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Why is it so important for theory? We are a data-driven science!
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Know what we 
are made of ! 

Understand the 
strong force:
“QCD”

Use protons as tool 
for discovery 
(e.g. LHC )

Exploring the nucleon: a fundamental quest
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Spin is a fundamental quantum degree of freedom 

Test of a theory is not complete 
without a full test of spin-dependent 
decays and scattering

Spin provides a unique opportunity to probe 
the inner structure of a composite system 
(such as the proton)

Why Spin?

Spin plays a critical role in 
determining the basic structure 
of fundamental interactions

Xiangdong Ji at DIS08
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Nucleon landscape 
 

Nucleon is a many body dynamical system of 
quarks and gluons  

Changing x we probe different aspects of nucleon 
wave function  

How partons move and how they are
distributed in space is one of the directions of 
development of nuclear physics

Technically such information is encoded into 
Generalised Parton Distributions (GPDs) and 
Transverse Momentum Dependent distributions 
(TMDs)
   
   
These distributions are also referred to as 3D 
(three-dimensional) distributions               
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GPDs                                        TMDs 
 

DVCS SIDIS

ensures hard scale, pointlike interaction
momentum transfer can be varied 
independently 

Connection to 3D structure Burkardt (2000)
Burkardt (2003)

Drell-Yan frame Weiss (2009)

ensures hard scale, pointlike interaction
final hadron transverse momentum
can be varied independently 

Connection to 3D structure

     
    is the transverse separation of parton fields
 in configuration space 

Ji, Ma, Yuan (2004)
Collins (2011)    

AP (2012)

P P 0

Q2

�

Kotzinian (1995),  
Mulders,  
Tangerman (1995),  
Boer, Mulders (1998) 

Q2
PhT

k?

Ji (1997) 
Radyushkin (1997)
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Why QCD evolution is interesting?

Study of evolution gives us insight on different aspects and origin of confined motion of partons, gluon 
radiation, parton fragmentation  

Evolution allows to connect measurements at very different scales.

TMD evolution has also a universal non-perturbative part. The result of evolution cannot be 
uniquely predicted using evolution equations until the non-perturbative part is reliably 
extracted from the data. 

Gluon 
shower

Confined 
motion

Emergence of a 
hadron

hadronization
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proton

lepton lepton

pion

electron

positron
pion

Collins, Soper, Sterman (1985) 
Collins (2011) 

TMD evolution equations

Collins, Soper, Sterman (1985) 
Collins (2011)

Ji, Ma, Yuan (2005) 
Collins (2011)

TMD factorization
e+e–

SIDIS

Drell-Yan

proton positron

electronprotonpion

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)
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proton

lepton lepton

pion

electron

positron
pion

proton

proton

pion

Collins, Soper, Sterman (1985) 
Collins (2011) 

TMD evolution equations

Qiu, Sterman (1990)

Collins, Soper, Sterman (1985) 
Collins (2011)

Ji, Ma, Yuan (2005) 
Collins (2011)

Only one scale is 
measured in PP 

TMD factorization is 
not applicable?

TMD factorization
e+e–

SIDIS

PP

?

Drell-Yan

proton positron

electronprotonpion

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)



12

proton

lepton lepton

pion

electron

positron
pion

proton

proton

pion

Collins, Soper, Sterman (1985) 
Collins (2011) 

TMD evolution equations

Qiu, Sterman (1990)

Collins, Soper, Sterman (1985) 
Collins (2011)

Ji, Ma, Yuan (2005) 
Collins (2011)

e+e–

SIDIS

PP

!

Drell-Yan

proton positron

electronprotonpion

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)

Twist-3 factorization
DGLAP equations

Global fit is needed.
Work in progress

• Twist-3 functions are related to TMD via OPE 
•  TMD and twist-3 factorizations are related in high QT region 
• Global analysis of TMDs and twist-3 is possible: 
All four processes can be used. 
• Data are from HERMES, COMPASS, JLab, 
BaBar, Belle, RHIC, LHC, Fermilab

TMD factorization
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Factorization of regions: 
(1) k//P1, (2) k//P2, (3) k soft, (4) k hard

mimic “parton model”

slide courtesy of Z. Kang

TMD factorization in a nut-shell

▪ Drell-Yan:

▪ Factorized form and mimicking “parton model”
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Collinear PDFs

✓ DGLAP evolution

✓ Resum

✓ Kernel: purely perturbative

TMDs

✓ Collins-Soper/rapidity evolution 
equation

✓ Resum

✓ Kernel: can be non-perturbative 
when 

● Just like collinear PDFs, TMDs also depend on the scale of the probe 
= evolution

TMDs evolve

slide courtesy of Z. Kang
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Collins-Sopoer-Sterman papers
Kang, Xiao, Yuan, PRL 11, 
Aybat, Rogers, Collins, Qiu, 12, 
Aybat, Prokudin, Rogers, 12, 
Sun, Yuan, 13, 
Echevarria, Idilbi, Schafer, Scimemi, 13, 
Echevarria, Idilbi, Kang, Vitev, 14,
Kang, Prokudin, Sun, Yuan, 15, 16, …

Only valid for small b

▪ We have a TMD above measured at a scale Q. So far the evolution is 
written down in the Fourier transformed space (convolution → product)

