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Motivation

To understand the behavior of QCD with a θ term

Does QCD break CP symmetry at θ = π?

Reconstruct the θ-dependence of observables, such as the

topological charge, or the vacuum energy.

Strong CP problem: why is θ so small (θ < 10−9) in nature?

Directly relevant for axion physics: Peccei-Quinn mechanism

θ(x) =
a(x)

fa
, L = · · · − θ(x)q(x)

Relation between the axion mass and the topological susceptibility

in QCD:

m2
a(T ) f 2

a = χ(T ) = lim
V→∞

〈

Q2
〉

|θ=0

V

Possible extensions to other systems with a sign problem: finite

density, condensed-matter models (Hubbard), etc.
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Difficulties

The notorious sign problem:

LEucl
θ = iθq(x)

The Euclidean action is not real, and the partition function cannot

be interpreted as a probability distribution.

Standard simulation algorithms fail!

We can calculate fairly accurately observables which can be

obtained from θ = 0 simulations.

χ ∼
〈

Q2
〉

,
〈

Q4
〉

, . . .

E. Follana, Universidad de Zaragoza Simulation of theories with a topological term XQCD17 Pisa 5 / 27



Two methods

Two methods to deal with/evade the sign problem in theories with

a “topological” term.

Both methods use the same input data: simulations at imaginary

values of the field, θ = −ih, where the sign problem is absent.

Method I: reconstruction of the probability distribution function of

the topological charge at θ = 0.

Method II: smooth analytic extrapolation.
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Method I

Reconstruction of the probability distribution function of the topological

charge at θ = 0 (Azcoiti et al, Phys.Rev.Lett.89.141601 (2002)).

Defining the density of topological charge as xn = n
V :

ZV (θ)

ZV (0)
=

∑

n

pV (n)e
iθn =

∑

xn

e−VfV (xn)eiθVxn =
∑

xn

e−V (fV (xn)−iθxn)

Let us suppose that in the infinite volume limit we can replace the sum

by an integral:

ZV (θ)

ZV (0)
≈

∫

e−Vf (x)eiθxV dx

where fV (xn) → f (x).
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Method I

ZV (θ)

ZV (0)
≈

∫

e−Vf (x)eiθxV dx =

∫

e−V (f (x)−iθx)dx

Let us consider the expression above in the imaginary axis

θ = −ih, with h real. Then everything is positive definite, and the

saddle point approximation gives f ′(x) = iθ = h

Obtain x as a function of h to high precision from numerical

simulations at θ = −ih.

Fit f ′(x) to a ratio of polinomials, and integrate the result

analytically. This provides f (x) to high precision.

Use a multiprecision algorithm to compute the partition function

and the order parameter for θ real using the f (x) previously

calculated.
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Method I

1-d AF Ising model with an

imaginary magnetic field:

iθT 1
2

∑

i Si

U(1) model in d = 2.
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Method I

How do numerical errors in the determination of f (x) propagate?

Small random error of 10−3 in f (x).

Large correlated error:

f (x) → f (x)
(

1 + 1
2 sin(x2)

)

.
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Method I

Caveat: When the order parameter is not monotonous, the method

fails: flattening.

ZV (θ) = (1 + A cos θ)V

How these errors in the determination of the PDF propagate
to the final observable. A general answer is not simple. We
did some simple analysis and showed how in many cases
these small corrections are not relevant for a good recon-
struction of the model at real theta 5 . In some model this
cannot be the case and we will give an example below. What
is important to stress is that if such small corrections are
relevant this will imply the failure of any algorithm based on
the necessarily approximate reconstruction of the PDF.

One may argue that, due to the use of the same input data
set x(h), the topological charge density as a function of
imaginary theta , the coincidence of the results of the two
methods is to be expected. This is not true and we can show
it explicitly in a case. Consider a toy model that resembles
the free instanton gas solution the partition function is

V( ) (1 A cos )V, A is a constant, and the CP symmetry
is enforced at ]. As clearly shown in Fig. 1, for this
model the first method fails to reproduce the correct behavior
at real theta not at small theta but dramatically for theta near
) while the second approach gives the correct results see

also 6 . Even though the two approaches use the same set
of numerical data, the results are not compatible: within the
first approach we get spontaneous CP breaking at
whereas with the second one we get the correct result with
CP realization at .

