Extracting the light quark masses from $\eta \rightarrow 3 \pi$: A dispersive approach

Emilie Passemar
Indiana University/Jefferson Laboratory
MesonNet Meeting
INFN-LNF, Frascati, Sept. 29 - Oct. 1, 2014

In collaboration with G. Colangelo, S. Lanz and H. Leutwyler (ITP-Bern)

Outline :

1. $\eta \rightarrow 3 \pi$ decays
2. Dispersive analysis
3. Preliminary results
4. Conclusion and outlook
5. $\eta \rightarrow 3 \pi$ decays

1.1 Definitions

- η decay: $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$

$$
\left\langle\pi^{+} \pi^{-} \pi^{0}{ }_{\text {out }} \mid \eta\right\rangle=i(2 \pi)^{4} \delta^{4}\left(p_{\eta}-p_{\pi^{+}}-p_{\pi^{-}}-p_{\pi^{0}}\right) A(s, t, u)
$$

- Mandelstam variables $s=\left(p_{\pi^{+}}+p_{\pi^{-}}\right)^{2}, t=\left(p_{\pi^{-}}+p_{\pi^{0}}\right)^{2}, u=\left(p_{\pi^{0}}+p_{\pi^{+}}\right)^{2}$

$$
\boldsymbol{s}+\boldsymbol{t}+\boldsymbol{u}=M_{\eta}^{2}+M_{\pi^{0}}^{2}+2 M_{\pi^{+}}^{2} \equiv 3 s_{0} \quad \square \text { only two independent variables }
$$

- Neutral channel: $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$.

$$
\bar{A}(s, t, u)=A(s, t, u)+A(t, u, s)+A(u, s, t)
$$

1.2 Why is it interesting to study $\eta \rightarrow 3 \pi$?

- Decay forbidden by isospin symmetry

$$
\boldsymbol{A}=\left(m_{u}-m_{d}\right) A_{1}+\alpha_{e m} A_{2}
$$

- $\boldsymbol{\alpha}_{e m}$ effects are small

Sutherland'66, Bell \& Sutherland'68
Baur, Kambor, Wyler'96, Ditsche, Kubis, Meissner'09

- Decay rate measures the size of isospin breaking $\left(m_{u}-m_{d}\right)$ in the SM:

$$
L_{Q C D} \rightarrow L_{I B}=-\frac{m_{u}-m_{d}}{2}(\bar{u} u-\bar{d} d)
$$

\Rightarrow Clean access to $\left(m_{u}-m_{d}\right)$

1.3 Quark mass ratios

- Instead of $\left(m_{u}-m_{d}\right)$ extract Q :

$$
Q^{2} \equiv \frac{m_{s}^{2}-\hat{m}^{2}}{m_{d}^{2}-m_{u}^{2}}
$$

Does not receive any correction at NLO!

- Mass formulae to second chiral order

$$
\begin{array}{ll}
\frac{M_{K}^{2}}{M_{\pi}^{2}}=\frac{m_{s}+\hat{m}}{2 \hat{m}}\left[1+\Delta_{M}+\mathcal{O}\left(m^{2}\right)\right] & \\
\frac{M_{K^{0}}^{2}-M_{K^{+}}^{2}}{M_{K}^{2}-M_{\pi}^{2}}=\frac{m_{d}-m_{u}}{m_{s}-\hat{m}}\left[1+\Delta_{M}+\mathcal{O}\left(m^{2}\right)\right] & {\left[\widehat{m} \equiv \frac{\boldsymbol{m}_{d}+\boldsymbol{m}_{u}}{2}\right]} \\
\text { with } \Delta_{M}=\frac{8\left(M_{K}^{2}-M_{\pi}^{2}\right)}{F_{\pi}^{2}}\left(2 L_{8}-L_{5}\right)+\chi \text {-logs } &
\end{array}
$$

- The same $O(m)$ correction appears in both ratios
\Rightarrow Take the double ratio

$$
Q^{2} \equiv \frac{m_{s}^{2}-\hat{m}^{2}}{m_{d}^{2}-m_{u}^{2}}=\frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{\left(M_{K^{0}}^{2}-M_{K^{+}}^{2}\right)_{Q C D}}\left[1+O\left(m_{q}^{2}, e^{2}\right)\right]
$$

1.3 Quark mass ratios

- From $\mathrm{Q} \square$ Ellipse in the plane $m_{s} / m_{d}, m_{U} / m_{d} \quad$ Leutwyler's ellipse

1.3 Quark mass ratios

- Use Q to determine $\boldsymbol{m}_{\boldsymbol{u}}$ and $\boldsymbol{m}_{\boldsymbol{d}}$ from lattice determinations of $\boldsymbol{m}_{\boldsymbol{s}}$ and $\hat{\boldsymbol{m}}$

$$
\Rightarrow m_{u}=\hat{m}-\frac{m_{s}^{2}-\hat{m}^{2}}{4 \hat{m} Q^{2}} \text { and } m_{d}=\hat{m}+\frac{m_{s}^{2}-\hat{m}^{2}}{4 \hat{m} Q^{2}}
$$

- From lattice determinations of \boldsymbol{m}_{s} and $\hat{\boldsymbol{m}}+\boldsymbol{Q}$
\Rightarrow Light quark masses: m_{u}, m_{d}, m_{s}

1.4 Q from $\eta \rightarrow 3 \pi$

$$
A(s, t, u)=-\frac{1}{Q^{2}} \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{3 \sqrt{3} F_{\pi}^{2}} M(s, t, u)
$$

$$
\Gamma_{\eta \rightarrow 3 \pi} \propto \int|A(s, t, u)|^{2} \propto Q^{-4}
$$

- In the following, compute the normalized amplitude $\mathrm{M}(\mathrm{s}, \mathrm{t}, \mathrm{u})$ with the best accuracy \Rightarrow extraction of Q

1.5 Dispersive approach

- Slow convergence of the chiral series

- Large $\pi \pi$ final state interactions

1.5 Dispersive approach

- Slow convergence of the chiral series

- Large $\pi \pi$ final state interactions
- Important discrepancy between ChPT and experiment in the neutral channel

Neutral Channel : $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$

- Decay amplitude $\Gamma_{\eta \rightarrow 3 \pi} \propto|\bar{A}|^{2} \propto 1+2 \alpha Z$ with $Z=\frac{2}{3} \sum_{i=1}^{3}\left(\frac{3 T_{i}}{Q_{n}}-1\right)^{2}$

$$
Q_{n} \equiv M_{n}-3 M_{n^{0}}
$$

1.5 Dispersive approach

- Slow convergence of the chiral series

$$
\Gamma_{\eta \rightarrow 3 \pi}=\left(\int_{L O}^{(66+94}+\ldots\right) \mathrm{NLO} \text { NNLO }
$$