▪ In the small b region (1/b >> ΛQCD), one can then compute the 
evolution to this TMD, which goes like

slide courtesy of Z. Kang

TMD evolution in b-space
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Collins, Soper, Sterman 85, ResBos, Qiu, Zhang 99, Echevarria, Idilbi, Kang, Vitev, 14, 
Aidala, Field, Gamberg, Rogers, 14, Sun, Yuan 14, D’Alesio, Echevarria, Melis, Scimemi, 14, 
Rogers, Collins, 15, …

longitudinal/collinear part transverse part ✓ Non-perturbative: fitted from data
✓ The key ingredient – ln(Q) piece is 

spin-independentSince the polarized scattering data is still limited kinematics, we 
can use unpolarized data to constrain/extract key ingredients 

for the non-perturbative part

▪ Fourier transform back to the momentum space, one needs the whole 
b region (large b): need some non-perturbative extrapolation
▪ Many different methods/proposals to model this non-perturbative   

part

▪ Eventually evolved TMDs in b-space

slide courtesy of Z. Kang

TMD evolution and non-perturbative component
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 TMD distributions 

8 functions in total (at leading 
twist)

Each represents dif ferent 
aspects of partonic structure

Each depends on Bjorken-x, 
transverse momentum, the 
scale 

Each function is to be studied

Kotzinian (1995), Mulders, Tangerman (1995), Boer, Mulders (1998)
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 TMD distributions 

8 functions in total (at leading 
twist)

Each represents dif ferent 
aspects of partonic structure

Each depends on Bjorken-x, 
transverse momentum, the 
scale 

Each function is to be studied

Kotzinian (1995), Mulders, Tangerman (1995), Boer, Mulders (1998)

This talk
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 TMD Fragmentation Functions 

8 functions  
describing fragmentation of 
a quark into spin ½ hadron

 

Mulders, Tangerman (1995), Meissner, Metz, Pitonyak (2010)
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 TMD Fragmentation Functions 

8 functions  
describing fragmentation of 
a quark into spin ½ hadron

 

Mulders, Tangerman (1995), Meissner, Metz, Pitonyak (2010)

This talk
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Sivers function

Non universal

Collins function

Universal
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 TMD distributions  TMD distributions 
 Definitions

Sivers function: unpolarized quark distribution inside a transversely
polarized nucleon

Collins function: unpolarized hadron from a transversely polarized quark

Sivers 1989

Collins 1992

Spin independent Spin dependent
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 TMD distributions  TMD distributions 
 Definitions

Sivers function:                describes strength of correlation 

Collins function:                  describes strength of correlation 

Sivers 1989

Collins 1992

Sivers function and Collins function can give rise 
to Single Spin Asymmetries in scattering 
processes. For instance in Semi Inclusive Deep 
Inelastic process 

Both functions extensively studied experimentally, phenomenologically,
theoretically

Kotzinian (1995), 
Mulders, 
Tangerman (1995), 
Boer, Mulders (1998)
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Sivers function                                                 
 

Large – Nc result

➔ Confirmed by phenomenological extractions 

➔ Confirmed by experimental measurements  

Pobylitsa 2003

Relation to GPDs (E) and anomalous magnetic moment

➔ Predicted correct sign of Sivers asymmetry in SIDIS
➔ Shown to be model-dependent
➔ Used in phenomenological extractions 

Burkardt 2002

Meissner, Metz, Goeke 2007

Bacchetta, Radici 2011
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Sivers function                                                 
 

Sum rule
➔ Conservation of transverse momentum
➔ Average transverse momentum shift of a quark inside a transversely 
polarized nucleon

➔  Sum rule

Burkardt 2004

X

a=q,g

Z 1

0
dxhki,aT i = 0

X

a=q,g

Z 1

0
dxf

?(1)a
1T (x) = 0
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Sivers function                                                 
 

Extractions
➔ Many extractions without taking into account TMD evolution

➔ Extractions with TMD evolution

➔ Relation to the tomography of the nucleon 

➔ Agreement with the sum rule and large Nc prediction

Efremov et al 2005, Vogelsang, Yuan 2005, Anselmino et al 2005,
Collins et al 2006, Anselmino et al 2009, 2011, 2016, Bacchetta Radici 2011 

Echevarria et al  2014, Sun Yuan 2013

Anselmino et al  2011
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 Sign change of Sivers function 

Colored objects are surrounded by gluons, profound consequence of gauge invariance:  
Sivers function has opposite sign when gluon couple after quark scatters (SIDIS) or before 
quark annihilates (Drell-Yan)

Crucial test of TMD factorization and collinear twist-3 factorization
Several labs worldwide aim at measurement of Sivers effect in Drell-Yan
BNL, CERN, GSI, IHEP, JINR, FERMILAB etc 
Barone et al., Anselmino et al., Yuan,Vogelsang, Schlegel et al., Kang,Qiu, Metz,Zhou etc
The verification of the sign change is an NSAC (DOE and NSF) milestone

Brodsky,Hwang,Schmidt;
Belitsky,Ji,Yuan;
Collins;
Boer,Mulders,Pijlman;
Kang, Qiu;
Kovchegov, Sievert;
etc
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Process dependence of Sivers function                                      
 

