^2 B_0 \delta^{ij} \longrightarrow \text{SU}(N)_L \times \text{SU}(N)_R \rightarrow \text{SU}(N)_V$ (more in general $G \rightarrow F$)
- If the fermions transform under SM gauge group, also the Pseudo Nambu-Goldstone bosons have SM charges:

$$\Psi_Q \sim (\mathbf{3}, \mathbf{2}, Y_Q), \qquad \Psi_L \sim (\mathbf{1}, \mathbf{2}, Y_L) \quad \longrightarrow$$

the scalar LQ are naturally light (pNGB) and couple to fermions

$$S_1 \sim (\mathbf{3}, \mathbf{1}, Y_Q - Y_L),$$

 $S_3 \sim (\mathbf{3}, \mathbf{3}, Y_Q - Y_L),$
 $\eta \sim (\mathbf{1}, \mathbf{1}, 0),$
 $\pi \sim (\mathbf{1}, \mathbf{3}, 0), \cdots$

 $\Psi_E \sim (\mathbf{1}, \mathbf{1}, -1), \qquad \Psi_N \sim (\mathbf{1}, \mathbf{1}, 0) \longrightarrow \qquad H \sim (\mathbf{1}, \mathbf{2}, \pm 1/2)$

composite Higgs as a pNGB can be included in the picture

• Vector resonances (with the same quantum numbers) are heavier $W'_{\mu}, B'_{\mu}, U_{\mu}, \cdots$ <u>B, Greljo, Isidori, Marzocca 2017</u> <u>Marzocca, to appear</u>

Conclusions & outlook

Is the SM breaking down in the flavour sector? We don't know...

- many new data in the coming years
- Iow scale: flavour measurements VS high-pT searches

Model-independent description: EFT

- CKM-like flavour violation
- Triplet and Singlet operators with similar size
- EWPT and meson mixing give important constraints

Leptoquarks are interesting!

Pati-Salam unification?!

Thank you for your attention!