LO: Osborn, Wallace'70
NLO: Gasser \& Leutwyler' 85
NNLO: Bijnens \& Ghorbani'07

- Large $\pi \pi$ final state interactions
- Important discrepancy between ChPT and experiment in the neutral channel
- Use of dispersion relations:
> analyticity, unitarity and crossing symmetry
> Take into account all the rescattering effects

Kambor, Wiesendanger \& Wyler'96
Anisovich \& Leutwyler'96

 $+$
 $+\ldots$

1.5 Dispersive approach

- Use of dispersion relations :
> analyticity, unitarity and crossing symmetry
> Take into account all the rescattering effects

Kambor, Wiesendanger \&
Wyler'96
Anisovich \& Leutwyler'96

- New dispersive analysis:
$>$ New inputs available: extraction $\pi \pi$ phase shifts has improved
Ananthanarayan et al'01, Colangelo et al'01
Descotes-Genon et al'01
Kaminsky et al'01, Garcia-Martin et al'09
> New experimental programs, precise Dalitz plot measurements CBall-Brookhaven, CLAS (JLab), KLOE (Frascati) TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich)
$>$ Possible combination with NNLO calculation
$>$ Electromagnetic effects: complete analysis of $\mathrm{O}\left(\mathrm{e}^{2} \mathrm{~m}\right)$ effects
Ditsche, Kubis, Meissner’09
$>$ Isospin breaking effects: new techniques \Rightarrow NREFT
Gullstrom, Kupsc, Rusetsky'09, Schneider, Kubis, Ditsche'11

2. Dispersive Analysis of $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

2.1 Method: Representation of the amplitude

- Dispersion relations

$$
\mathcal{A}_{\eta \rightarrow 3 \pi}^{n}=\text { subtraction polynomial }+\int \operatorname{disc} \mathcal{A}_{\eta \rightarrow 3 \pi}^{n}
$$

- From the discontinuity, reconstruct the amplitude everywhere in the complex plane $\breve{\square}$ need the discontinuity

$$
\operatorname{disc} \mathcal{A}_{\eta \rightarrow 3 \pi}^{n}=\frac{1}{2} \sum_{n^{\prime}}(2 \pi)^{4} \delta\left(p_{n}-p_{n}^{\prime}\right) \mathcal{A}_{\eta \rightarrow 3 \pi}^{n^{\prime}}\left(\mathcal{T}_{3 \pi \rightarrow 3 \pi}^{n^{\prime} n}\right)^{*}
$$

2.1 Method: Representation of the amplitude

- Dispersion relations

$$
\mathcal{A}_{\eta \rightarrow 3 \pi}^{n}=\text { subtraction polynomial }+\int \operatorname{disc} \mathcal{A}_{\eta \rightarrow 3 \pi}^{n}
$$

- From the discontinuity, reconstruct the amplitude everywhere in the complex plane \Rightarrow need the discontinuity

$$
\operatorname{disc} \mathcal{A}_{\eta \rightarrow 3 \pi}^{n}=\frac{1}{2} \sum_{n^{\prime}}(2 \pi)^{4} \delta\left(p_{n}-p_{n}^{\prime}\right) \mathcal{A}_{\eta \rightarrow 3 \pi}^{n^{\prime}} \times\left(\mathcal{T}_{3 \pi \rightarrow 3 \pi}^{n^{\prime} n}\right)^{*}
$$

2.1 Method: Representation of the amplitude

- Dispersion relations

$$
\mathcal{A}_{\eta \rightarrow 3 \pi}^{n}=\text { subtraction polynomial }+\int \operatorname{disc} \mathcal{A}_{\eta \rightarrow 3 \pi}^{n}
$$

- From the discontinuity, reconstruct the amplitude everywhere in the complex plane \square need the discontinuity

$$
\operatorname{disc} \mathcal{A}_{\eta \rightarrow 3 \pi}^{n}=\frac{1}{2} \sum_{n^{\prime}}(2 \pi)^{4} \delta\left(p_{n}-p_{n}^{\prime}\right) \mathcal{A}_{\eta \rightarrow 3 \pi}^{n^{\prime}} \times\left(\mathcal{T}_{3 \pi \rightarrow 3 \pi}^{n^{\prime} n}\right)^{*}
$$

2.1 Method: Representation of the amplitude

- Dispersion relations

$$
\mathcal{A}_{\eta \rightarrow 3 \pi}^{n}=\text { subtraction polynomial }+\int \operatorname{disc} \mathcal{A}_{\eta \rightarrow 3 \pi}^{n}
$$

- From the discontinuity, reconstruct the amplitude everywhere in the complex plane \Rightarrow need the discontinuity

$$
\operatorname{disc} \mathcal{A}_{\eta \rightarrow 3 \pi}^{n}=\frac{1}{2} \sum_{n^{\prime}}(2 \pi)^{4} \delta\left(p_{n}-p_{n}^{\prime}\right) \mathcal{A}_{\eta \rightarrow 3 \pi}^{n^{\prime}} \times\left(\mathcal{T}_{3 \pi \rightarrow 3 \pi}^{n^{\prime} n}\right)^{*}
$$

2.1 Method: Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states
$M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)$
Fuchs, Sazdjian \& Stern'93
Anisovich \& Leutwyler'96
$>\boldsymbol{M}_{I}$ isospin / rescattering in two particles
$>$ Amplitude in terms of S and P waves \Rightarrow exact up to $\operatorname{NNLO}\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
> Main two body rescattering corrections inside M_{1}
- Dispersion relation for the M, ss

$$
M_{I}(s)=\Omega_{I}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)
$$

$$
\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

Omnès function

2.1 Method: Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states
$M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)$
Fuchs, Sazdjian \& Stern'93
Anisovich \& Leutwyler'96
$>\boldsymbol{M}_{\boldsymbol{I}}$ isospin / rescattering in two particles
$>$ Amplitude in terms of S and P waves \Rightarrow exact up to $\operatorname{NNLO}\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
> Main two body rescattering corrections inside M_{1}
- Dispersion relation for the M,'s

$$
M_{I}(s)=\Omega_{I}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime}} \left\lvert\, \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right.\right)
$$

$$
\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

Omnès function

- Inputs needed : S and P-wave phase shifts of $\pi \pi$ scattering

2.1 Method: Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

$>\boldsymbol{M}_{\boldsymbol{I}}$ isospin / rescattering in two particles
$>$ Amplitude in terms of S and P waves \Rightarrow exact up to $\operatorname{NNLO}\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
$>$ Main two body rescattering corrections inside M_{1}

