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Outline
● MPI: basic concepts

● MPI in different collision systems

● Centrality determination (example from ALICE)

● Selected highlights from heavy-ion collisions:

– Heavy flavour

– <p
T
>

– Long range correlations

– Di-hadron azimuthal correlations

● Summary
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Multiple Parton Interactions 
● Basic concepts:

● Modelling MPI in Monte Carlo → examples

● Several hard interactions can occur in a pp collision
● Some of the parallel interactions can be soft
● Re-interaction of partons with others: ladder splitting
● Re-interaction within ladders either in initial state: screening, or in 

final state
● Initial / Final State Radiation (ISR/FSR)

Pythia (pQCD based model)
● “Naive” factorization approach:

✔ Mean number of hard 2 → 2 collisions 
given by the ratio of σ

hard
 (computed from 

pQCD, LO) over σ
inel

 (measured)
✔ Poissonian fluctuations for the number of 

2→ 2 collisions per event

● Regularization of the increase of σ
hard

 cross 

section at low pT

● impact parameter dependence

● coherence between MPI (Color
Reconnection)

Integrated cross section

P. Skands – arXiv:1207.2389

σ
hard

 >  σ
TOT

 (~4 GeV/c)→ Straightforward interpretation: 

each pp collision contains several parton-parton collisions
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Multiple Parton Interactions 
● Basic concepts:

● Modelling MPI in Monte Carlo → examples

● Several hard interactions can occur in a pp collision
● Some of the parallel interactions can be soft
● Re-interaction of partons with others: ladder splitting
● Re-interaction within ladders either in initial state: screening, or in 

final state
● Initial / Final State Radiation (ISR/FSR)

Pythia (pQCD based model)
● “Naive” factorization approach:

✔ Mean number of hard 2 → 2 collisions 
given by the ratio of σ

hard
 (computed from 

pQCD, LO) over σ
inel

 (measured)
✔ Poissonian fluctuations for the number of 

2→ 2 collisions per event

● Regularization of the increase of σ
hard

 cross 

section at low pT

● impact parameter dependence

● coherence between MPI (Color
Reconnection)

EPOS (Gribov-Regge multiple scattering 
framework)

● Individual scatterings referred to as Pomerons, 
identified with parton ladders

● Each parton ladder is composed of a pQCD 
hard process with ISR/FSR

● Non-linear effects are considered by means of a 
saturation scale

● hadronisation performed with a string 
fragmentation procedure

● hydrodynamical evolution applied on the dense 
core of the collision (also in pp)
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Multiple Parton Interactions 
● Basic concepts:

● Modelling MPI in Monte Carlo → examples

● Several hard interactions can occur in a pp collision
● Some of the parallel interactions can be soft
● Re-interaction of partons with others: ladder splitting
● Re-interaction within ladders either in initial state: screening, or in 

final state
● Initial / Final State Radiation (ISR/FSR)

Pythia (pQCD based model) EPOS (Gribov-Regge multiple scattering 
framework)

<N
MPI

> as a function of 

charged particle multiplicity

PYTHIA simulation
(P.Skands)

EPOS simulation

: number of multiple scatterings 
<>(MB) << 10

Larger number of multiple scatterings ≡ High event multiplicity 

K. Werner WPCF 2011, Tokyo, Japan
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MPI in different collision systems
● High-multiplicity (HM) pp, p-A and A-A collisions → commonality: possible presence of 

large number of (initial) hard parton-parton scattering (MPI) and overlapping strings 
(CR)

● HM proton-proton collisions:

– arise from low-impact parameter collisions and statistical upward fuctuations of the 
number of MPIs per event

– are expected to contain harder than average partonic collisions (larger <Q2>) and 
partons fragmenting into a larger than average number of hadrons (fragmentation 
bias).

● A-A collisions →the mean number of MPI is almost dominated by the collision centrality 
(large N

coll
) → additional biases are weak

● p-A → lie in between the two extreme cases: p-A centrality dominates, however when 
N

coll 
is small the p-N geometry can became important 

– In models that treat p-Pb collisions as independent p-N collisions, the number of 
parton-parton scatterings is expected to be determined by the p-A and p-N 
centralities 
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MPI in different collision systems
● High-multiplicity (HM) pp, p-A and A-A collisions → commonality: possible presence of 

large number of (initial) hard parton-parton scattering (MPI) and overlapping strings 
(CR)

● HM proton-proton collisions:

– arise from low-impact parameter collisions and statistical upward fuctuations of the 
number of MPIs per event

– are expected to contain harder than average partonic collisions (larger <Q2>) and 
partons fragmenting into a larger than average number of hadrons (fragmentation 
bias).