 
➔ Indication on process dependence of Sivers functions from analysis
of AN in 

➔ Indication on process dependence from AnDY data on AN in 

Metz et al  2012

Gamberg, Kang, AP  2013
D’Alesio et al 2013

Sign change
No sign change
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Process dependence of Sivers function                                      
 

 
➔ First experimental hint on the sign change: AN in W and Z production

➔ Sign change 
➔ No sign change 

STAR  2015

STAR Collab. Phys. Rev. Lett. 116, 132301 (2016)

KQ → Kang, Qiu 2009
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Process dependence of Sivers function                                      
 

 
➔ First experimental hint on the sign change: AN in W and Z production

➔ Sign change 
➔ No sign change 

STAR Collab. Phys. Rev. Lett. 116, 132301 (2016)

KQ → Kang, Qiu 2009

➔ Large uncertainties of predictions
➔ No antiquark Sivers functions

STAR  2015
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Process dependence of Sivers function                                      
 

 
➔ First experimental hint on the sign change: AN in W and Z production

➔ Sign change 
➔ No sign change 

STAR Collab. Phys. Rev. Lett. 116, 132301 (2016)

KQ → Kang, Qiu 2009

➔ Large uncertainties of predictions
➔ No antiquark Sivers functions

STAR  2015

Anselmino et al  2016
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Process dependence of Sivers function                                      
 

 
➔ First experimental hint on the sign change: AN in W and Z production

Anselmino et al  2016

➔ Results with sign change
➔ No TMD evolution
➔ Antiquark Sivers functions included
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Process dependence of Sivers function                                      
 

 
➔ First experimental hint on the sign change: AN in W and Z production

➔ Sign change 
➔ No sign change 

STAR  2015
Anselmino et al  2016
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Process dependence of Sivers function                                      
 

 
➔ First experimental hint on the sign change: AN in W and Z production

➔ Sign change 
➔ No sign change 

Anselmino et al  2016

➔ STAR results hint on sign change
➔ More precise data is needed
➔ Drell-Yan measurements are needed
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Predictions for Sivers asymmetry in Drell-Yan
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FIG. 2: The single spin asymmetries A
sin(φγ−φS)
N for the Drell-Yan process π±p↑ → µ+µ− X at COMPASS, as a function of

xF = x1−x2 (left panel) and as a function of M (central panel). The integration ranges are (0 ≤ qT ≤ 1) GeV, (4 ≤ M ≤ 9) GeV
and 0.2 ≤ xF ≤ 0.5. The results are given for a pion beam energy of 160 GeV, corresponding to

√
s = 17.4 GeV. The right

panel shows the allowed region of x2 values as a function of xF .

-0.1

 0

 0.1

-0.5  0  0.5

A Nsin
(φ
γ-φ

S)

xF

COMPASS: π p↑ 

2.0<M<2.5 GeV
Eπ=160 GeV
0<qT<0.4 GeVGRVPI

π-

π+

 0

 0.2

 0.4

 0.6

-0.5  0  0.5

x 2

xF

COMPASS: π p↑ 

2<M<2.5 GeV
Eπ=160 GeV

FIG. 3: The single spin asymmetries A
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N for the Drell-Yan process π±p↑ → µ+µ− X at COMPASS, as a function of

xF = x1 − x2 (left panel). The integration ranges are (0 ≤ qT ≤ 0.4) GeV and (2.0 ≤ M ≤ 2.5) GeV. The results are given for
a pion beam energy of 160 GeV, corresponding to

√
s = 17.4 GeV. The right panel shows the allowed region of x2 values as a

function of xF .
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FIG. 4: The single spin asymmetry A
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Anselmino et al  2009
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The sum in Eq. (6) runs over all quarks and antiquarks (q = u, ū, d, d̄, s, s̄) and dσ stands for

d4σ

dy dM2 d2qT
=

1

s

d4σ

dx1 dx2 d2qT
= (x1 + x2)

d4σ

dxF dM2 d2qT
=

1

2

d4σ

d4q
· (9)

Notice that in obtaining Eq. (6) one uses (see Eq. (1)):

f̂q/A↑(x, k⊥) + f̂q/A↓(x, k⊥) = 2 fq/A(x, k⊥) (10)

f̂q/A↑(x, k⊥) − f̂q/A↓(x, k⊥) = ∆Nfq/A↑(x, k⊥) S · (P̂ × k̂⊥) ≡ ∆Nfq/A↑(x, k⊥) . (11)

The SSA (6) depends directly on the Sivers functions ∆Nfq/A↑ .
We use here the same factorized expression of the cross sections which holds in the collinear configuration, generaliz-

ing it to the case of unintegrated, or transverse momentum dependent (TMD), partonic distributions [24, 33]. A most
general treatment of unpolarized and polarized Drell-Yan processes in such a scheme has very recently appeared [34].
Factorization for SIDIS and Drell-Yan processes in the kinematical regime we are considering here, Eq. (4), has been
proven in QCD [35, 36, 37], resulting in the same parton model TMD-factorization adopted here and in Ref. [34], with
the addition of an extra soft factor S, which takes into account transverse motion originating from soft gluon emission
(see, for example, Eqs. (40) and (41) of Ref. [38]). Such a factor gives an (unknown) additional contribution, both to
the numerator and denominator of Eq. (6), of order αs, and is neglected here. The TMD partonic distributions we
use are obtained by fitting experimental data and take into account all sources of intrinsic motion.