- Dispersion relation for the M's

$$
M_{I}(s)=\Omega_{I}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)
$$

$$
\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

Omnès function

- $\hat{M}_{I}(s)$: singularities in the t and u channels, depend on the other $\boldsymbol{M}_{I}(s)$
\Rightarrow subtract $M_{I}(s)$ from the partial wave projection of $M(s, t, u)$ Angular averages of the other functions \Rightarrow Coupled equations

2.1 Method: Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states
$M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)$
Fuchs, Sazdjian \& Stern'93
Anisovich \& Leutwyler'96
$>\boldsymbol{M}_{\boldsymbol{I}}$ isospin / rescattering in two particles
$>$ Amplitude in terms of S and P waves \Rightarrow exact up to $\operatorname{NNLO}\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
> Main two body rescattering corrections inside M_{1}
- Dispersion relation for the M,'s

$$
M_{I}(s)=\Omega_{I}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)
$$

$$
\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 w_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

Omnès function

- Solution depends on subtraction constants only \Rightarrow solve by iterative procedure

2.2 Iterative Procedure

2.3 Subtraction constants

- Extension of the numbers of parameters compared to Anisovich \& Leutwyler'96

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}
\end{aligned}
$$

- In the work of Anisovich \& Leutwyler'96 matching to one loop ChPT Use of the $\operatorname{SU}(2) \times \operatorname{SU}(2)$ chiral theorem
\Rightarrow The amplitude has an Adler zero along the line $\mathrm{s}=\mathrm{u}$
- Now data on the Dalitz plot exist from KLOE, WASA and MAMI
\Rightarrow Use the data to directly fit the subtraction constants
- Solution linear in the subtraction constants

$$
M(s, t, u)=\alpha_{0} M_{\alpha_{0}}(s, t, u)+\beta_{0} M_{\beta_{0}}(s, t, u)+\ldots
$$

\Rightarrow makes the fit much easier

2.3 Subtraction constants

- Adler zero: the real part of the amplitude along the line $s=u$ has a zero

2.4 Experimental measurements

- Dalitz plot measurement : Amplitude expanded in X and Y around $X=Y=0$

$$
\left.A(s, t, u)\right|^{2}=\Gamma(X, Y)=N\left(1+a Y+b Y^{2}+d X^{2}+f Y^{3}\right)
$$

$$
\begin{aligned}
& X=\frac{\sqrt{3}\left(T_{+}-T_{-}\right)}{Q_{c}}=\frac{\sqrt{3}}{2 M_{\eta} Q_{c}}(u-t) \\
& Y=\frac{3 T_{0}}{Q_{c}}-1=\frac{3}{2 M_{\eta} Q_{c}}\left(\left(M_{\eta}-M_{\pi^{0}}\right)^{2}-s\right)-1
\end{aligned}
$$

with T_{i} : kinetic energy of π^{i} in the η rest frame
and $Q_{c} \equiv T_{0}-T_{+}-T_{-}=M_{\eta}-2 M_{\pi^{+}}-M_{\pi^{0}}$

2.4 Experimental measurements : Charged channel

- Charged channel measurements with high statistics from KLOE and WASA e.g. KLOE: $\sim 1.3 \times 10^{6} \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ events from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \varphi \rightarrow \eta \gamma$

$$
\left.A_{c}(s, t, u)\right|^{2}=N\left(1+a Y+b Y^{2}+d X^{2}+f Y^{3}\right)
$$

KLOE'08

$$
Y=\frac{3}{2 M_{\eta} Q_{c}}\left(\left(M_{\eta}-M_{\pi^{0}}\right)^{2}-s\right)-1
$$

$$
X=\frac{\sqrt{3}}{2 M_{\eta} Q_{c}}(u-t)
$$

2.4 Experimental measurements : Neutral channel

- Neutral channel measurements with high statistics from MAMI-B, MAMI-C and WASA e.g. MAMI-C: $\sim 3 \times 10^{6} \eta \rightarrow 3 \pi^{0}$ events from $\gamma p \rightarrow \eta p$

$$
\left.A_{n}(s, t, u)\right|^{2}=N\left(1+2 \alpha Z+6 \beta Y\left(X^{2}-\frac{Y^{2}}{3}\right)+2 \gamma Z^{2}\right)
$$

\Rightarrow Extraction of the slope:

MAMI-C'09

$$
\begin{array}{r}
Z=\frac{2}{3} \sum_{i=1}^{3}\left(\frac{3 T_{i}}{Q_{n}}-1\right)^{2}=X^{2}+Y^{2} \\
Q_{n} \equiv M_{\eta}-3 M_{\pi^{0}}
\end{array}
$$

$$
X=\frac{\sqrt{3}\left(T_{+}-T_{-}\right)}{Q_{c}}=\frac{\sqrt{3}}{2 M_{\eta} Q_{c}}(u-t)
$$

$$
Y=\frac{3 T_{0}}{Q_{c}}-1=\frac{3}{2 M_{\eta} Q_{c}}\left(\left(M_{\eta}-M_{\pi^{0}}\right)^{2}-s\right)-1
$$

2.5 Subtraction constants

- As we have seen, only Dalitz plots are measured, unknown normalization!

$$
A(s, t, u)=-\frac{1}{Q^{2}} \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{3 \sqrt{3} F_{\pi}^{2}} M(s, t, u)
$$

To determine Q , one needs to know the normalization
\Rightarrow For the normalization one needs to use ChPT

- The subtraction constants are

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}
\end{aligned}
$$

2.5 Subtraction constants

- As we have seen, only Dalitz plots are measured, unknown normalization!

$$
A(s, t, u)=-\frac{1}{Q^{2}} \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{3 \sqrt{3} F_{\pi}^{2}} M(s, t, u)
$$

To determine Q, one needs to know the normalization
\Rightarrow For the normalization one needs to use ChPT

- The subtraction constants are

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}
\end{aligned}
$$

Only 6 coefficients are of physical relevance

2.5 Subtraction constants

- The subtraction constants are

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}
\end{aligned}
$$

Only 6 coefficients are of physical relevance

- They are determined from
- Matching to one loop ChPT $\Rightarrow \delta_{0}=\gamma_{1}=\mathbf{0}$
- Combine ChPT with fit to the data $\Rightarrow \boldsymbol{\delta}_{0}$ and $\boldsymbol{\gamma}_{1}$ are determined from the data
- Matching to one loop ChPT : Taylor expand the dispersive M, Subtraction constants \Leftrightarrow Taylor coefficients
- Important : Adler zero should be reproduced! \Rightarrow Can be used to constrain the fit

