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Reactor Neutrino Experiment at a Glance 
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   (12 institutions and 40 physicists) 

 Chonbuk National University 

 Chonnam National University 

 Chung-Ang University 

 Dongshin University 

 Gyeongsang National University 

 Kyungpook National University 

 Pusan National University  

 Sejong University 

 Seokyeong University 

 Seoul National University 

 Seoyeong University 

 Sungkyunkwan University 

RENO Collaboration 

 Total cost : $10M 

 Start of project : 2006 

 The first experiment running 
with both near & far detectors 
from  Aug. 2011 

Project of Only Korean Institutes 
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Far Detector 

Near Detector 

RENO Sites 
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Reactor # Far ( % ) Near (% ) 

1 13.73   6.78 

2 15.74 14.93 

3 18.09 34.19 

4 18.56 27.01 

5 17.80 11.50 

6 16.08   5.58 

 Accurate measurement of baseline distances to a precision of 

10 cm using GPS and total station 

 Accurate determination of reduction in the reactor neutrino 

fluxes after a baseline distance, much better than 0.1%  

Contributions of Reactors to Neutrino Flux  
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 354 10” ID PMTs : 14% surface 

coverage 

 67 10” OD PMTs  

 Both PMTs : HAMAMATSU, R7081 

 Mu-metal shielding for each PMT. (-

5cm) 

 No special reflector for ID 

 Tyvek reflector at OD 

 
LAYER 

D 

(cm) 

H 

(cm) 
vessel 

Filled 
with 

Mass 

(tons) 

Target 280 320 Acrylic 
Gd(0.1%) 

+LS 
16.5 

Gamma 
catcher 

400 440 Acrylic LS 30.0 

Buffer 540 580 SUS 
Mineral 

oil 
64.4 

Veto 840 880 Concrete water 352.6 

RENO Detector 

http://reno01.snu.ac.kr/~reno/wiki/index.php/Image:IMG02_05.JPG
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 2006. 03 : Start of the RENO project 

 2008. 06 ~ 2009. 03 : Civil construction including tunnel excavation 

 2008. 12 ~ 2009. 11 : Detector structure & buffer tanks complete.                    

 2010. 06 : Acrylic containers installed 

 2010. 06 ~ 2010. 12 : PMT test & installation 

 2011. 01 : Detector closing/ Electronics hut & control room built 

 2011. 02 : Installation of DAQ electronics and HV & cabling 

 2011. 05 ~ 07 : Liquid scintillator production & filling 

 2011. 08 : Start data-taking. 

Summary of Milestones for RENO 

 

 2011. 11 : Double Chooz  

 2012. 3. 8 : Daya Bay 

 2012. 4. 3 : RENO results. 

 sin2(213) = 0.086 ± 0.041(stat.) ± 0.030(syst.) 

sin2(213) = 0.092 ± 0.016(stat.)±0.005(syst.) 
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Near : Jan. 21, 2011 

Far : Jan. 24, 2011 

Detector Construction & Closing (Jan. 2011) 



10 

Liquid Scintillator Production System 

Control Room  

DAQ Electronics  

Calibration System  

Completed RENO Detector (Feb. 2011)  
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 Recipe of Liquid Scintillator 

Aromatic Solvent & 
Flour 

WLS Gd-compound 

LAB PPO + 

Bis-MSB 

0.1%  Gd+(TMHA)3 

(trimethylhexanoic acid) 

CnH2n+1-C6H5 (n=10~14) 

* Stable light yield over the time period :  ~250 pe/MeV  

* Measured cosmic induced  

neutron’s Gd capture time 

Gd Loaded Liquid Scintillator 
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Electronics & Trigger 
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Data block(20ms) 

Software trigger 
200ns 200ns 

“Software”  

event 

“Software”  

event 

Merge the data 

F
ro

m
 fro

n
t-e

n
d
 P

C
s
 

Number of hits exceeds the threshold, 

Send downstream 

QBEE : each channel 

digitized if over threshold. 

