

Jennifer Maller on behalf the Pierre Auger Collaboration

The Pierre Auger Observatory

Hybrid air-shower detector covering 3000 km²:

24 fluorescence's telescopes (FD) on 4 sites

- 1660 water tanks (SD) – grid size: 1.5 km

- 100% of efficiency at 3 EeV

Low energy enhancement, sensitive to 0.1 < E < 10 EeV, located near Coihueco:

- **HEAT**: 3 high elevation fluorescence telescopes

- Infill array: water tanks with

a reduced grid size: 750 m

- AMIGA: muon detector

- AERA \rightarrow E > 0.1 EeV

Radiodetection in the MHz range

Radiodetection mechanisms in the MHz range

Coherent radio pulse detectable at the ground level

See talk of L. Martin

CODALEMA (Subatech, *France*), **LOPES** (KIT, *Germany*) gave the 1^{st} modern results at low energy $\sim 10^{17} \, \text{eV}$

UHECR2012 – Ad van den Berg

MHz - experiments @ Auger

AERA: Auger Engineering Radio Array

Located in the **low energy extension** of Auger

→ comparison regular SD - infill array - FD - HEAT

Objectives:

- \circ Radiodetection of cosmic rays with E > 0.1 EeV
- O Disentangle emission mechanisms
- Primary cosmic ray characteristics (arrival direction, energy, nature...)
- Test the performances of a large radio array

Setup 1st stage – 0.5 km²

Dense core installed in 2010, taking data since spring 2011: **24 stations** spaced by **144 m** composed of :

- An **antenna** (**LPDA**) measuring both **EW NS polarizations** in the **30 80 MHz** band
- An **EMC box** containing the **electronics** to prevent triggering of the station by RFI from the embedded electronics
- Solar panels and batteries for power supply
- **GPS** for precise time measurement

AERA24 – 2 trigger modes

- **Self-trigger:** based on pulse-shape analysis:
 - Individual timestamps (T2) are sent at 500 s^{-1}
 - High level trigger (T3) built from T2s (rejects 99,95% of background signal)
- **External trigger:** AERA is triggered by
 - SD events if distance < 5km
 - FD (Coihueco and HEAT) events (tbd)
- ☐ Search for coincidences with the SD: **AERA vs SD arrival directions**

Self-triggered events

SD/RD angular difference: ~ 4°

AERA24 - Proposed rejection algorithm (T2)

Self-triggered mode: radio stations mostly triggered by anthropic background

→ Need to develop **rejection algorithms** to avoid to send a huge number of T2s to save bandwidth for really interesting triggers

☐ Example of an algorithm based on pulse-shape analysis

→ Use the **time evolution of the signal** in a given time window containing

the signal pulse

Developed for RAuger (one of the pathfinders of AERA)
J. Maller – B. Revenu

PIERRE AUGER OBSERVATORY

AERA24 - Proposed rejection algorithm (T2)

Self-triggered mode: radio stations mostly triggered by anthropic background

→ Need to develop **rejection algorithms** to avoid to send a huge number of T2s to save bandwidth for really interesting triggers

Example of an algorithm based on pulse-shape analysis

→ Use the **time evolution of the signal** in a given time window containing

the signal pulse

AERA24 – Proposed rejection algorithm (T2)

Self-triggered mode: radio stations mostly triggered by anthropic background

→ Need to develop **rejection algorithms** to avoid to send a huge number of T2s to save bandwidth for really interesting triggers

Example of an algorithm based on pulse-shape analysis

→ Use the **time evolution of the signal** in a given time window containing

the signal pulse

Developed for RAuger (one of the pathfinders of AERA) J. Maller - B. Revenu

90 % level of the maximum of the cumulative function reached within a rise time of ≈ 50 ns for the cosmic rays.

Much higher for a large fraction of background events.

