Prospects of experimental tests of a fundamentally semi-classical gravitation theory

André Großardt

Università degli studi di Trieste

Erice, March 27th 2015

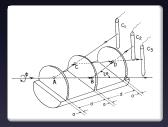
Gravitation and Quantum Mechanics?

What is the gravitational interaction of (nonrelativistic, laboratory) quantum matter?

How does quantum matter react to an external gravitational field?

 \rightarrow has an experimentally tested¹ answer:

$$\dot{i}\hbar\dot{\psi}=-\frac{\hbar^{2}}{2m}\Delta\psi+m\,g\,z\,\psi$$



How does quantum matter source the gravitational field? What is the gravitational field of a spatial superposition state?

¹ R. Colella, A. W. Overhauser, and S. A. Werner. Observation of Gravitationally Induced Quantum Interference. *Phys. Rev. Lett.*, 34:1472–1474, 1975

We need "Quantum Gravity" ... whatever that means?

What theory consistently combines gravity and quantum fields? \rightarrow We don't know (yet)

What is the **low energy limit** of this theory? \rightarrow We don't know either. But we can guess!

First guess

Gravity is not fundamentally different from matter fields \rightarrow it can (and must) be quantised in a similar fashion

Perturbative quantisation, in analogy to matter fields

(e.g. quantum electrodynamics)

$$g_{\mu
u}=\eta_{\mu
u}+h_{\mu
u}$$

Questions:

 The high energy limit must be different from known matter fields (non-renormalisability)

ightarrow Why assume an analogy in the first place?

Interpretation: Matter fields are living on space-time.

ightarrow What is the gravitational field living on?

Second guess

Space-time is **fundamentally** classical (or **more** fundamentally, i.e. at least for low energies)

- \rightarrow the metric tensor and curvature are classical, real valued objects
- \rightarrow quantum matter fields live on this classical curved space-time
- \rightarrow the dynamics of space-time satisfy Einstein's field equations

$$R_{\mu
u} - rac{1}{2}\,g_{\mu
u}\,R = rac{8\pi\,G}{c^4}\,T_{\mu
u}$$

Question: What is $T_{\mu\nu}$, and how is it related to quantum matter fields?

Semi-classical gravity

$$R_{\mu
u}-rac{1}{2}\,g_{\mu
u}\,R=rac{8\pi\,G}{c^4}\,\langle\Psi|\hat{T}_{\mu
u}|\Psi
angle$$

Weak-field non-relativistic limit: $\Delta U = 4\pi G \langle \Psi | m \hat{\psi}^{\dagger} \hat{\psi} | \Psi \rangle$

 Semi-classical gravity is the mean-field limit of perturbatively quantised gravity:
 The equation only makes sense for states of a large number of particles

Semi-classical gravity is fundamental: ⇒ One obtains the Schrödinger-Newton equation²

Schrödinger-Newton equation

for *N* particles³:
ih
$$\dot{\Psi}_{N}(\vec{r}^{N}) = \left[-\sum_{i=1}^{N} \frac{\hbar^{2}}{2m_{i}} \Delta_{\vec{r}_{i}} + V_{\text{EM}}(\vec{r}^{N}) + U_{\text{G}}[\Psi_{N}(\vec{r}^{N})] \right] \Psi_{N}(\vec{r}^{N})$$

 $V_{\text{EM}}(\vec{r}^{N}) = \sum_{i=1}^{N} \sum_{j>i} \frac{q_{i}q_{j}}{|\vec{r}_{i} - \vec{r}_{j}|}$
 $U_{\text{G}}[\Psi_{N}(\vec{r}^{N})] = -G \sum_{i=1}^{N} \sum_{j=1}^{N} m_{i}m_{j} \int \frac{|\Psi_{N}(\vec{r}^{N})|^{2}}{|\vec{r}_{i} - \vec{r}_{j}^{\prime}|} \, \mathrm{d}V^{\prime N}$

³L. Diósi. Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A, 105(4-5):199–202, 1984

Centre-of-mass equation

Separation ansatz: (with $\vec{r} = \sum m_i \vec{r}_i / M$ and $\vec{\rho}_i = \vec{r}_i - \vec{r}$)

$$\Psi_N(\vec{r}^N) = \left(\frac{m_N}{M}\right)^{3/2} \psi(\vec{r}) \chi(\vec{\rho}^{N-1})$$