All the hits are sorted in 

time and grouped into an 

event if number of hits 

exceeds preset trigger 

condition. (ID:90, OD:10) 

  Pedestal hits are collected 

realtime 

  Intrinsic charge Injector 

into each channel for 

electronics calibration.  

  Types of Trigger : 

  ID 

  OD 

  LASER 

  PEDESTAL 

  Charge Injector 
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  Data taking began on Aug. 1, 2011 

with both near and far detectors.  

 Data-taking efficiency > 90%. 

 Trigger rate at the threshold energy 

of 0.5~0.6 MeV : 80 Hz 

  Data-taking period :  229 days                                     

Aug. 11, 2011 ~ Mar. 26, 2012  

A candidate for a 

neutron capture 

by Gd 

2 MeV 6 MeV 

40K 

10 MeV 

208Tl 

n capture by Gd 

Event  rate before reduction 

  Data-taking efficiency                                 

Data-Taking & Data Set 
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Trigger Rates 

• * NPMT is counted within 50nsec. 

• # Simulated for Near (70m), Far(200m) depths.  

NEAR FAR 

Depth (mwe) 120 450 

Distance from Reactor baseline(m) 294  1383  

Flux weighted distance (m) 408.56 1443.99 

Muon Rate (Simulation)( /m2 sec)# 5.5 0.85 

Average Muon energy (GeV)# 34.3 65.2 

Inner Detector (Hz) (NPMT >90)* ~280 ~110 

Outer Detector (Hz) (NPMT >10)* ~533 ~66 
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Near Detector Far Detector 

Cs 
Ge 

Cf 
Co 

Cf 

Cs 
Ge 

Cf 
Co 

Cf 

 ~ 250 pe/MeV  (sources at center) 

 Identical energy response (< 0.1%)  of ND & FD 

 Slight  non-linearity observed 

%1.1
)(

%9.5


MeVE
E

Energy Calibration w/ source 

Plots to be updated ! 

E(neutron capture)  8.047MeV 

4.438 MeV (Po-Be source) will be added.  
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-Near Detector 

-Far Detector 
Cs 137 

(662 keV) 

Co 60 

(2,506 keV) 

Ge 68 

(1,022 keV) 

Cf 252 

(2.2/7.8 MeV) 

Spectra w/ sources after calibration 
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 IBD candidate’s delayed signals (capture on Gd) 
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 Cosmic muon induced neutron’s capture by H 

Long-term Stabilities 
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1.  Reject flashers and external gamma rays :   Qmax/Qtot < 0.03 

2.  Muon veto cuts :   reject events after the following muons 

  1 ms DEAD time for 

 E(ID) > 70 MeV 

 20MeV < E(ID) < 70 MeV &  NPMT (OD) > 50 

   10 ms DEAD time for E(ID) > 1.5 GeV  

3.  Coincidence : 

 Eprompt : 0.7 ~ 12.0 MeV,    Edelayed : 6.0 ~ 12.0 MeV 

 coincidence :  2 ms < te+n < 100 ms 

4.  Multiplicity cut :    reject pairs if there is an any trigger in the 

preceding   100 ms  window. 

Cuts for  Events  
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Near  Detector 

Far  Detector 

 Observed spectra of IBD delayed signals  
 t  = 27.8 ± 0.2 msec 

Near Detector 

 t  = 27.6 ± 0.4 msec 

Far Detector 

Spectra & capture time of neutrons 
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 Calculation of accidental coincidence  

 [ ( ) ( )]
1 exp promptR Hz T s

accidental delayedN N
 

  

 T = 100 ms time window 

 Near detector :     

    Rprompt = 8.8 Hz,  Ndelay = 4884/day  →                                       

  Far detector :  

    Rprompt = 10.6 Hz,  Ndelay = 643/day  →                                 

4.30 0.06 /
near

BG day
accidental

 

0.68 0.03 /
far

BG day
accidental

 

Backgrounds I - Accidentals 
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 Find prompt-delay pairs after muons,  and obtain their time interval 

distribution with respect to the preceding muon. 