We have seen that for both approaches systematic effects
can be present: typical (1/V) corrections to the saddle
point solution in the first case, the reliability of extrapolation
in the second one. Our main point is that an agreement of
both results is a strong indication in favor of their validity. In
fact if the model is such that the physics is sensible to small
1/V corrections to the PDF, the result we get using the first
method will be wrong and strongly dependent on these cor-
rections. At the same time the second method is insensitive
to such small corrections of input data and we expect its
systematics if present to be different, basically related to
the arbitrariness in the choice of the fitting function. A given
possibility that will invalidate our logic is a coincidence of
the two methods on a wrong result. This cannot be excluded

a priori but, given the big differences in the systematics of
the two methods, seems quite unlikely.

We conclude that the consistency of results coming from
the two procedures is a strong indication that systematic ef-
fects are negligible and we are actually reconstructing the
true dependence of the model. Clearly our approach does
not guarantee that from imaginary theta simulations we will
always be able to reconstruct the dependence at real theta: if
for some model the results of the two methods are, as in the
case of Fig. 1, not compatible, we cannot draw any conclu-
sion.

After this discussion we go back to our CP9 model, trying
to see if our consistency check is satisfied in this case. For
N 10 and h 0 the scaling window starts at around 0.75
see 11 and we decided to concentrate our efforts from this
point on. The first step is to establish the appropriate lattice
sizes. From h 0 simulations at fixed one realizes that the
asymptotic value of the topological susceptibility is reached
when the lattice size L is roughly larger than eight times the
correlation length. Using available data 11 we get L 40
for 0.8, L 70 for 0.9, and so on. Convergence of t
to the infinite volume limit is even faster at imaginary and
consequently we expect that the results at real extracted
from h 0 simulations will scale too.

For h 0 simulations we considered different h values
( 50 were typically enough in steps of 0.2. We are inter-
ested in precise measurements of the topological charge den-
sity as a function of h but, for each configuration, this quan-
tity is a discrete number that can take the values n/V , where
n is an integer between 0 and V. It turns out that values of x
much smaller than 1/V are very difficult to measure and, with
affordable statistics, they suffer huge relative errors. The
only way to have reliable measurements of x(h) for the
smaller values of h is to consider large enough volumes.
How large can be estimated using a linear extrapolation
around h 0: if we write x(h 0.2) 1

5 t(h 0) and impose
the condition x(h 0.2) 1/V we can get the minimum V
value to be considered. Using again the available data 11
we get that for 0.85, L has to be at least 100 while for

0.9 a L 200 lattice is the best option.
To keep the updating procedure as simple as possible we

used a standard Metropolis algorithm and the main runs were
L 100, 0.8, 0.85 with 106 configurations, L 200,
0.8, 0.85, 0.9 with 0.5 106 configurations.
In Fig. 2 we present the effective exponent (y) for the

L 200 lattice at 0.80 and 1.0. As for other cases 6
the data points follow a smooth curve and a quadratic func-
tion fits the data perfectly. The extrapolated value for y 0 is

(0) 1.003(5): a sharp indication for a spontaneously
broken CP symmetry at . The same holds for different
(1) values of and for other lattice sizes and/or couplings.
Following the procedure reported in 6 we can recon-

struct, from the fits of y (y), the order-parameter depen-
dence on . The results for the order parameter at 0.80
and 0.85, for the L 200 lattice, are shown in Fig. 3.
Indistinguishable results were obtained using the data for the
L 100 lattices, as expected if finite volume effects are neg-
ligible.

FIG. 1. Results for the toy model described in the text: V 5
104, A 0.005. Exact solution continuous line , first method

dashed line , and second method symbols .

DEPENDENCE OF THE CP9 MODEL PHYSICAL REVIEW D 69, 056006 2004

056006-3
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Method II

(Azcoiti et al, Phys.Lett.B 563 117 (2003))

ZV (θ) ≈
∑

xn

e−VfV (xn)eiθVxn =
∑

yn≥0

GV (yn)

(

cos2 θ

2

)Vyn

GV (yn) is a functional of fV (xn)

z = cos
θ

2
; y(z) =

x(θ)

tan θ
2

Simulations at imaginary θ = −ih gives us access to the region

z = cosh θ
2 >= 1, whereas the physical region is 0 ≤ z ≤ 1.
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Method II

Scaling of z: yλ(z) = y(eλ/2z)

We study yλ/y as y → 0

If y(z) does not vanish at z > 0, and the quotient is smooth, we

can hope to extrapolate to y = 0.