● A-A collisions →the mean number of MPI is almost dominated by the collision centrality 
(large N

coll
) → additional biases are weak

● p-A → lie in between the two extreme cases: p-A centrality dominates, however when 
N

coll 
is small the p-N geometry can became important 

– In models that treat p-Pb collisions as independent p-N collisions, the number of 
parton-parton scatterings is expected to be determined by the p-A and p-N 
centralities 

Furthermore:

● FINAL STATE EFFECTS in A-A → Thermal production, flow, recombination, jet quenching and fragmentation in 
the quark- gluon-plasma (QGP)

● INITIAL STATE EFFECTS in p-A →  shadowing/gluon saturation, Cronin effect (Cold Nuclear Matter Effects)
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Centrality determination

● Centrality classes are defined as percentiles of the 
multiplicity/summed-amplitude distributions

● For a given centrality class the information from the 
Glauber MC in the corresponding generated 
distribution is used to calculate the mean number 
of participants <N

part
>, the mean number of 

collisions <N
coll

>, and the average nuclear overlap 

function < T
pA

> (< T
AA

>)

● Bias observed in p-Pb collisions! 
(→ more details in back-up)

● Similar approach used in Pb-Pb and p-Pb in ALICE: multiplicity distribution of a given “estimator” 
(i.e. V0A multiplicity) fitted by Negative Binomial Distribution(NDB)(*) + Glauber MC

● Ingredients:

– Glauber MC: given the σ
NN

 and assuming dP/db ~ b  → this gives N
part

, N
coll

, T
pA

 (T
AA

) event-

by-event basis (b randomly changed and NN interaction happens if b
NN 

< √σ
NN

/π )

– NBD function used to represent the multiplicity distribution for the “estimator” (e.g. V0A) for a 
given N

part

– convolution N
part

 from Glauber + NBD → used to fit the reconstructed multiplicity distribution 

(e.g. VZERO amplitude in Pb-Pb)  

(*) Similar procedure but coupled with a model for slow nucleon emission (SNM) for ZNA 

Phys. Rev. C 88 (2013) 044909 
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Selected highlights 
from LHC
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Heavy-flavour and MPIs
● Heavy-quarks (c,b) created in hard processes with a minimum momentum transfer  Q>2m

Q
>>Λ

QCD
 → assuming 

– Soft particle production scales with the number of MPIs

– MPIs proportional to the hard cross section

→ yields from any hard sub-process should increase with multiplicity 

– CNM effects in p-Pb can modify increasing pattern w.r.t to pp

● Direct comparison of open charm and beauty production yields with theory would give the possibility to extract 
the cross section of HF production from DPS:

– Possible impact of DPS on charm and bottom production at the LHC   

 

ArXiv/hep-ph:1306.4169

R.Maciula and Szczurek, Phys. Rev. D 87, 074039

 

● In p-Pb CNM effects should be taken into account!
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Heavy-flavour vs multiplicity
(pp / p-Pb)

● ALICE: J/ψ yields self normalized to their integrated values as a function of particle multiplicity at mid 
rapidity normalized to the average number

–

● Increasing J/ψ yields vs multiplicity observed both in pp and p-Pb → similar pattern in pp and p-Pb 
suggests that also in pp high-multiplicity events would come from MPIs           

● Clear difference between pp and p-Pb in the forward region (2 < y < 4) → CNM ?  
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● ALICE: D meson yields self normalized to their integrated values as a function of particle multiplicity at 
mid rapidity normalized to the average number

● Increasing D meson yields vs multiplicity observed both in pp and p-Pb → similar pattern in pp and p-Pb 
suggests that also in pp high-multiplicity events come from MPIs   

  →  In pp PYTHIA8 (with HF production in MPIs) reproduced the observed trend vs multiplicity

● Different magnitude between D mesons and J/ψ observed in p-Pb  diferent CNM ? (diferent y and pT →
ranges)

Heavy-flavour vs multiplicity
(pp / p-Pb)
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● CMS:  Υ(nS) yields self-normalized to their integrated values as a function of particle multiplicity at mid 
rapidity normalized to the average number

● Y(nS) yields increase with multiplicity: different 
patterns observed in the three collision systems  
(CNM and final state effects may change the 
trends)

Heavy-flavour vs multiplicity
(pp / p-Pb / Pb-Pb)

JHEP 04 (2014) 103

Υ(1S) Υ(2S) Υ(3S)
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<pT> vs Nch: data vs MC models

● pp: rise of <p
T
> cannot be reproduced by a 

superposition of independent parton-parton scatterings 
→ Color Reconnection (CR) looks indispensable for the 
description of the data 

● p-Pb: the EPOS model, which includes a mechanism of collective string hadronization, shows a good 
agreement (but fails to describe Pb-Pb data) → calculation from a Glauber approach underestimate the 
measured <p

T
>

● Would CR mechanism also reproduce the data ? 
● Do CNM effects play a role ? 