A. About sign and azimuthal angle conventions

As the issue of the sign of the Sivers asymmetry in Drell-Yan processes is so important, let us discuss in details the
choices adopted here and their motivation. We define our kinematical configuration with hadron A↑ moving along the
positive z-axis, and hadron B opposite to it, in the A−B center of mass frame. We choose the “up” (↑) polarization
direction as the positive y-axis (φS = π/2). The transverse momenta have azimuthal angles

qT = qT (cosφγ , sinφγ , 0) k⊥i = k⊥i(sinϕi, cosϕi, 0) (i = 1, 2) , (12)

so that the mixed product S · (P̂ × k̂⊥1) gives an azimuthal dependence sin(φS −ϕ1) = cosϕ1 which, upon integration
on k⊥1, yields a sin(φS − φγ) = cosφγ dependence of the Sivers asymmetry (see Eq. (20) below).

Notice that, contrary to the usual study of angular dependences of Drell-Yan processes which is mainly performed
in the so-called Collins-Soper reference frame [39], we work in the hadronic c.m. frame. At least for the purpose of
studying the Sivers asymmetry, this frame is much more convenient and directly related to experimental measurements.

In order to collect data at all azimuthal angles, following what is usually done in semi-inclusive deep inelastic
scattering processes, both experimental results and theoretical estimates can be discussed for the azimuthal moments
of the asymmetry. We follow Refs. [32, 40] and [15] and choose as a weight the sin(φγ − φS) phase. We then have:

A
sin(φγ−φS)
N ≡

∫ 2π
0 dφγ [dσ↑ − dσ↓] sin(φγ − φS)

1
2

∫ 2π
0 dφγ [dσ↑ + dσ↓]

(13)

=

∫

dφγ

[

∑

q

∫

d2k⊥1 d2k⊥2 δ2(k⊥1 + k⊥2 − qT ) ∆Nfq/A↑(x1, k⊥1) fq̄/B(x2, k⊥2) σ̂
qq̄
0

]

sin(φγ − φS)
∫

dφγ

[

∑

q

∫

d2k⊥1 d2k⊥2 δ2(k⊥1 + k⊥2 − qT ) fq/A(x1, k⊥1) fq̄/B(x2, k⊥2) σ̂
qq̄
0

] ·

Notice that such a choice, combined with the sin(φS − φγ) dependence associated with the Sivers function [see
comments following Eq. (12)] implies an overall [− sin2(φγ − φS)] factor in the numerator of Eq. (13).

The above asymmetry is, in general, a function of xF (or y), M and qT . In the sequel we shall study it as a function
of one variable only, either xF or M ; we will always integrate both the numerator and denominator of Eq. (13) over
qT — covering the range in which the factorized approach with unintegrated distribution functions is supposed to
hold (as detailed in the captions of Figs. 2-9) — and on one of the remaining variables according to the kinematical
ranges of the corresponding experiments.

The case in which the polarized hadron A↑ moves along −ẑ, that is the process B A↑ → ℓ+ℓ−X , deserves a special
comment. In such a case — keeping the same definition of ↑ polarization and the same reference frame — the Sivers
mixed product has an opposite sign (due to the opposite A↑ momentum) and yields a Sivers asymmetry proportional
to sin(φγ − φS). In this case the overall factor in the numerator of Eq. (13) is [+ sin2(φγ − φS)]. This agrees with

4

what is done in SIDIS processes, ℓ p↑ → ℓ h X , in the γ∗ − p↑ c.m. frame [5]. To summarize, we shall give estimates
for the quantities:

A
sin(φγ−φS)
N (A↑ B → γ∗X ; xF , M, qT ) = −A

sin(φγ−φS)
N (B A↑ → γ∗X ; −xF , M, qT ) . (14)

The equality holds due to rotational invariance.

III. ESTIMATES FOR FORTHCOMING EXPERIMENTS

In order to give estimates for the Sivers asymmetries in Drell-Yan processes — and test the crucially important
sign change when going from SIDIS to DY — we only need to insert the Sivers functions extracted from the analysis
of SIDIS data into Eq. (13). We use the results obtained in Ref. [1], which adopted a Gaussian factorized form both
for the unpolarized distribution functions:

fq/p(x, k⊥) = fq(x)
1

π⟨k2
⊥⟩

e−k2
⊥/⟨k2

⊥⟩ ⟨k2
⊥⟩ = 0.25 GeV2 , (15)

and for the Sivers distributions:

∆Nfq/p↑(x, k⊥) = 2Nq(x)h(k⊥) fq/p(x, k⊥) (16)

≡ ∆Nfq/p↑(x)h(k⊥)
1

π⟨k2
⊥⟩

e−k2
⊥/⟨k2

⊥⟩ ,

where

Nq(x) = Nq xαq (1 − x)βq
(αq + βq)(αq+βq)

α
αq
q β

βq
q

(17)

h(k⊥) =
√

2e
k⊥
M1

e−k2
⊥/M2

1 · (18)

The values of the 11 best fit parameters Nq (q = u, d, s, ū, d̄, s̄), αq (q = u, d, sea), β (same for all q) and M1 can be
found in Table I of Ref. [1], where their uncertainty is also explained in details.