- Reached ~ 90% of efficiency for RAuger (off-line)
- o Installed online on CODALEMA 94 % efficiency
- Currently tested off-line on AERA

Hybrid coincidences

- comparison of radio observables with SD and FD data
- Study of the whole shower development

Polarization studies → Emissions processes

Vulcano Workshop 2012-K. Weidenhaupt

- \longrightarrow Measured \vec{E} -field of AERA events in coincidence with SD
- $\rightarrow v \times B$
 - → geomagnetic mechanism confirmed and dominant

Some deviations: presence of others mechanisms

Polarization studies → Emissions processes

$$R = \frac{\sum_{i=1}^{N} E_{x'}(t_i) E_{y'}(t_i)}{\sum_{i=1}^{N} E_{x'}^2(t_i) + E_{y'}^2(t_i)}$$

Detected shower:

$$\theta, \varphi, \mathsf{E}, x_{core}, y_{core}$$

- ☐ Measured **Electric field** in the x (EW) and y (NS) directions
- \rightarrow Deduction of the **Electric field** in the x', y' directions where x' is aligned with the direction of $\mathbf{v} \times \mathbf{B}$ in the horizontal plan

- ☐ Calculation of the R-factor = formula
- \rightarrow By construction: R = 0 for a purely geomagnetic emission

Simulated event with same parameters θ , φ , E, x_{core} , y_{core}

1- Geomagnetic only

2- Geomagnetic + Charge excess

Polarization studies → Emissions processes

Better correlation between R_{Sim} and R_{data} when **simulation** includes charge excess calculations

→ Charge excess signature

ECRS 2012 - Daniël Fraenkel ICRC 2011 - Benoît Revenu Coming ICRC 2013 - Tim Huege

Energy estimation

Requirement:

- Deconvolution of the antenna response
- Efficient energy estimation from SD and FD
- Study of systematic errors

AERA: preliminary results → good agreement with other experiments

→ Linear dependence between infill SD energy and the preliminary radio energy estimator

→ Needs more statistics ← AERA stage 2

Next stage deployment

May 2013 - AERA 124 ~ 7 km²
100 new stations installed around
AERA24 (purple dense core)

With a spacing of 250 m for stations included in the orange line (56), 375 m for the others (39).

→ New stations equipped with the CODALEMA-like Butterfly antenna

Final stage: 160 stations - 12 km²

- 1000 events expected per year
- Approximately an equal number of events below and above 1 EeV
- → Study of the transition from a galactic to an extra-galactic origin of cosmic ray

Improved estimate of the **nature** of the primary cosmic ray and the **energy resolution** using additional detectors

GHz - experiments @ Auger

Expected signal from Molecular Bremsstrahlung Radiation:

- → interaction of low-energy electrons with neutral air molecules
- → 1-10 GHz Isotropic Unpolarized

- 61 antenna horns triggered by SD
- One air shower event detected since 2011

MIDAS: MIcrowave Detection of Air Shower

- Self-triggered parabolic dish: 4.5 m- Running 6 months in Chicago
- → candidates measured but not definitively identified as air shower events.
- Moved to Auger near Los Leones in September 2012

AMBER: Air shower **M**icrowave **B**remsstrahlung **E**xperimental **R**adiometer

- Triggered by SD Parabolic dish: 2.4 m
- Installed since may 2011 Data analysis underway

FDWave

Proposal: GHz receivers in empty PMT positions at Los Leones (where PMT's were moved to HEAT) - Triggered by FD

Summary

- AERA24 is taking data since spring 2011 with 24 radio stations running in self-triggered mode and externally-triggered mode
- AERA is located in the low energy enhancement of Auger and allows comparison of interesting observables with SD and FD
- Rejection algorithms are being developed to discriminate air shower events from background events
- Both data analysis (polarization studies) and simulations are improving our knowledge about emission mechanisms
- 100 new stations installed since the beginning of May 2013
 - → better signal and larger statistics to improve
 - the estimate of the nature of the primary cosmic ray
 - the energy resolution