3. Preliminary Results

3.1 Dalitz plot distribution of $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

- The amplitude squared along the line $t=u$:

$$
\left[M_{\pi}^{2}\right]
$$

- Good agreement between theory and experiment
- The theoretical error bars are large \Rightarrow fit the subtraction constants to the data to reduce the uncertainties

3.2 Z distribution for $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decays

- The amplitude squared in the neutral channel is

Here also the agreement looks very good but \Rightarrow

3.2 Z distribution for $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decays

NRFT in η decays
Gullstrom, Kupsc, Rusetsky'09 Schneider, Kubis, Ditsche'11

- The uncertainties coming from the matching with ChPT are very large
\Rightarrow there is room for improvement using the data

3.2 Z distribution for $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decays

- If one wants to fit the data, at this level of precision the e.m. corrections matter \Rightarrow use the one loop e.m. calculations from Ditsche, Kubis and Meissner'09

3.3 Qualitative results of our analysis

- Determination of Q from the dispersive approach :

$$
\begin{aligned}
& \Gamma_{\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}}=\frac{1}{Q^{4}} \frac{M_{K}^{4}}{M_{\pi}^{4}} \frac{\left(M_{K}^{2}-M_{\pi}^{2}\right)^{2}}{6912 \pi^{3} F_{\pi}^{4} M_{\eta}^{3}} \int_{s_{\min }}^{s_{\max }} d s \int_{u_{-}(s)}^{u_{+}(s)} d u|M(s, t, u)|^{2} \\
& \Gamma_{\eta \rightarrow 3 \pi}=295 \pm 20 \mathrm{eV} \quad P D G^{\prime} \nmid 2 \\
& \left(Q^{2} \equiv \frac{\boldsymbol{m}_{s}^{2}-\hat{\boldsymbol{m}}^{2}}{\boldsymbol{m}_{d}^{2}-\boldsymbol{m}_{u}^{2}}\right)
\end{aligned}
$$

- Determination of α

$$
\left.A_{n}(s, t, u)\right|^{2}=N(1+2 \alpha Z)
$$

3.3 Qualitative results of our analysis

- Plot of Q versus α :

NB: Isospin breaking has not been accounted for

From kaon mass spliting :
$Q=20.7 \pm 1.2$
Kastner \& Neufeld'08

- All the data give consistent results. The preliminary outcome for Q is intermediate between the lattice result and the one of Kastner and Neufeld.

3.3 Qualitative results of our analysis

- Plot of Q versus α :

NB: Isospin breaking has not been accounted for

- All our preliminary results give a negative value for α. In particular the result using KLOE data for $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ is in perfect agreement with the PDG value!

3.4 Comparison of results for \mathbf{Q}

3.5 Comparison of results for α

3.6 Comparison with KKNZ

- Amplitude along the line $\mathrm{s}=\mathrm{u}$

- Adler zero not reproduced!

3.7 Light quark masses

H. Leutwyler

- Smaller values for $\mathrm{Q} \Rightarrow$ smaller values for $\mathrm{ms} / \mathrm{md}$ and $\mathrm{mu} / \mathrm{md}$ than LO ChPT

3.7 Light quark masses

3.7 Light quark masses

4. Conclusion and outlook

4.1 Conclusion

- $\eta \rightarrow 3 \pi$ decays represent a very clean source of information on the quark mass ratio Q
- A reliable extraction of Q requires having the strong rescattering effects in the final state under control
- This is possible thanks to dispersion relations
\Rightarrow need to determine unknown subtraction constants
- This was done up to now relying exclusively on ChPT but precise measurements have become available
> In the charged channel: KLOE and WASA
> In the neutral channel: MAMI-B, MAMI-C, WASA
> More results are expected: KLOE, CLAS, GlueX, JEF...
\square will allow to reduce the uncertainties in a significant way seems to push the value for Q towards low results

4.2 Outlook

- Analysis still in progress:
> Determination of the subtraction constants:
\square combine ChPT and the data in the optimal way
$>$ Take into account the e.m. corrections
implementation of the one loop e.m. corrections from
\square Ditsche, Kubis and Meissner'09 to be able to fit to the data charged and neutral channel
> Matching to NNLO ChPT
\square Constraints from experiment: possible insights on $\boldsymbol{C}_{\boldsymbol{i}}$ values
> Careful estimate of all uncertainties
> Inelasticities
- Our preliminary results give a consistent picture between
$>$ all experimental measurements: Dalitz plot measurements from both charged and neutral channels
$>$ theoretical requirements: e.g. Adler zero

5. Back-up

3.4 Subtraction constants

- Matching to one loop ChPT : Taylor expand the dispersive M_{I} Subtraction constants \Leftrightarrow Taylor coefficients

$$
\begin{aligned}
& M_{0}(s)=a_{0}+b_{0} s+c_{0} s^{2}+d_{0} s^{3}+\ldots \\
& M_{1}(s)=a_{1}+b_{1} s+c_{1} s^{2}+\ldots \\
& M_{2}(s)=a_{2}+b_{2} s+c_{2} s^{2}
\end{aligned}
$$

$>$ gauge freedom $\Rightarrow \mathrm{a}_{0}, \mathrm{~b}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}$ tree level ChPT values
$>$ fix the remaining ones with one-loop ChPT $\mathrm{c}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{2}$
$>$ matching to one loop: $\mathrm{d}_{0}=\mathrm{c}_{1}=0$ or fit: d_{0} and c_{1} from the data

- Problem : this identification assumes there is not significant contributions from higher orders of the chiral expansion \Rightarrow not well-justified for the s^{3} terms!
- Solution: Match the $\operatorname{SU}(2) \times \operatorname{SU}(2)$ expansion of the dispersive representation with the one of the one loop representation In progress
- Important : Adler zero should be reproduced! \Rightarrow Can be used to constrain the fit

1.2 Meson masses from ChPT

- $\boldsymbol{m}_{u, d, s} \ll \Lambda_{Q C D}$: masses treated as small perturbations \Rightarrow expansion in powers of \boldsymbol{m}_{q}
- Gell-Mann-Oakes-Renner relations:
$(\text { meson mass })^{2}=($ spontaneous ChSB $) \times($ explicit ChSB $)$