Notice that the above factorized expressions allow, at O(k⊥/M), an analytical integration of the numerator and
denominator of Eq. (13), resulting in

A
sin(φγ−φS)
N (xF , M, qT ) =

∫

dφγ [N(xF , M, qT ,φγ)] sin(φγ − φS)
∫

dφγ [D(xF , M, qT )]
(19)

with (see Eq. (9)):

N(xF , M, qT ,φγ) ≡ d4σ↑

dxF dM2 d2qT
− d4σ↓

dxF dM2 d2qT

=
4 π α2

9 M2 s

∑

q

e2
q

x1 + x2
∆Nfq/A↑(x1) fq̄/B(x2)

√
2e

qT

M1

⟨k2
S⟩2 exp

[

−q2
T /

(

⟨k2
S⟩ + ⟨k2

⊥2⟩
) ]

π [⟨k2
S⟩ + ⟨k2

⊥2⟩]
2 ⟨k2

⊥2⟩
sin(φS − φγ)

(20)

and

D(xF , M, qT ) ≡ 1

2

[

d4σ↑

dxF dM2 d2qT
+

d4σ↓

dxF dM2 d2qT

]

=
d4σunp

dxF dM2 d2qT

=
4 π α2

9 M2 s

∑

q

e2
q

x1 + x2
fq/A(x1) fq̄/B(x2)

exp
[

−q2
T /

(

⟨k2
⊥1⟩ + ⟨k2

⊥2⟩
) ]

π [⟨k2
⊥1⟩ + ⟨k2

⊥2⟩]
· (21)

Notice that we have defined

1

⟨k2
S⟩

=
1

M2
1

+
1

⟨k2
⊥1⟩

(22)
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what is done in SIDIS processes, ℓ p↑ → ℓ h X , in the γ∗ − p↑ c.m. frame [5]. To summarize, we shall give estimates
for the quantities:

A
sin(φγ−φS)
N (A↑ B → γ∗X ; xF , M, qT ) = −A

sin(φγ−φS)
N (B A↑ → γ∗X ; −xF , M, qT ) . (14)

The equality holds due to rotational invariance.
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In order to give estimates for the Sivers asymmetries in Drell-Yan processes — and test the crucially important
sign change when going from SIDIS to DY — we only need to insert the Sivers functions extracted from the analysis
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≡ ∆Nfq/p↑(x)h(k⊥)
1

π⟨k2
⊥⟩

e−k2
⊥/⟨k2

⊥⟩ ,

where
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α
αq
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βq
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(17)

h(k⊥) =
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k⊥
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⊥/M2

1 · (18)

The values of the 11 best fit parameters Nq (q = u, d, s, ū, d̄, s̄), αq (q = u, d, sea), β (same for all q) and M1 can be
found in Table I of Ref. [1], where their uncertainty is also explained in details.

Notice that the above factorized expressions allow, at O(k⊥/M), an analytical integration of the numerator and
denominator of Eq. (13), resulting in

A
sin(φγ−φS)
N (xF , M, qT ) =

∫

dφγ [N(xF , M, qT ,φγ)] sin(φγ − φS)
∫

dφγ [D(xF , M, qT )]
(19)

with (see Eq. (9)):
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and

D(xF , M, qT ) ≡ 1

2

[

d4σ↑

dxF dM2 d2qT
+
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dxF dM2 d2qT

]
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Notice that we have defined

1

⟨k2
S⟩

=
1

M2
1

+
1

⟨k2
⊥1⟩

(22)

4

what is done in SIDIS processes, ℓ p↑ → ℓ h X , in the γ∗ − p↑ c.m. frame [5]. To summarize, we shall give estimates
for the quantities:

A
sin(φγ−φS)
N (A↑ B → γ∗X ; xF , M, qT ) = −A

sin(φγ−φS)
N (B A↑ → γ∗X ; −xF , M, qT ) . (14)

The equality holds due to rotational invariance.

III. ESTIMATES FOR FORTHCOMING EXPERIMENTS

In order to give estimates for the Sivers asymmetries in Drell-Yan processes — and test the crucially important
sign change when going from SIDIS to DY — we only need to insert the Sivers functions extracted from the analysis
of SIDIS data into Eq. (13). We use the results obtained in Ref. [1], which adopted a Gaussian factorized form both
for the unpolarized distribution functions:

fq/p(x, k⊥) = fq(x)
1

π⟨k2
⊥⟩

e−k2
⊥/⟨k2

⊥⟩ ⟨k2
⊥⟩ = 0.25 GeV2 , (15)

and for the Sivers distributions:

∆Nfq/p↑(x, k⊥) = 2Nq(x)h(k⊥) fq/p(x, k⊥) (16)

≡ ∆Nfq/p↑(x)h(k⊥)
1

π⟨k2
⊥⟩

e−k2
⊥/⟨k2

⊥⟩ ,

where

Nq(x) = Nq xαq (1 − x)βq
(αq + βq)(αq+βq)

α
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q β

βq
q

(17)

h(k⊥) =
√

2e
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M1

e−k2
⊥/M2

1 · (18)

The values of the 11 best fit parameters Nq (q = u, d, s, ū, d̄, s̄), αq (q = u, d, sea), β (same for all q) and M1 can be
found in Table I of Ref. [1], where their uncertainty is also explained in details.