At weak coupling we expect y to be small.

Caveat: If there is a phase transition in y we expect the method to fail.
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Method II

We define

γλ =
2

λ
log

(

yλ

y

)

(y → 0)

(π − θ)γλ−1 (θ → π)

γλ → 1: spontaneous symmetry breaking at θ = π

γλ ∈ (1, 2): second order phase transition at θ = π, with a

divergent susceptibility.

γλ → 2: the symmetry is realized at θ = π, and the free energy is

analytic.

In contrast with method I, this method has shown good results

also for systems that do not break the symmetry at θ = π.
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Method II

0.000

0.005

0.010

0.015

0.020

0.025

0
π
4

π
2

3π
4

π

O
rd

e
r

p
a
ra

m
e
te

r
−

i〈
m
〉

θ

1D Ising model F = -2.0

+
+

+

+
+

+++++
+

+
+

+
+

++
+++++++++++++++

+
+

+
+

+

++
++++++++++++++++++++++++

+
+

+

+

++ +++++++++++++++++++++++++++++++
+

+

++++++++++++++++++++++++++++++++++
+

+
+

+

+

++++++++++++++++++++++++++++++++++++++
+

+
+

+
+

+

++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+
Analytic result

(Azcoiti et al., Nucl.Phys.B 851

(2011) 420) How these errors in the determination of the PDF propagate
to the final observable. A general answer is not simple. We
did some simple analysis and showed how in many cases
these small corrections are not relevant for a good recon-
struction of the model at real theta 5 . In some model this
cannot be the case and we will give an example below. What
is important to stress is that if such small corrections are
relevant this will imply the failure of any algorithm based on
the necessarily approximate reconstruction of the PDF.

One may argue that, due to the use of the same input data
set x(h), the topological charge density as a function of
imaginary theta , the coincidence of the results of the two
methods is to be expected. This is not true and we can show
it explicitly in a case. Consider a toy model that resembles
the free instanton gas solution the partition function is

V( ) (1 A cos )V, A is a constant, and the CP symmetry
is enforced at ]. As clearly shown in Fig. 1, for this
model the first method fails to reproduce the correct behavior
at real theta not at small theta but dramatically for theta near
) while the second approach gives the correct results see

also 6 . Even though the two approaches use the same set
of numerical data, the results are not compatible: within the
first approach we get spontaneous CP breaking at
whereas with the second one we get the correct result with
CP realization at .

We have seen that for both approaches systematic effects
can be present: typical (1/V) corrections to the saddle
point solution in the first case, the reliability of extrapolation
in the second one. Our main point is that an agreement of
both results is a strong indication in favor of their validity. In
fact if the model is such that the physics is sensible to small
1/V corrections to the PDF, the result we get using the first
method will be wrong and strongly dependent on these cor-
rections. At the same time the second method is insensitive
to such small corrections of input data and we expect its
systematics if present to be different, basically related to
the arbitrariness in the choice of the fitting function. A given
possibility that will invalidate our logic is a coincidence of
the two methods on a wrong result. This cannot be excluded

a priori but, given the big differences in the systematics of
the two methods, seems quite unlikely.

We conclude that the consistency of results coming from
the two procedures is a strong indication that systematic ef-
fects are negligible and we are actually reconstructing the
true dependence of the model. Clearly our approach does
not guarantee that from imaginary theta simulations we will
always be able to reconstruct the dependence at real theta: if
for some model the results of the two methods are, as in the
case of Fig. 1, not compatible, we cannot draw any conclu-
sion.

After this discussion we go back to our CP9 model, trying
to see if our consistency check is satisfied in this case. For
N 10 and h 0 the scaling window starts at around 0.75
see 11 and we decided to concentrate our efforts from this
point on. The first step is to establish the appropriate lattice
sizes. From h 0 simulations at fixed one realizes that the
asymptotic value of the topological susceptibility is reached
when the lattice size L is roughly larger than eight times the
correlation length. Using available data 11 we get L 40
for 0.8, L 70 for 0.9, and so on. Convergence of t
to the infinite volume limit is even faster at imaginary and
consequently we expect that the results at real extracted
from h 0 simulations will scale too.

