W and Z studies at CMS

Vieri Candelise

 $on \ behalf \ of \ the \ CMS \ collaboration$

XVII Rencontres de Physique de La Vallée d'Aoste

La Thuile, February 27, 2013

Introduction

- W and Z are precision tools for the SM physics
- Test perturbative QCD calculations and constrain PDFs
- Main background for SM and beyond processes

$$\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \mathcal{F} \mathcal{B} \mathcal{F} + h.c. \\ &+ \mathcal{F} \mathcal{G}_{ij} \mathcal{F}_{j} \mathcal{G} + h.c. \\ &+ |\mathcal{D}_{\mu} \mathcal{G}|^{2} - V(\mathcal{G}) \end{aligned}$$

Main background in Higgs studies

Drell-Yan cross section measurements

- Theoretical $\boldsymbol{\sigma}$ known at NNLO \rightarrow test pQCD
- Use the double-differential σ to constrain the PDFs
- Normalized at the Z peak muons channel |Y|<2.4

<u>The cross section</u>

Drell-Yan differential cross section

Leptons selection

- 2 muons/electrons with opposite charge, p_T> 14, 9 GeV, $|\eta| < 2.4$
- Muon track quality cuts, relative
- ParticleFlow isolation for leptons
- Un-prescaled double lepton trigger
- The *QED* **FSR** modeling in the generators to derive the corrections bin by bin
- Efficiency evaluated by data-driven methods scale factors to correct the data/MC

Systematic uncertainties

- Energy Scale 1-6 %
- Unfolding 0.5-28%
- PDFs ~ 3%

- Bkg estimation 0.5 23%
- Efficiency 0.5 -3.5 %
- Luminosity vanishes in the ratio

Drell-Yan double-differential cross section

• rapidity spectrum in 6 mass ranges

- measures within detector acceptance (to reduce model dependence)
- low mass very sensitive to PDF uncertainties

Charge asymmetry in inclusive W decay

at LHC it's easier to produce W+ since protons have 2 u-quarks !

Test this asymmetry by measuring the observable A

$$A(\eta) = \frac{d\sigma/d\eta(W^+) - d\sigma/d\eta(W^-)}{d\sigma/d\eta(W^+) + d\sigma/d\eta(W^-)}$$

W to electrons final state using **0.234 fb**⁻¹

W to muons final state using **0.840 fb**⁻¹

$$\eta = -\ln(\operatorname{tg} \theta/2)$$

- new insights on the *u* / *d* ratio
- sea antiquarks densities in a range of the Bjorken x
- significant contribution to PDFs

Charge asymmetry in inclusive $W \rightarrow \mu \nu$

<u>Muon selection</u>

- Isolated muons with p_T > 25 GeV matching the trigger object
- Asymmetry in bins of $\mid \eta \mid$
- Isolation reconstruction and id efficiency
 Tag&Probe in Z to μμ events in η bins
- Signal yield extracted by fitting the MET

 $W^{+}(N^{+})$ and $W^{-}(N^{-})$

Understanding MET

- disagreement arises in Data/MC comparison due to PU, misalignment of sub-detectors, detector response
- Parametrize MET mis-modeling by correcting for the *hadronic recoil* (evaluated in the simulation)

Charge asymmetry in inclusive $W \rightarrow e\nu$ (1)

- Asymmetry rising with energy:
 u quarks involved in W⁺ production have higher *x* of the proton than *d* quarks to W⁻
- constraints PDFs in the range $10^{-3} < x < 10^{-4}$

Electron selection

- high pT triggered electrons pT > 35 GeV, | η |< 2.4
- missing transverse energy for neutrino presence

$$\not\!\!E_T = -\sum p_T$$

to separate signal from background

asymmetry = $(N^+ - N^-) / (N^+ + N^-)$

Charge asymmetry in inclusive $W \rightarrow e\nu$ (2)

Phys. Lett. B 718 (2013) 752

Forward-backward asymmetry in Z decay

- ee + $\mu\mu$ combined final state
- unfolded born level asymmetry in |y| range