Notice that the above factorized expressions allow, at O(k⊥/M), an analytical integration of the numerator and
denominator of Eq. (13), resulting in

A
sin(φγ−φS)
N (xF , M, qT ) =

∫

dφγ [N(xF , M, qT ,φγ)] sin(φγ − φS)
∫

dφγ [D(xF , M, qT )]
(19)

with (see Eq. (9)):

N(xF , M, qT ,φγ) ≡ d4σ↑

dxF dM2 d2qT
− d4σ↓

dxF dM2 d2qT

=
4 π α2
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and
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+
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]

=
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Notice that we have defined

1

⟨k2
S⟩

=
1

M2
1

+
1

⟨k2
⊥1⟩

(22)➔ No TMD evolution
➔ TMD PDF width
➔ Pion width the same as proton

hk2?i = 0.25 GeV 2
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➔ Predictions With TMD evolution
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FIG. 12: Predictions for the Sivers single spin asymmetry for the Drell-Yan process at COMPASS,
with π− beam of 190GeV, as function of xp. We have chosen the average xπ ≈ 0.55 and integrate

transverse momentum up to 2GeV.
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FIG. 13: Predictions for the Sivers single spin asymmetry for the Drell-Yan process at Fermilab

fixed target experiments, with proton beam of 120GeV, as function of x for the polarized proton:
polarized beam (left) and polarized target (right).

resonance. The latter process shall provide some information on the gluon Sivers function
in the relevant kinematics.

C. Fermilab Fixed Target Experiments

The proposal of the polarized Drell-Yan experiments at the Fermilab contain two possible
options [35]: polarized beam or polarized target. Both cases can be used to measure the
Sivers single spin asymmetries in the Drell-Yan lepton pair production. In the proposed
experiment, the incoming beam has energy of 120GeV.

Different from the Drell-Yan experiments at COMPASS, the Fermilab proposal have
proton-proton scattering. The flavor structure will be very different from that in COMPASS.
This is because in the proposed kinematics, the sea quark contribution to the unpolarized
cross section is not negligible. Therefore, we would expect that the sea quark Sivers functions
will play an important role as well.

In Fig. 13, we plot our predictions for the Sivers single spin asymmetries in the Drell-Yan
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FIG. 11. Qiu-Sterman function Tq,F (x, x,Q) for u, d, and s flavors at a scale Q2 = 2.4 GeV2, as extracted by our simultaneous
fit of JLab, HERMES, and COMPASS data.

SIDIS and the DY processes

f⊥,q(β)
1T,DY (xa, b;Q) = −f⊥,q(β)

1T,SIDIS(xa, b;Q). (45)

We then use Eq. (23) and Eq. (44) and follow the experimental convention to choose the pair’s transverse momentum
p⊥ along the x-direction, while the spin vector s⊥ is along y-direction [10, 85] and the transversely polarized proton
is moving in the +z-direction. The single transverse spin asymmetry for DY production is given by

AN =
d∆σ

dQ2dyd2p⊥

/

dσ

dQ2dyd2p⊥
. (46)

It is important to realize that the AN defined above is opposite to the so-called weighted asymmetry A
sin(φγ−φs)
N

defined in the literature, see, e.g., Refs. [63, 83].
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FIG. 12. Estimated Sivers asymmetries for DY lepton pair production. Left plot: AN in p↑π− collisions as a function of xF

at COMPASS energy
√
s = 18.9 GeV. Middle plot: AN in p↑p collisions is plotted as a function of xF at Fermilab energy√

s = 15.1 GeV. Right plot: AN in p↑p collisions is plotted as a function of the pair’s rapidity y at RHIC energy
√
s = 510

GeV. We have integrated over the pair’s transverse momentum 0 < p⊥ < 1 GeV in the invariant mass range 4 < Q < 9 GeV.

There are several planned experiments to measure the AN for DY lepton pair production. The COMPASS collab-
oration at CERN will use a 190 GeV π− beam to scatter on the polarized proton target [21], which corresponds to
a CM energy

√
s = 18.9 GeV. At Fermilab, one can use the 120 GeV proton beam in the main injector. There are

two proposals corresponding to either a polarized proton beam [22] or a polarized proton target [23]. In both cases,
the CM energy is

√
s = 15.1 GeV. Finally, a DY measurement is also planned at RHIC [4, 24]. In the following, we

will present an estimate of the Sivers asymmetry based on our evolution approach. For better comparison, we will
always present the asymmetry in the center-of-mass frame of the colliding particles. We further choose the trans-
versely polarized proton to move in the +z direction, while the other unpolarized particle (π− for COMPASS and the
unpolarized proton for Fermilab and RHIC) moves in the −z direction. We define

xF = xa − xb, (47)
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SIDIS and the DY processes

f⊥,q(β)
1T,DY (xa, b;Q) = −f⊥,q(β)