For h 0 simulations we considered different h values
( 50 were typically enough in steps of 0.2. We are inter-
ested in precise measurements of the topological charge den-
sity as a function of h but, for each configuration, this quan-
tity is a discrete number that can take the values n/V , where
n is an integer between 0 and V. It turns out that values of x
much smaller than 1/V are very difficult to measure and, with
affordable statistics, they suffer huge relative errors. The
only way to have reliable measurements of x(h) for the
smaller values of h is to consider large enough volumes.
How large can be estimated using a linear extrapolation
around h 0: if we write x(h 0.2) 1

5 t(h 0) and impose
the condition x(h 0.2) 1/V we can get the minimum V
value to be considered. Using again the available data 11
we get that for 0.85, L has to be at least 100 while for

0.9 a L 200 lattice is the best option.
To keep the updating procedure as simple as possible we

used a standard Metropolis algorithm and the main runs were
L 100, 0.8, 0.85 with 106 configurations, L 200,
0.8, 0.85, 0.9 with 0.5 106 configurations.
In Fig. 2 we present the effective exponent (y) for the

L 200 lattice at 0.80 and 1.0. As for other cases 6
the data points follow a smooth curve and a quadratic func-
tion fits the data perfectly. The extrapolated value for y 0 is

(0) 1.003(5): a sharp indication for a spontaneously
broken CP symmetry at . The same holds for different
(1) values of and for other lattice sizes and/or couplings.
Following the procedure reported in 6 we can recon-

struct, from the fits of y (y), the order-parameter depen-
dence on . The results for the order parameter at 0.80
and 0.85, for the L 200 lattice, are shown in Fig. 3.
Indistinguishable results were obtained using the data for the
L 100 lattices, as expected if finite volume effects are neg-
ligible.

FIG. 1. Results for the toy model described in the text: V 5
104, A 0.005. Exact solution continuous line , first method

dashed line , and second method symbols .
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CP9

(Azcoiti et al., Phys.Rev.D 69 (2004) 056006 )
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CP9
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Schwinger model with a θ term

2d electrodynamics:

S =

∫

d2x{ψ̄γµ (∂µ + iAµ)ψ + mψ̄ψ +
1

4e2
F 2
µν +

iθ

4π
ǫµνFµν}

Toy model for QCD

A model with fermions.

Confining

Has non-trivial topology, axial anomaly, non-vanishing value of the

chiral condensate in the 1-flavor case.
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Schwinger model with a θ term

At large fermion mass, it tends to pure gauge two-dimensional

electrodynamics (exactly solvable) → spontaneous symmetry

breaking.

At small fermion mass no symmetry breaking:

〈q〉 = mΣ sin θ + O(m2)

We therefore expect a critical point separating large and small

fermion masses.

(Coleman, Ann. of Phys.101, (1976) 239; Hamer et al.,

Nucl.Phys.B208 (1982) 413; Byrnes et al., Phys.Rev.D 66 (2002)

013002; Shimizu et al., Phys.Rev.D 90 (2014) 014508).
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Schwinger model with a θ term

Simulations with a standard Metropolis algorithm: wasteful,

requires the calculation of the entire spectrum of the staggered

Dirac operator for each change in the gauge field.

Three values of β: 2.0, 3.0, 4.0

Three values of m: 0, 0.05 and 0.5

≈ 105 measurements per point.
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Schwinger model with a θ term
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Schwinger model with a θ term
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Schwinger model with a θ term

β = 3.0, m = 0 and m = ∞
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Looking towards QCD

In principle the methods described should work also for QCD with

a θ term.

Much more expensive numerically, especially with light quarks

(which seem essential).

Much more complicated implementation of the topological charge

operator Q.
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Looking towards QCD

Geometrical Q: Either gluonic definition or through the

eigenvectors of the overlap Dirac operator.

Integer

No renormalization

Numerically very expensive to calculate

Definition through the Wilson flow

Quasi-integer

Numerically expensive

Naive discretization

Numerically cheap

Non-integer

Requires a large renormalization
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Looking towards QCD
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Conclusions and outlook

There are now methods that can treat systems with a θ-like term.

They have been tested in a wide variety of models.

The methods described here should be applicable to QCD with a

θ term.

We are starting simulations, first in quenched QCD, to test

concrete implementations of both the dynamics and the

topological charge operator.

One likely problem is the topological freezing at small lattice

spacings a < .05 fm.
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