R m_{q}

- From LO ChPT without e.m effects:

$$
\begin{aligned}
& M_{\pi^{+}}^{2}=\left(m_{\mathrm{u}}+m_{\mathrm{d}}\right) B_{0}+O\left(m^{2}\right) \\
& M_{K^{+}}^{2}=\left(m_{\mathrm{u}}+m_{\mathrm{s}}\right) B_{0}+O\left(m^{2}\right) \\
& M_{K^{0}}^{2}=\left(m_{\mathrm{d}}+m_{\mathrm{s}}\right) B_{0}+O\left(m^{2}\right)
\end{aligned}
$$

- Electromagnetic effects: Dashen's theorem

$$
\left\{\begin{array}{l}
M_{\pi^{0}}^{2}=B_{0}\left(m_{u}+m_{d}\right) \\
M_{\pi^{+}}^{2}=B_{0}\left(m_{u}+m_{d}\right)+\Delta_{e m} \\
M_{K^{0}}^{2}=B_{0}\left(m_{d}+m_{s}\right) \\
M_{K^{+}}^{2}=B_{0}\left(m_{u}+m_{s}\right)+\Delta_{e m}
\end{array}\right.
$$

$$
\left(\boldsymbol{M}_{K^{+}}^{2}-\boldsymbol{M}_{\boldsymbol{K}^{0}}^{2}\right)_{e m}-\left(\boldsymbol{M}_{\pi^{+}}^{2}-\boldsymbol{M}_{\pi^{0}}^{2}\right)_{e m}=\boldsymbol{O}\left(e^{2} \boldsymbol{m}\right) \quad \text { Dashen'69 }
$$

2 unknowns \boldsymbol{B}_{0} and $\Delta_{e m}$

1.2 Meson masses from ChPT

Quark mass ratios
Weinberg'77

$$
\begin{aligned}
& \frac{m_{u}}{m_{d}} \stackrel{\text { 上о }}{=} \frac{M_{K^{+}}^{2}-M_{K^{0}}^{2}+2 M_{\pi^{0}}^{2}-M_{\pi^{+}}^{2}}{M_{K^{0}}^{2}-M_{K^{+}}^{2}+M_{\pi^{+}}^{2}}=0.56 \\
& \frac{m_{s}}{m_{d}} \stackrel{\text { 上о }}{=} \frac{M_{K^{+}}^{2}+M_{K^{0}}^{2}-M_{\pi^{+}}^{2}}{M_{K^{0}}^{2}-M_{K^{+}}^{2}+M_{\pi^{+}}^{2}}=20.2
\end{aligned}
$$

1.5 Quark mass ratios

- The same $O(m)$ correction appears in both ratios
\Rightarrow Take the double ratio

$$
Q^{2} \equiv \frac{m_{s}^{2}-\hat{m}^{2}}{m_{d}^{2}-m_{u}^{2}}=\frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{\left(M_{K^{0}}^{2}-M_{K^{+}}^{2}\right)_{Q C D}}\left[1+O\left(m_{q}^{2}, e^{2}\right)\right]
$$

Very Interesting quantity to determine since Q^{2} does not receive any correction at NLO!

- Using Dashen's theorem and inserting Weinberg LO values

$$
Q_{D}^{2} \equiv \frac{\left(M_{K^{0}}^{2}+M_{K^{+}}^{2}-M_{\pi^{+}}^{2}+M_{\pi^{0}}^{2}\right)\left(M_{K^{0}}^{2}+M_{K^{+}}^{2}-M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)}{4 M_{\pi^{0}}^{2}\left(M_{K^{0}}^{2}-M_{K^{+}}^{2}+M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)}
$$

$$
Q_{D}=24.2
$$

1.5 Quark mass ratios

- Estimate of Q: $B_{0}\left(m_{u}-\boldsymbol{m}_{d}\right)=\frac{1}{Q^{2}} \frac{M_{K}^{2}\left(M_{K}^{2}-M_{\pi}^{2}\right)}{M_{\pi}^{2}}+\boldsymbol{O}\left(\boldsymbol{M}^{3}\right)$
> From corrections to the Dashen's theorem

$$
\Longrightarrow B_{0}\left(m_{d}-m_{u}\right)=\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)-\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)+O\left(e^{2} m\right)
$$

The corrections can be large due to $\mathrm{e}^{2} \mathrm{~m}_{\mathrm{s}}$ corrections, difficult to estimate due to LECs
$>$ From $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}: A(s, t, u)=-\frac{1}{Q^{2}} \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{3 \sqrt{3} F_{\pi}^{2}} M(s, t, u)$

$$
\Rightarrow \Gamma_{\eta \rightarrow 3 \pi} \propto \int|A(s, t, u)|^{2} \propto Q^{-4}
$$

- In the following, compute the normalized amplitude $\mathrm{M}(\mathrm{s}, \mathrm{t}, \mathrm{u})$ with the best accuracy \Rightarrow extraction of Q

6. Prospects at JLab

6.1 Introduction

- Attempt to quantify roughly the uncertainties

\square Careful estimate of the uncertainties in progress

6.1 Introduction

- Attempt to quantify roughly the uncertainties

\square Careful estimate of the uncertainties in progress

$6.2 \eta \rightarrow 2 \gamma$ via Primakoff experiment

- $\eta \rightarrow 2 \gamma$ enters $\Gamma_{\eta \rightarrow 3 \pi}$ determination :
S. Lanz, PhD Thesis'11

- Large fluctuations mainly due to the total decay width fixed via the process $\eta \rightarrow 2 \gamma$

$6.2 \eta \longrightarrow 2 \gamma$ via Primakoff experiment

- 2 different measurements:
>2 photons production: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma^{*} \gamma^{*} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \eta$

> Primakoff production :
- 2 sets of measurements do not agree PDG'94:
>2 photons production, average : $\Gamma(\eta \rightarrow \mathbf{2} \gamma)=\mathbf{0 . 5 1 0} \pm 0.026 \mathrm{keV}$
$>$ Primakoff measurement: $\Gamma(\eta \rightarrow \mathbf{2 \gamma})=\mathbf{0 . 3 2 4} \mathbf{0 . 0 4 6} \mathbf{~ k e V}$ Browman'74
- Primakoff measurement excluded from PDG average in 2004, need to be reamesured \Rightarrow PrimEx at Jlab!

6.2 $\eta \rightarrow 2 \gamma$ via Primakoff experiment

- 2 different measurements:
>2 photons production: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma^{*} \gamma^{*} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \eta$

PrimEx
$>$ Primakoff production :

- Uncertainty on Q generated by the decay width input:

$$
\Gamma_{\eta \rightarrow 3 \pi}=295 \pm 20 \mathrm{eV} \Rightarrow \quad Q \sim 22 \pm 0.31
$$

Overall expected uncertainty approximately $\mathbf{\pm 1 . 0 0}$
Possible improvement with new measurement?