  Near detector : 

                                              

  Far detector :  

                                 

day
near

HeLi
BG /5.9312.45 

/


day
far

HeLi
BG /  0.75 2.59  

/


Time interval (ms) 

 9Li time interval distribution 

Energy (MeV) 

 9Li energy spectrum 

Backgrounds II – 9Li/8Be 



We have tried to extend to lower energy muons, but limited by high rates.  

NEAR 

NEAR 

FAR 

FAR 

We have extrapolated higher energy data to lower threshold data.  
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 Obtain a flat spectrum of fast neutron’s scattering with proton,  above 

that of the prompt signal.  

 Near detector :     

                                              

  Far detector :  

                                   

day
near

neutron
BG /    0.13 5.00    

day
far

neutron
BG /    0.06   0.97   

Far detector Near detector 

Backgrounds III – fast neutrons 
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Summary of Final Counts 
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Near Detector 

154088 (BG: 2.7%) 

Far Detector 

17102 (BG: 5.5%) 

Visible energy spectra of neutrinos 
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Estimation of  event rates 

 : thermal power of reactor r in ith day from power plant

 : fission fraction of each isotope in ith day (Burn=up)

 : fission energy of each isotope 

        V.Kopeikin et al.,  Phys. At om.N

r

i
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 235 239 241

238

ucl. 67,  1982 (2004)

U, Pu, Pu  in P. Huber,  Phys. Rev. C84,  024617 

( ) : flux of each isotope for 

         

         

2011

U in T. Mueller et al.,  Phys. Rev. C83,  054615 (2011)

iso E E 

1. Neutrino flux 

Flux of r reactor on ith day 



Supplied by power plant 

Daily thermal power 

Last Fuel Exchange period 

Fission fractions  
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Estimation of  event rates 
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Observed Daily Averaged   Rate 
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Efficiency & Systematic Uncertainties 
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 Consistent with 

neutrino oscillation in 

the spectral distortion. 

 E>6 MeV distortion is 

not understood yet. 

Reactor Antineutrino Disappearance 
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2

13sin 2 0.113 0.023  
 4.9 significant signal 

Far detector: 

8.0% reduction 

Near detector: 

1.2% reduction 

Definitive Measurement of 13  

.)(014.0.)(009.0920.0
exp

syststatR
Far

ected

Far

observed 





0.013( .) 0.019( .)stat syst

~ 6%(Preliminary) deficit is 
observed for absolute 
normalization parameter a.  
 consistent with reactor 
neutrino anomaly & Double 
Chooz. 
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Accepted by PRL, will be on-line May 11th.  
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.)(019.0.)(013.0113.02sin 13

2 syststat RENO 

.)(005.0.)(016.0092.02sin 13

2 syststat 
Daya 

Bay 

 Contributions of the systematic errors : 

    - Background uncertainties : 0.0165 

       (far : 5.5%×17.7% = 0.97%,   near : 2.7%×27.3% = 0.74%) 

    - Reactor uncertainty (0.9%) : 0.0100 

    - Detection efficiency uncertainty (0.2%) : 0.0103 

    - Absolute normalization uncertainty (2.5%) : 0.0104  

 Reduce the amound of backgrounds ! 

 Do spectral shape analysis ! 

Future Efforts for 13 at RENO 
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  RENO was the first experiment to take data with both near and 

far detectors, from August 1, 2011. 

 RENO observed a clear disappearance of reactor antineutrinos. 

 

      
.)(014.0.)(009.0920.0 syststatR 

 RENO measured the last, smallest mixing angle 13 unambiguously 

that was the most elusive puzzle of neutrino oscillations 

 

      .)(019.0.)(013.0113.02sin 13

2 syststat 

Summary 
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 A large value of 13 : 

 Need to update the designs for the future neutrino experiments. 

 Three reactor measurement will strongly promote the next round 

of neutrino experiments to find the CP phase. 

 May open a bright window of understanding why there is much   

more matter than antimatter in the Universe today. 

 A prospective  future for neutrino physics due to a large value of 13 !!!    

Perspectives  

2

13sin 2 0.1 

Mass Hierarcht with reactor neutrinos @ 50 km 



Grazie ! 