11

 ratio between Data/MC with 1σ, 2σ band

(POWHEG ct10 +Pythia Z2)

$$\frac{d\sigma}{d\cos\theta^*} = C\left[\frac{3}{8}(1+\cos^2\theta^*) + A_{\rm FB}\cos\theta^*\right]$$

M(I^{*}I^{*}) [GeV]

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

Phys.Rev. D84 (2011) 112002

Electroweak mixing angle measurement

- from EW spontaneous symmetry breaking: rotation of (W^0, B^0) vectors into physical (Z, γ) bosons
- fixes couplings of Z, $\gamma\,$ to fermions

previous measurements

- LEP,SLC in lepton collider at 0.1%
- CDF, D0 in proton-antiproton collision at 1%

at LHC: in DY process to $\mu\mu$

extract the mixing angle by a simultaneous unbinned ML fit to:

Z q_T differential cross section

<u>36 pb⁻¹</u>

- at LHC energy, di-lepton pair can arise boosted from the *Z* because of:
 - QCD initial state radiation
 - underlying event activity
- information about the proton dynamics
- modeling the hard scattering in generators

same selection of Z $\mu\mu$ inclusive cross section to measure the Z momentum

Z q_T differential cross section

(2)

Z q_T differential cross section

(3)

W and Z cross sections at $\sqrt{s} = 8 \text{ TeV}$

from pQCD prediction we expect an increase of the cross section of 15 - 20 % from 7 to 8 TeV

- 7 TeV cross sections measured in CMS with 1% precision (with 36 pb⁻¹)
- important to measure the W/Z, W⁺/W⁻ ratio and the 7/8 TeV ratio for pQCD tests
- important as a starting point for 8 TeV measurements

LHC collisions requirements

- **x** need to reproduce the 2010 condition of pile-up and triggers !
- **x** special fills to reduce the mean pile-up to 5 interaction at $L = 3 * 10^{32}$
- **x** dedicated low-threshold trigger menus

PRL -CMS PAS SMP-12-011

Z cross sections at $\sqrt{s} = 8 \text{ TeV}$

W cross sections at $\sqrt{s} = 8 \text{ TeV}$

• single electron with

pT > 25 GeV, | η |< 2.1

- binned max.likelihood fit to MET extract signal+QCD shape parameters
- W MET modeling with recoil from Z event lepton efficiency dominated by 2.5% exp

• single muon with

pT > 25 GeV, | η | < 2.1

- binned max.likelihood fit to MET extract signal+QCD shape parameters
- W MET modeling with recoil from Z event

lepton efficiency dominated by 1% exp

W and Z cross sections results

Systematics

Source	W^+	W^-	W	W^+/W^-	Z	W/Z	• luminosity
Lepton reconstruction & identification	1.0%	0.9%	1.0%	1.2%	1.1%	1.5%	
Momentum scale & resolution	0.3%	0.3%	0.3%	0.1%	-	0.3%	$\sim 4.4 \%$
$E_{\rm T}^{\rm miss}$ scale & resolution	0.5%	0.5%	0.5%	0.1%	-	0.5%	
Background subtraction / modeling	0.2%	0.1%	0.1%	0.2%	0.4%	0.4%	
Total experimental	1.2%	1.1%	1.2%	1.2%	1.2%	1.7%	
Theoretical uncertainty	2.0%	2.5%	2.2%	1.4%	1.9%	2.5%	🕨 acceptance
Lumi	4.4%	4.4%	4.4%	-	4.4%	-	$\sim 2 \overline{2} 0/2$
Total	5.0%	5.2%	5.1%	1.8%	4.9%	3.0%	

Good agreement with NNLO FEWZ+MSTW08

ptance (theory)

W / Z cross section ratio at \sqrt{s} = 8 TeV

Conclusions

• Electroweak processes crucial to understand protons dynamics at LHC

• PDFs, generator tunings, (p-)QCD tests performed with 7 and 8 TeV

• Central role of Drell - Yan process (useful at high mass for new physics)

- Many other measurements already done:
 - Z + jets / Z angular studies / b quark and c quark PDF extraction / W pT / Z rapidity

Standard Model measurements have never been more alive !