6.3 Measurement of $\eta \rightarrow 3 \pi$ at Jlab eta factory

- Only one recent published result for the Dalitz plot parameters in the charged channel by KLOE

$$
\mid A_{c}(s, \boldsymbol{t}, \boldsymbol{u})^{2}=N\left(\mathbf{1}+\boldsymbol{a} \boldsymbol{Y}+\boldsymbol{b} \boldsymbol{Y}^{2}+c X+\boldsymbol{d} \boldsymbol{X}^{2}+e X Y+\boldsymbol{f} \boldsymbol{Y}^{3}+g X^{3}+h X^{2} Y+I X Y^{2}\right)
$$

$>$ Charge conjugation: \Rightarrow symmetry $X \longleftrightarrow-X$
$>\mathrm{h}$ consistent with zero

Exp	a	b	d
KLOE	$-1.090(-20)(+9)$	$0.124(12)$	$0.057(+9)(-17)$
Crystal Barrel	$-1.10(4)$	-	-
Layter	$-1.08(14)$	-	-
Gormley	$-1.15(2)$	$0.16(3)$	-

\mathbf{a}	$-1.090(5)(+8)(-19)$	
\mathbf{b}	$0.124(6)(10)$	
\mathbf{c}	$0.002(3)(1)$	
\mathbf{d}	$0.057(6)(+7)(-16)$	
\mathbf{e}	$-0.006(7)(5)(-3)$	
\mathbf{f}	$0.14(1)(2)$	
$\mathbf{P}\left(\chi^{2}\right)$		0,73

Talk by Ambrosino, Hadron'11

- One new analysis by WASA underway, CLAS?

6.3 Measurement of $\eta \rightarrow 3 \pi$ at Jlab eta factory

- More information in the charged compared to the neutral channel \Rightarrow neutral channel sum over isospin:

$$
\bar{A}(s, t, u)=A(s, t, u)+A(t, u, s)+A(u, s, t)
$$

Only one Dalitz plot parameter determined α

$$
A_{n}(s, t, u)^{2}=N(1+2 \alpha Z)
$$

- Some possible inconsistencies between charged and neutral channel pointed out:

$$
\alpha \leq \frac{1}{4}\left(b+d-\frac{1}{4} a^{2}\right) \Rightarrow \alpha=\frac{1}{4}\left(b+d-\frac{1}{4} a^{2}\right)+\Delta \text { Bijnens \& Ghorbanió }
$$

- Δ can be calculated using NREFT including $\pi \pi$ rescattering effects From KLOE Dalitz plot parameters $\Rightarrow \alpha=-0.059(7)$ in disagreement with KLOE direct measurement and PDG average!
- Disagrement due to predicted b two times larger than the experimental result :

$$
b_{\text {NREFT }}=0.308>b_{\text {KLOE }}=0.124
$$

6.3 Measurement of $\eta \rightarrow 3 \pi$ at Jlab eta factory

- Matching wih CHPT and experiment: main source of uncertainty on Q ! Only statistical uncertainties $\Rightarrow Q \sim 22 \pm \mathbf{0 . 5 0}$
\Rightarrow Improvement on the measurement of the charged channel would help to reduce the uncertainties on Q!

Can one do better at JLab?

- A dedicated experimental analysis using the dispersive approach to extract Q will allow for the best determination, systematics could be taken into account \Rightarrow use basis functions

6.3 Measurement of $\eta \rightarrow 3 \pi$ at Jlab eta factory

- On the neutral channel: several experimental measurements:

- Any sensitivity to higher order coefficients?

Comparison with original analysis

	$Q\left(\pi^{+} \pi^{-} \pi^{0}\right)$	$Q\left(3 \pi^{0}\right)$	r
Results from Walker	22.8	22.9	1.43
My reproduction	22.74	22.87	1.425
$\delta_{l}(s)$	+0.14	+0.13	-0.004
L_{3}	+0.07	+0.11	+0.008
m_{K}	+0.22	+0.21	+0.000
$m_{\pi}, m_{\eta}, F_{\pi}, \Delta_{F}$	+0.02	+0.02	-0.001
Г	-0.45	-0.62	-
My result	22.74	22.72	1.428

$$
\begin{aligned}
& M_{0}(s)=\Omega_{0}(s)\left\{\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\frac{s^{2}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 2}} \frac{\sin \delta_{0}\left(s^{\prime}\right) \hat{M}_{0}\left(s^{\prime}\right)}{\left|\Omega_{0}\left(s^{\prime}\right)\right|\left(s^{\prime}-i \epsilon\right)}\right\} \\
& M_{1}(s)=\Omega_{1}(s)\left\{\beta_{1} s+\frac{s}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime}} \frac{\sin \delta_{1}\left(s^{\prime}\right) \hat{M}_{1}\left(s^{\prime}\right)}{\left|\Omega_{1}\left(s^{\prime}\right)\right|\left(s^{\prime}-s-i \epsilon\right)}\right\} \\
& M_{2}(s)=\Omega_{2}(s) \frac{s^{2}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 2}} \frac{\sin \delta_{2}\left(s^{\prime}\right) \hat{M}_{2}\left(s^{\prime}\right)}{\left|\Omega_{2}\left(s^{\prime}\right)\right|\left(s^{\prime}-s-i \epsilon\right)}
\end{aligned}
$$

Comparison for \mathbf{Q}

Q		
dispersive (Walker)	22.8 ± 0.8	[Waker '98]
dispersive (Kambor et al.)	22.4 ± 0.9	[Kamboretal. '96]
dispersive (Kampf et al.)	23.3 ± 0.8	[Kamp etal ' 11]
$\chi \mathrm{PT}, \mathcal{O}\left(p^{4}\right)$	20.1	[Bininens8GGorbani ${ }^{\text {or] }}$
$\chi \mathrm{PT}, \mathcal{O}\left(p^{6}\right)$	22.9	[Binienssachorbani ${ }^{\text {o7] }}$
no Dashen violation	24.3	[Weinberg '77]
with Dashen violation	20.7 ± 1.2	
lattice (FLAG average)	23.1 ± 1.5	[Colangelo etal. 100$]$
dispersive, matching	$22.74{ }_{-0.67}^{+0.68}$	