ATLAS pp

ALICE pp

ALICE p-Pb

ALICE Pb-Pb

CMS p-Pb

ALICE, Phys. Lett.B B727 (2013) 371 New J. Phys. 13 053033 Eur. Phys. J. C 74 (2014) 2847

To be further investigated
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Long range correlations in p-Pb

Mechanisms proposed to explain the same-side “ridge”:

● Multiparton interactions
S. Alderweireldt and P. Van Mechelen, arXiv:1203.2048 [hep-ph]

● Collective effects
K. Werner, I. Karpenko, and T. Pierog, P.R.L. 106 (2011) 122004

● Overview of 2-particle angular correlations → distribution of 
(Δφ,Δη) between triggered-associated particles in p-Pb 
  

● Same near (Δφ=0) side “ridge” structure, elongated in Δη, in 
high multiplicity p-Pb events similarly as observed in HM pp 
collisions by CMS (JHEP 09 (2010) 091)

Near side jet peak

Away side rencoil-jet peak

+near side
RIDGE!

+away side
ridge
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● Two particle correlation function:

– Trigger particle → unidentified hadron

– Associated particle → identified hadron (π, K, p)

– Same p
T
 interval for trigger / associated particles

● Ridge like component isolated by subtracting low multiplicity correlations (60-100%) from high multiplicity 
correlations(0-20%):

– Mostly jet contribution (i.e. no significant ridge) in low multiplicity p-Pb events

0-20% 60-100% 0-20%  –  60-100%

● Only significant contribution from second Fourier coefficient v
2
 → see next slide

● First coefficient smaller w.r.t. the case without subtraction (up to ~10 times smaller)

● Third coefficient still small

 Phys.Lett. B726 (2013) 164-177

v
2
 from h-(π, K, p) long range 

correlations in p-Pb

Jet-like Ridge-like
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● Similar behaviour as in Pb-Pb collisions → mass ordering at low pT qualitatively consistent with hydro models

– MPI + Color Reconnection also at the origin of flow-like pattern in p-Pb ? → still open question 

p-Pb Pb-Pb 10-20%

● Two particle correlation function:

– Trigger particle → unidentified hadron

– Associated particle → identified hadron (π, K, p)

– Same p
T
 interval for trigger / associated particles

● Ridge like component isolated by subtracting low multiplicity correlations (60-100%) from high multiplicity 
correlations(0-20%):

– Mostly jet contribution (i.e. no significant ridge) in low multiplicity p-Pb events

v
2
 from h-(π, K, p) long range 

correlations in p-Pb
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Di-hadron azimuthal correlation in p-Pb
● Two particle correlation function:

– Trigger particle → unidentified hadron

– Associated particle → unidentified hadron

– 0.7 < p
T
,ass < p

T
,trigg < 5 GeV/c

● Double “ridge” like structures observed  → in order to study the jet-like component, the ridge structures 
have been subtracted

5% more central 5% more peripheral

Short range (|Δη|<1.2) near  (away) 
side at Δφ=0 (Δφ=π)

Long range (1.2<|Δη|<1.8) near 
side (Δφ=0) and away side 
(Δφ=π) simmetrized

Subtraction: short range – long range 
(symmetrized) correlations

Number of associated particles in the near    
(<N

ass,nearside
>) and away (<N

ass,awayside
>) side calculated 

by integrating the subtracted Δφ projection  

 Phys. Lett. B 741 (2015) 38-50

Jet-like Ridge-like
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Di-hadron azimuthal correlation in p-Pb
● Near and away side per-trigger yields vs V0A mulitplicity → more sensitive to the fragmentation 

properties

– The presence of more MPIs should dilute the back-to-back correlation pattern resulting in an 
increasing of combinatorial background in the correlation function

● After long-range correlation subtraction:

– At high multiplicity the associated yield per trigger particle is independent on multiplicity             
→ high multiplicity events are not built by a large number of particles in the jet peak 
→consistent with the picture that they originate from “inchoerent” fragmentation of multiple-
parton scatterings

● The absence of coherence effects for large number of MPI might strong constraint for 
models implementing such effects 

– In pp the yield increases with multiplicity

p-Pb data, 
Same side

 Phys. Lett. B 741 (2015) 38-50

p-p data, 
Same side

● Similar results in the 
away side

Increasing multiplicity Increasing multiplicity

JHEP 1309 (2013) 049
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Di-hadron azimuthal correlation in p-Pb

– increases almost linearly with multiplicity (deviation observed at low multiplicity) → there is no 
evident saturation of nMPIs at high multiplicities in p-Pb

– In pp there is an indication of a limit in the increasing of the MPIs → consistent with the 
previous observation of increasing yields in pp (w.r.t. p-Pb) at higher multiplicity  

● Number of “uncorrelated seeds”:

– provides the number of independent source of particle 
production → in PYTHIA6 the uncorrelated seeds are 
found to be proportional to the number of the MPIs 

FIRST 

INTRODUCED 

BY ALICE!

p-Pb data p-p data

PYTHIA 
pp

JHEP 1309 (2013) 049 Phys. Lett. B 741 (2015) 38-50



 21

Di-hadron azimuthal correlation in p-Pb

– increases almost linearly with multiplicity (deviation observed at low multiplicity) → there is no 
evident saturation of nMPIs at high multiplicities in p-Pb

– Number of uncorrelated seeds scales at intermediate multiplicity with N
coll,Glauber

: important 

deviations for low and high Ncoll →  less / more semi-hard scatterings per p-N collision ?

● Resembles centrality bias observed in p-Pb (see slide 25)  

● Number of “uncorrelated seeds”:

– provides the number of independent source of particle 
production → in PYTHIA6 the uncorrelated seeds are 
found to be proportional to the number of the MPIs 

 Phys. Lett. B 741 (2015) 38-50

FIRST 

INTRODUCED 

BY ALICE!

p-Pb data

p-Pb data

PYTHIA 
pp

 Phys. Lett. B 741 (2015) 38-50
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Summary
● Rich phenomenology of MPI in pp used to constrain models  (not shown in this talk)

→ Interest in MPIs in p-A

● Increasing of quarkonium and open-charm yields vs multiplicity observed both in pp and p-Pb 
by ALICE and CMS

● Signs of Collectivity in p-Pb:

– <p
T
>

– Double ridge structure in di-hadron (long range) correlations

– Mass ordering in v
2
 of π, K, p

→ Intriguing: Several trends as function of multiplicity seen in p-Pb (and pp) reproduced by 
PYTHIA8 with MPIs + Color Reconnection included 

● Linearity of “uncorrelated seeds” (i.e. MPIs) with multiplicity studied with di-hadron correlations 
in p-Pb
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Back-up
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Run II perspectives - ALICE
● Actually a large part of Run II program for MPI studies is concentrated on proton-proton foreseen on a short 

time scale w.r.t. p-Pb

● Several measurements already performed in pp @ 7 TeV: multiplicity distributions, Average transverse 
momentum vs. Nch, Underlying event, Two-particle azimuthal correlations vs. Nch, Average transverse 
sphericity vs. Nch.

● Near side “Ridge” in HM pp collisions observed by CMS (at 10 times the average multiplicity, i .e. 10 -5xσ
INEL

) 

 inspire new studies related to MPI for Run II at HM pp: 

→ in general all pp studies at higher energies 13 TeV should be repeated: the goal is to reach very high 
multiplicity (up to now ~4-6 times average multiplicity for HF studies, up to ~8 times for <pT> vs 
multiplicity) and perform more “differential” measurements (e.g. transverse sphericity studies in pTbins, 
etc.)