1T,SIDIS(xa, b;Q). (45)

We then use Eq. (23) and Eq. (44) and follow the experimental convention to choose the pair’s transverse momentum
p⊥ along the x-direction, while the spin vector s⊥ is along y-direction [10, 85] and the transversely polarized proton
is moving in the +z-direction. The single transverse spin asymmetry for DY production is given by

AN =
d∆σ

dQ2dyd2p⊥

/

dσ

dQ2dyd2p⊥
. (46)

It is important to realize that the AN defined above is opposite to the so-called weighted asymmetry A
sin(φγ−φs)
N

defined in the literature, see, e.g., Refs. [63, 83].
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FIG. 12. Estimated Sivers asymmetries for DY lepton pair production. Left plot: AN in p↑π− collisions as a function of xF

at COMPASS energy
√
s = 18.9 GeV. Middle plot: AN in p↑p collisions is plotted as a function of xF at Fermilab energy√

s = 15.1 GeV. Right plot: AN in p↑p collisions is plotted as a function of the pair’s rapidity y at RHIC energy
√
s = 510

GeV. We have integrated over the pair’s transverse momentum 0 < p⊥ < 1 GeV in the invariant mass range 4 < Q < 9 GeV.

There are several planned experiments to measure the AN for DY lepton pair production. The COMPASS collab-
oration at CERN will use a 190 GeV π− beam to scatter on the polarized proton target [21], which corresponds to
a CM energy

√
s = 18.9 GeV. At Fermilab, one can use the 120 GeV proton beam in the main injector. There are

two proposals corresponding to either a polarized proton beam [22] or a polarized proton target [23]. In both cases,
the CM energy is

√
s = 15.1 GeV. Finally, a DY measurement is also planned at RHIC [4, 24]. In the following, we

will present an estimate of the Sivers asymmetry based on our evolution approach. For better comparison, we will
always present the asymmetry in the center-of-mass frame of the colliding particles. We further choose the trans-
versely polarized proton to move in the +z direction, while the other unpolarized particle (π− for COMPASS and the
unpolarized proton for Fermilab and RHIC) moves in the −z direction. We define

xF = xa − xb, (47)

➔ Why predictions with TMD evolution are different?
➔ They use different forms of non perturbative evolution kernel
➔ COMPASS will be sensitive to this choice
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➔ With TMD evolution vs no TMD evolution
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FIG. 12: Predictions for the Sivers single spin asymmetry for the Drell-Yan process at COMPASS,
with π− beam of 190GeV, as function of xp. We have chosen the average xπ ≈ 0.55 and integrate

transverse momentum up to 2GeV.
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FIG. 13: Predictions for the Sivers single spin asymmetry for the Drell-Yan process at Fermilab

fixed target experiments, with proton beam of 120GeV, as function of x for the polarized proton:
polarized beam (left) and polarized target (right).

resonance. The latter process shall provide some information on the gluon Sivers function
in the relevant kinematics.

C. Fermilab Fixed Target Experiments

The proposal of the polarized Drell-Yan experiments at the Fermilab contain two possible
options [35]: polarized beam or polarized target. Both cases can be used to measure the
Sivers single spin asymmetries in the Drell-Yan lepton pair production. In the proposed
experiment, the incoming beam has energy of 120GeV.

Different from the Drell-Yan experiments at COMPASS, the Fermilab proposal have
proton-proton scattering. The flavor structure will be very different from that in COMPASS.
This is because in the proposed kinematics, the sea quark contribution to the unpolarized
cross section is not negligible. Therefore, we would expect that the sea quark Sivers functions
will play an important role as well.

In Fig. 13, we plot our predictions for the Sivers single spin asymmetries in the Drell-Yan
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SIDIS and the DY processes

f⊥,q(β)
1T,DY (xa, b;Q) = −f⊥,q(β)

1T,SIDIS(xa, b;Q). (45)

We then use Eq. (23) and Eq. (44) and follow the experimental convention to choose the pair’s transverse momentum
p⊥ along the x-direction, while the spin vector s⊥ is along y-direction [10, 85] and the transversely polarized proton
is moving in the +z-direction. The single transverse spin asymmetry for DY production is given by

AN =
d∆σ

dQ2dyd2p⊥

/

dσ

dQ2dyd2p⊥
. (46)

It is important to realize that the AN defined above is opposite to the so-called weighted asymmetry A
sin(φγ−φs)
N

defined in the literature, see, e.g., Refs. [63, 83].
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FIG. 12. Estimated Sivers asymmetries for DY lepton pair production. Left plot: AN in p↑π− collisions as a function of xF

at COMPASS energy
√
s = 18.9 GeV. Middle plot: AN in p↑p collisions is plotted as a function of xF at Fermilab energy√

s = 15.1 GeV. Right plot: AN in p↑p collisions is plotted as a function of the pair’s rapidity y at RHIC energy
√
s = 510

GeV. We have integrated over the pair’s transverse momentum 0 < p⊥ < 1 GeV in the invariant mass range 4 < Q < 9 GeV.