Comparison for $\boldsymbol{\alpha}$

α		$[10]$
χ PT $\mathcal{O}\left(p^{4}\right)$	0.014	$[23]$
χ PT $\mathcal{O}\left(p^{6}\right)$	0.013 ± 0.032	$[0.014 \ldots-0.007$
Kambor et al.	-0.044 ± 0.004	$[26]$
Kampf et al.	-0.024 ± 0.005	$[28]$
NREFT	-0.022 ± 0.023	$[13]$
GAMS-2000 (1984)	-0.052 ± 0.018	$[14]$
Crystal Barrel@LEAR (1998)	-0.031 ± 0.004	$[15]$
Crystal Ball@BNL (2001)	-0.010 ± 0.023	$[16]$
SND (2001)	-0.026 ± 0.015	$[17]$
WASA@CELSIUS (2007)	-0.027 ± 0.0095	$[18]$
WASA@COSY (2008)	-0.032 ± 0.0028	$[19]$
Crystal Ball@MAMI-B (2009)	-0.032 ± 0.0025	$[20]$
Crystal Ball@MAMI-C (2009)	$-0.0301+0.0049$	$[21]$
KLOE (2010)	-0.0317 ± 0.0016	$[22]$

1.6 Construction of an effective theory: ChPT

- Effective Field Theory approach: At a given energy scale
$>$ Degrees of freedom
> Symmetries
Decoupling : Ex: To play pool you don't need to know the movement of earth around the sun
- Chiral Perturbation Theory (ChPT)

Method: Representation of the amplitude

- Consider the s channel \Rightarrow Partial wave expansion of $M(s, t, u)$:

$$
M(s, t, u)=f_{0}(s)+f_{1}(s) \cos \theta+\ldots
$$

- Elastic unitarity Watson's theorem
$\Rightarrow \operatorname{disc}\left[f_{1}(s)\right] \propto t_{1}^{*}(s) f_{1}(s)$
with $\boldsymbol{t}_{1}(\boldsymbol{s})$ partial wave of elastic $\pi \pi$ scattering
- $\mathrm{M}(\mathrm{s}, \mathrm{t}, \mathrm{u})$ right-hand branch cut in the complex s-plane starting at the $\pi \pi$ threshold
- Left-hand cut present due to crossing
- Same situation in the t- and u-channel

Discontinuities of the $M_{I}(s)$

- Ex: $\hat{M}_{0}(s)=\frac{2}{3}\left\langle M_{0}\right\rangle+2\left(s-s_{0}\right)\left\langle M_{1}\right\rangle+\frac{20}{9}\left\langle M_{2}\right\rangle+\frac{2}{3} \kappa(s)\left\langle z M_{1}\right\rangle$ where $\left\langle z^{n} M_{I}\right\rangle(s)=\frac{1}{2} \int_{-1}^{1} d z z^{n} M_{I}(t(s, z)), z=\cos \theta$ scattering angle

Non trivial angular averages \Rightarrow need to deform the integration path to avoid crossing cuts

Discontinuities of the $M_{I}(s)$

- Ex: $\hat{M}_{0}(s)=\frac{2}{3}\left\langle M_{0}\right\rangle+2\left(s-s_{0}\right)\left\langle M_{1}\right\rangle+\frac{20}{9}\left\langle M_{2}\right\rangle+\frac{2}{3} \kappa(s)\left\langle z M_{1}\right\rangle$ where $\left\langle z^{n} M_{I}\right\rangle(s)=\frac{1}{2} \int_{-1}^{1} d z z^{n} M_{I}(t(s, z)), z=\cos \theta$ scattering angle

Non trivial angular averages \Rightarrow need to deform the integration path to avoid crossing cuts

Anisovich \& Anselm'66

3.7 Comparison of values of \mathbf{Q}

\square Fair agreement with the determination from meson masses

Comparison with \mathbf{Q} from meson mass splitting

- $\boldsymbol{Q}^{2}=\frac{\boldsymbol{M}_{K}^{2}}{\boldsymbol{M}_{\pi}^{2}} \frac{\boldsymbol{M}_{\boldsymbol{K}}^{2}-\boldsymbol{M}_{\pi}^{2}}{\boldsymbol{M}_{\boldsymbol{K}^{0}}^{2}-\boldsymbol{M}_{\boldsymbol{K}^{+}}^{2}}\left[\mathbf{1}+\boldsymbol{O}\left(\boldsymbol{m}_{q}^{2}\right)\right]$ is only valid for e=0
- Including the electromagnetic corrections, one has

$$
Q_{D}^{2} \equiv \frac{\left(M_{K^{0}}^{2}+M_{K^{+}}^{2}-M_{\pi^{+}}^{2}+M_{\pi^{0}}^{2}\right)\left(M_{K^{0}}^{2}+M_{K^{+}}^{2}-M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)}{4 M_{\pi^{0}}^{2}\left(M_{K^{0}}^{2}-M_{K^{+}}^{2}+M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)}
$$

$\Rightarrow Q_{D}=24.2$

- Corrections to the Dashen's theorem \square The corrections can be large due to $\mathrm{e}^{2} \mathrm{~m}_{\mathrm{s}}$ corrections:

$$
\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)_{\mathrm{em}}-\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)_{\mathrm{em}}=e^{2} M_{K}^{2}\left(A_{1}+A_{2}+A_{3}\right)+O\left(e^{2} M_{\pi}^{2}\right)
$$

3.6 Corrections to Dashen's theorem

- Dashen's Theorem

$$
\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)_{\mathrm{em}}=\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)_{\mathrm{em}} \Rightarrow\left(M_{K^{+}}-M_{K^{0}}\right)_{\mathrm{em}}=1.3 \mathrm{MeV}
$$

- With higher order corrections
- Lattice : $\quad\left(\boldsymbol{M}_{\mathbf{K}^{+}}-\boldsymbol{M}_{\mathbf{K}^{0}}\right)_{\mathrm{em}}=\mathbf{1 . 9} \mathbf{M e V}, \boldsymbol{Q}=\mathbf{2 2 . 8} \quad$ Ducan et al.'96
- ENJL model. $\left(\boldsymbol{M}_{\boldsymbol{K}^{+}}-\boldsymbol{M}_{\boldsymbol{K}^{\circ}}\right)_{\mathrm{em}}=\mathbf{2 . 3} \mathbf{M e V}, \boldsymbol{Q}=\mathbf{2 2}$ Bijnens \& Prades'97
- VMD:
$\left(M_{K^{+}}-M_{K^{0}}\right)_{\mathrm{em}}=2.6 \mathrm{MeV}, \boldsymbol{Q}=\mathbf{2 1 . 5} \quad$ Donoghue \& Perez'97
- Sum Rules: $\left(\boldsymbol{M}_{\kappa^{+}}-\boldsymbol{M}_{\boldsymbol{K}^{\circ}}\right)_{\mathrm{em}}=\mathbf{3 . 2} \mathbf{M e V}, \boldsymbol{Q}=\mathbf{2 0 . 7}$ Anant \& Moussallam'04 Update $\Rightarrow Q=\mathbf{2 0 . 7} \pm \mathbf{1 . 2}$ Kastner \& Neufeld'07