→ benefit from higher statistics of RunII as well as from Run I experience (true also for p-Pb)

● Some examples of benchmark analyses in (HM) pp:

– Multi-strange at HM pp

– “Minijet” and long range correlations

– Heavy-flavour vs multiplicity

– Sphericity analysis (in RunI it has shown that at high multiplicities there are less jets than predicted by 
the models) →  It may help to disentangle the jetty / not-jetty components at HM pp,

● Ideas for future MPI analysis in pp and p-Pb (still under discussion)

– DPS with multiple HF production (pp, pPb) → starting at Grenoble-CCNU 

– Underlying Event measurement in pPb (this could be already performed with RUN I data) 

– DPS with W production + jets (or high pT tracks) in pPb
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Biases on centrality determination in p-Pb

Much smaller bias in Pb-Pb

arXiv:1412.6828v1

<
M

u
lt>

/<
N

pa
rt
>

(e
st

im
at

or
)  /

 <
M

ul
t>

/<
N

pa
rt
>

(b
)arXiv:1412.6828v1

● Multiplicity bias: compared to Pb-Pb collisions, in p-Pb collisions the correlation between the 
centrality estimator and N

coll
 is very loose

– Same N
part

 (N
coll

) can contribute to several adjacent centrality classes

● Geometric bias: for a given p-A impact parameter (b), the         
mean number of hard scattering  <n

hard
> depends on the average      

p-n impact parameter (b
NN

)             
(first studies in Jiangyong Jia, Phys.Lett. B681 (2009) 320–325,      
arXiv:0907.4175 [nucl-th].)

– This is mainly important for peripheral collisions

● Jet-veto bias: correlation between centrality estimator and high-pT particles → very peripheral collisions can 
represent an effective “veto” for high pT particles  
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Minimum Bias (data)

Q pA( pT ; cent)=
dN pA

/dpT

N coll
Glauber

⋅dN pp
/dpT

● Bias at high p
T
 described by incoherent superposition of pp collisions (G-PYTHIA) 

● For most peripheral p-Pb, good agreement also at low and intermediate p
T

● Strong deviations for all other centrality bins → spread between centrality classes reduces with increasing
rapidity gap between the regions used for measurements or centrality estimation

Biased Nuclear Modification Factor in p-Pb
arXiv:1412.6828v1

ALICE, Eur. Phys. J. C74 (2014) 
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Q pA( pT ; cent)=
dN pA

/dpT

N coll
Glauber

⋅dN pp
/dpT

● Hybrid method:
– centrality classes determined using energy deposit in ZNA (Pb-

going side) calorimeter

– Number of binary collisions <N
coll

>  determined by studying 

correlation of various pairs of observables, in ZNA centrality 
classes, that are expected to scale linearly with Ncoll or Npart

– R
pPb

 consistent with unity at high pT

– Cronin enhancement clearly visible (stronger in more central 
collisions)

Biased Nuclear Modification Factor in p-Pb
Minimum Bias (data)arXiv:1412.6828v1

ALICE, Eur. Phys. J. C74 (2014) 



 28

● CMS:  Υ(nS) yields self-normalized to their integrated values as a function of particle multiplicity at mid 
rapidity normalized to the average number

Heavy-flavour vs multiplicity
(pp / p-Pb / Pb-Pb)

JHEP 04 (2014) 103

Υ(1S) Υ(2S) Υ(3S)
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Jet studies in HM pp collisions
● Several studies performed by ALICE and CMS in pp@7TeV show that high mltiplicity pp collisions are less “jet-

like” than what is predicted by some Monte Carlo, e.g. Pythia:

ALICE: Transverse Sphericity  [Eur. Phys. J. C (2012) 72:2124]

● Increase of multiplicity due to MPI increases sphericity

● Turning point in MC towards more “jettiness” at high 
multiplicity not seen in data

● At high multiplicity jets are softer, and less 
abundant than predicted by PYTHIA

● Stronger jet bias in Pythia ? 

● Or softening of jet spectrum due to further 
mechanisms in HM pp ? 

→ Comparison of HM pp results with similar 
results from p-Pb collisions would be helpful 
to understand this behaviour 

CMS: Jet and Underlying event measurements  [http://arxiv.org/pdf/1310.4554v2.pdf]
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A look to the future: DPS in same sign 
W pair in p-Pb collisions

[DdE,Snigirev, arXiv:1211.0197]

Cross section for all relevant processes in SPS and DPS vs √s

● Enhanced DPS p-Pb cross sections:  σ
eff,pp

/σ
eff,pA

~ 600    

 p-Pb @ 8 TeV: σ(WW,DPS)~150pb / σ(WWjj)~100pb            
±18%  uncert.:±15% for σ

eff,pp
,±10% for scales&PDFs     

  

● Measurable final states:

– W's branching ratios: BR(W →lv) ~ 3 x 1/9

– Typical ATLAS/CMS acceptances & efficiencies 
→ leptons: |y|<2.5, pT >15 GeV ε

WW
 ~ 40% 

● LHC p-Pb luminosities: 0.2-2 pb-1

● Expected rates: σDPS

p-Pb→WW
/(ε·L

int
) ~ 1-10 same-sign 

W pairs/year
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A look to the future: DPS in double J/Ψ 
production in Pb-Pb collisions

[DdE,Snigirev, arXiv:1301.5845]

Centrality 
dependence of 
double J/ψ 
fraction

Many double hard scattering 
processes visible in p-Pb and Pb-Pb!