There are several planned experiments to measure the AN for DY lepton pair production. The COMPASS collab-
oration at CERN will use a 190 GeV π− beam to scatter on the polarized proton target [21], which corresponds to
a CM energy

√
s = 18.9 GeV. At Fermilab, one can use the 120 GeV proton beam in the main injector. There are

two proposals corresponding to either a polarized proton beam [22] or a polarized proton target [23]. In both cases,
the CM energy is

√
s = 15.1 GeV. Finally, a DY measurement is also planned at RHIC [4, 24]. In the following, we

will present an estimate of the Sivers asymmetry based on our evolution approach. For better comparison, we will
always present the asymmetry in the center-of-mass frame of the colliding particles. We further choose the trans-
versely polarized proton to move in the +z direction, while the other unpolarized particle (π− for COMPASS and the
unpolarized proton for Fermilab and RHIC) moves in the −z direction. We define

xF = xa − xb, (47)

➔ Why predictions with TMD evolution and no TMD evolution are different?
➔ TMD evolution typically results in suppression due to soft gluon radiation
➔ Thus results with TMD evolution are lower compared to no evolution
➔ End of the story?
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Anselmino et al  2009
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➔ Unpolarized Drell-Yan cross section is needed!
➔ The width of pion TMD PDF is to be extracted from the data

Anselmino et al  2016
➔ However also no TMD evolution prerdictions are sensitive to the choice of widths!
➔ Asymmetry is suppressed, but not due to TMD evolution
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FIG. 2: The single spin asymmetries A
sin(φγ−φS)
N for the Drell-Yan process π±p↑ → µ+µ− X at COMPASS, as a function of

xF = x1−x2 (left panel) and as a function of M (central panel). The integration ranges are (0 ≤ qT ≤ 1) GeV, (4 ≤ M ≤ 9) GeV
and 0.2 ≤ xF ≤ 0.5. The results are given for a pion beam energy of 160 GeV, corresponding to

√
s = 17.4 GeV. The right

panel shows the allowed region of x2 values as a function of xF .
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FIG. 3: The single spin asymmetries A
sin(φγ−φS)
N for the Drell-Yan process π±p↑ → µ+µ− X at COMPASS, as a function of

xF = x1 − x2 (left panel). The integration ranges are (0 ≤ qT ≤ 0.4) GeV and (2.0 ≤ M ≤ 2.5) GeV. The results are given for
a pion beam energy of 160 GeV, corresponding to

√
s = 17.4 GeV. The right panel shows the allowed region of x2 values as a

function of xF .
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Collins function                                                 
 

Schafer-Teryaev sum rule
➔ Conservation of transverse momentum

➔  Sum rule

➔ If only pions are considered

Schafer Teryaev 1999
Meissner, Metz, Pitonyak 2010

Universality of TMD fragmentation functions

➔  Very non trivial results
➔ Agrees with phenomenology, allows global fits

Metz 2002, Metz, Collins 2004, Yuan 2008
Gamberg, Mukherjee, Mulders 2011
Boer, Kang, Vogelsang, Yuan 2010
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▪ SIDIS and e+e-: combined global analysis

transversity Collins 
function

Collins 
function

Transversity and Collins FF

Collins 
function
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▪ Fitted quark transversity and Collins function: x (z) -dependence

▪ Collins function: pt-dependence

Transversity and Collins FF Kang-Prokudin-Sun-Yuan 2015
Anselmino et al 2015

Compatible with LO extraction 
Anselmino et al 2009, 2013, 2015
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Precision matters

Precision of extraction depends on precision of calculations

                            Leading Log  (LL):
             Next-to Leading Log  (NLL):
Next-to-Next-to Leading Log  (NNLL):

Precision is important!

means that one should use NLO collinear distributions

Kang, AP, Sun, Yuan 2015
Echevarria, Scimemi, Vladimirov 2016
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Is the phenomenology complete at this point?
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From Alessandro Bacchetta’s talk at QCD Evolution 2016 

No good understanding of asymmetries is possible 
without unpolarized cross-section description
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No good understanding of asymmetries is possible 
without unpolarized cross-section description

➔ Phenomenology/theory is not yet complete
➔ Relation to collinear treatment should be refined
➔ Phenomenology with transition to collinear treatment (Y term) is 
to be performed
➔ Target mass corrections are not yet included in TMD formalism
➔ Better understanding of factorization and process mechanisms is needed
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▪ TMD related studies have been extremely active in the past few years, lots of progress have 
been made

▪ We look forward to the future experimental results from COMPASS, RHIC, Jefferson Lab, 
LHC, Fermilab, future Electron Ion Collider

▪ Many TMD related groups are created throughout the world:

Italy, Netherlands, Belgium, Germany, Japan, China, Russia, and the USA
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DOE funded Topical Collaboration for theory

5 years of funding of $2,160,000
18 institutions
Theory, phenomenology, lattice QCD
Several postdoc positions.
2 tenure track positions: Temple, NSU
Support of undergraduates.

◇ 5 years of funding
◇ 18 institutions
◇ Theory, phenomenology, lattice 

QCD
◇ Several postdoc and tenure track 

positions to be created
◇ “To address the challenges of 

extracting novel quantitative 
information about the nucleon’s 
internal landscape”

◇ “To provide compelling research, 
training, and career opportunities 
for young nuclear theorists”