4.2 Method: Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

Fuchs, Sazdjian \& Stern'93
Anisovich \& Leutwyler'96
$>\boldsymbol{M}_{\boldsymbol{I}}$ isospin / rescattering in two particles
$>$ Amplitude in terms of S and P waves \square exact up to NNLO $\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
$>$ Main two body rescattering corrections inside M_{1}

- Functions of only one variable with only right-hand cut of the partial wave $\breve{ } \quad \operatorname{disc}\left[M_{I}(s)\right] \equiv \operatorname{disc}\left[f_{1}^{I}(s)\right]$
- Elastic unitarity Watson's theorem

$$
\operatorname{disc}\left[f_{1}^{I}(s)\right] \propto t_{1}^{*}(s) f_{1}^{I}(s) \quad \begin{aligned}
& \text { with } t_{1}(s) \text { partial wave of elastic } \pi \pi \\
& \text { scattering }
\end{aligned}
$$

4.2 Method: Representation of the amplitude

- Knowing the discontinuity of $\boldsymbol{M I}_{I} \square$ write a dispersion relation for it
- Cauchy Theorem and Schwarz reflection principle

$$
\Rightarrow M_{I}(s)=\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\operatorname{disc}\left[M_{I}\left(s^{\prime}\right)\right]}{s^{\prime}-s-i \varepsilon} d s^{\prime}
$$

$\boldsymbol{M}_{\boldsymbol{I}}$ can be reconstructed everywhere from the knowledge of $\operatorname{disc}\left[M_{I}(s)\right]$

- If $\boldsymbol{M}_{\boldsymbol{I}}$ doesn' t converge fast enought for $|\boldsymbol{s}| \rightarrow \infty \Rightarrow$ subtract the dispersion relation

$$
M_{I}(s)=P_{n-1}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime n}} \frac{\operatorname{disc}\left[M_{I}\left(s^{\prime}\right)\right]}{\left(s^{\prime}-s-i \varepsilon\right)} \mathrm{P}_{\mathrm{n}-1}(\mathrm{~s}) \text { polynomial }
$$

4.3 Hat functions

- Discontinuity of M_{I} : by definition $\operatorname{disc}\left[M_{I}(s)\right] \equiv \operatorname{disc}\left[f_{1}^{I}(s)\right]$

$$
\Rightarrow \quad f_{1}^{I}(s)=M_{I}(s)+\hat{M}_{I}(s)
$$

with $\hat{M}_{I}(s)$ real on the right-hand cut

- The left-hand cut is contained in $\hat{M}_{I}(s)$
- Determination of $\hat{\boldsymbol{M}}_{I}(s)$: subtract \boldsymbol{M}_{I} from the partial wave projection of $\boldsymbol{M}(\boldsymbol{s}, \boldsymbol{t}, \boldsymbol{u})$ $M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+\ldots$
- $\quad \hat{\boldsymbol{M}}_{I}(s)$ singularities in the t and u channels, depend on the other \boldsymbol{M}_{I} Angular averages of the other functions \Rightarrow Coupled equations

4.3 Hat functions

- Ex: $\hat{M}_{0}(s)=\frac{2}{3}\left\langle M_{0}\right\rangle+2\left(s-s_{0}\right)\left\langle M_{1}\right\rangle+\frac{20}{9}\left\langle M_{2}\right\rangle+\frac{2}{3} \kappa(s)\left\langle z M_{1}\right\rangle$
where $\left\langle z^{n} M_{I}\right\rangle(s)=\frac{1}{2} \int_{-1}^{1} d z z^{n} M_{I}(t(s, z))$,
$z=\cos \boldsymbol{\theta} \quad$ scattering angle
Non trivial angular averages \Rightarrow need to deform the integration path to avoid crossing cuts

4.4 Dispersion Relations for the $\mathbf{M}_{\mathrm{I}}(\mathrm{s})$

- Elastic Unitarity

$$
[1=1 \text { for } I=1,1=0 \text { otherwise }]
$$

$$
\begin{gathered}
\Rightarrow \operatorname{disc}\left[M_{I}\right]=\operatorname{disc}\left[f_{1}^{I}(s)\right]=\theta\left(s-4 M_{\pi}^{2}\right)\left[M_{I}(s)+\hat{M}_{I}(s)\right] \sin \delta_{1}^{I}(s) e^{-i \delta_{1}^{I}(s)} \\
\delta_{1}^{I} \text { phase of the partial wave } f_{1}^{I}(s)
\end{gathered}
$$

\Rightarrow Watson theorem: elastic $\pi \pi$ scattering phase shifts

- Solution: Inhommogeneous Omnès problem

$$
M_{0}(s)=\Omega_{0}(s)\left(\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\frac{s^{3}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 3}} \frac{\sin \delta_{0}^{0}\left(s^{\prime}\right) \hat{M}_{0}\left(s^{\prime}\right)}{\Omega_{0}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right.
$$

Omnès function
Similarly for M_{1} and M_{2}

$$
\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{1}^{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

4.4 Dispersion Relations for the $\mathbf{M}_{\mathrm{I}}(\mathrm{s})$

- $M_{0}(s)=\Omega_{0}(s)\left(\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\frac{s^{3}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 3}} \frac{\sin \delta_{0}^{0}\left(s^{\prime}\right) \hat{M}_{0}\left(s^{\prime}\right)}{\Omega_{0}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)$

Omnès function
Similarly for M_{1} and M_{2}

- Four subtraction constants to be determined: $\alpha_{0}, \beta_{0}, \gamma_{0}$ and one more in $\mathrm{M}_{1}\left(\beta_{1}\right)$
- Inputs needed for these and for the $\pi \pi$ phase shifts $\boldsymbol{\delta}_{1}^{I}$
- M_{0} : $\pi \pi$ scattering, $\ell=0, I=0$
$-M_{1}: \pi \pi$ scattering, $\ell=1, I=1$
$-M_{2}: \pi \pi$ scattering, $\ell=0, I=2$
- Solve dispersion relations numerically by an iterative procedure

5.4 Comparison with KKNZ

- Adler zero not reproduced!