● Enhanced DPS p-Pb cross sections:  σ
eff,pp

/σ
eff,AA

~ 9·106  

    

Cross section for single and double J/ψ production in Pb-Pb vs √s
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Biased Nuclear Modification Factor in p-Pb

● Detectors used for multiplicity estimation in ALICE:
– Silicon Pixel Detector (two innermost layers of inner 

tracking systems)
– VZERO scintillators hodoscopes
– ZDC: Zero Degree Calorimeters (located at                     

z = ±112.5m,|η|>8.7)

● Examples of multiplicity estimators:
– CL1 → number of reconstructed cluster in the second 

layer of SPD
– V0A → VZERO-A multiplicity
– V0M → VZERO-A + VZERO-C multiplicity
– ZNA → energy deposition in ZNA

VZERO-A amplitude (a.u.)
0 100 200 300 400 500 600 700 800 900

Ev
en
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 (a

.u
.)
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60
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80
-1
00
%

 = 5.02 TeVNNsALICE p-Pb at 
0-5%
5-10%
10-20%
20-40%
40-60%
60-80%
80-100%

03/05/2013

● Dependence introduced also by the centrality estimator → example: several estimator used by the 
ALICE experiment arXiv:1412.6828v1
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Scaling of hard processes in p-A 

⟨nhard⟩pA=⟨N coll ⟩MB ⟨nhard⟩pp

Y hard

⟨N coll ⟩cent
∝

⟨nhard⟩pN
cent

⟨nhard⟩pp

Is unity for centrality-integrated p-A, but 
can be ≠ 1 for event centrality 
classification based on multiplicity → bias 
introduced for the binary scaling of hard 
processes in centrality bins

⟨nhard ⟩pN

⟨nhard ⟩pp

● multiplicity can bias the number of 
hard scatterings per binary 
collisions

Number of hard 
scatterings per 
pN collision

● In p-A collisions the number of hard processes (i.e. MPIs) is proportional to the number of binary collisions 
(i.e. N

coll
)

● Factorization approach (as used in pp) → mean number of MPIs in p-A (assuming p-A collision described by 
an independent superposition of pp collisions) is given by:

→ particle yields for hard processes would scale like

● Influence of the centrality selection on MPIs in a coherent superposition of pN collisions studied by PYTHIA6 
event generator coupled to a p-Pb Glauber MC calculation (G-PYTHIA): for  each MC Glauber event, 
PYTHIA6 is used N

coll
 times to generate N

coll 
independent pp collisions

arXiv:1412.6828v1
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Long range correlations: pp – Pb-Pb
● pp:

● Pb-Pb:

2 particle correlations in (η-φ) between “trigger” and associates particles

near side
(Δφ=0)

away side
(Δφ=π)

Min. Bias:
• Near side: 

“collimated” jet peak
• Away side: rencoil jet 

(“ridge structure” 
expected from 
momentum 
conservation)

HM: near side ridge → 
origin not yet fully 
understood 

ALICE • near side ridge 
structure, typical of 
collective systems

• long range in Δη
reproduced by 
hydromodels
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Long range correlations: the “ridge” in A-A collisions
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RAA centrality dependence
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Identified hadrons at low-pT vs multiplicity

● Multiplicity dependence of <p
T
> for identified 

particles:clear mass ordering → indication for a 
collective expansion with a common velocity field. 

● The same kind of mass ordering is also 
qualitatively expected from colour re-connections  
[A. Ortiz Velasquez et al. Phys. Rev. Lett. 111 (2013) 4, 042001]

 
● Similar evolution of the blast–wave parameters  with 

increasing multiplicity in p-Pb and Pb-Pb 

● PYTHIA8 pp events (no hydrodynamic evolution) also 
show the same trend (albeit at a 30% smaller T

kin
) 

● MPI + Color Reconnection causes similar effect 
as radial flow

ALICE, Phys. Lett.B 728 (2014) 25

Increasing multiplicity

ALICE: Blast-wave model fit 
(thermal+collective)

ALICE, Phys. Lett.B 728 (2014) 25
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