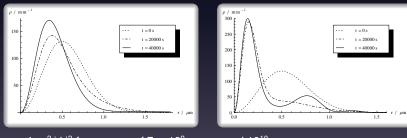
Born-Oppenheimer-type approximation yields:

$$\begin{split} & \dot{\mathbf{h}} \dot{\mathbf{\psi}} \left(t, \vec{r} \right) = \left(-\frac{\hbar^2}{2m} \Delta - G \int \mathrm{d}^3 r' |\mathbf{\psi}(t, \vec{r}')|^2 \, I_{\rho}(\vec{r} - \vec{r}') \right) \psi(t, \vec{r}) \\ & I_{\rho}(\vec{d}) = \int \mathrm{d}^3 x \mathrm{d}^3 y \frac{\rho(\vec{x})\rho(\vec{y} - \vec{d})}{|\vec{x} - \vec{y}|} \end{split}$$

Wide wave-function limit

One-particle Schrödinger-Newton equation

$$\dot{i}\hbar\dot{\psi}(t,\vec{r}) = \left(-\frac{\hbar^2}{2m}\Delta - Gm^2\int\frac{|\psi(t,\vec{r}')|}{|\vec{r}-\vec{r}'|}\,\mathrm{d}^3r'\right)\,\psi(t,\vec{r})$$



 $\rho = 4\pi \, r^2 \, |\psi|^2$ for masses of $\underline{7 \times 10^9 \, u}$

and 1010 u

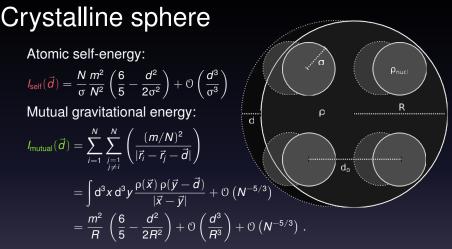
Narrow wave-function limit

Expand around $\vec{r} - \vec{r}' = \vec{0}$:

$$i\hbar \dot{\psi} = -\frac{\hbar^2}{2m}\Delta\psi - G\left(I_{\rho}(\vec{0}) + \frac{I_{\rho}''(\vec{0})}{2}\left(r^2 - 2\vec{r}\cdot\langle\vec{r}\rangle + \langle r^2\rangle\right)\right)\psi$$

For a homogeneous sphere:

$$I_{\rho}(d) = -\frac{m^2}{R} \times \begin{cases} \frac{6}{5} - 2\left(\frac{d}{2R}\right)^2 + \frac{3}{2}\left(\frac{d}{2R}\right)^3 - \frac{1}{5}\left(\frac{d}{2R}\right)^5 & (d \leq 2R) \\ \frac{R}{d} & (d > 2R) \end{cases}$$



In total:

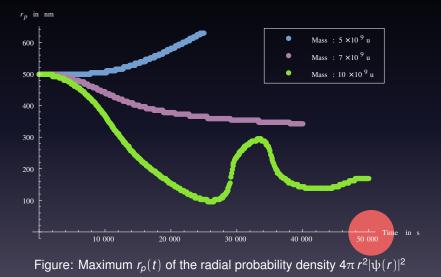
$$egin{aligned} I_{
ho}(ec{d}) &pprox rac{m^2}{R^3} \left(rac{6}{5} R^2 - \gamma rac{d^2}{2}
ight) \end{bmatrix}, \qquad \gamma = 1 + rac{
ho_{
m nuc}}{
ho} \end{aligned}$$

Three plus two different regimes

- **1** Subatomic wave-function, $\langle r^2 \rangle \ll \sigma^2$ \rightarrow quadratic potential with $\gamma \approx \rho_{nucl}/\rho$
- 2 Intermediate regime, $\langle r^2 \rangle \approx \sigma^2$
- 3 Narrow wave-function, $\sigma^2 \ll \langle r^2 \rangle \ll R^2$ \rightarrow quadratic potential with $\gamma \approx 1$
- 4 Intermediate regime, $\langle r^2 \rangle \approx R^2$
- 5 Wide wave-function, $\langle r^2 \rangle \gg R^2$ \rightarrow one-particle equation

Experimental Tests of the Schrödinger–Newton Equation

Free spreading of wave packets



Measurable in satellite experiments?

 \Rightarrow Higher mass improves the time scale

With the extremal parameters from the MAQRO proposal⁴

Time for free spreading:	100s
Particle mass:	10 ¹⁰ u
Particle size:	120 nm
Initial wave-function width:	100 nm
ightarrow intermediate regime!	

 \Rightarrow deviation from free wave-function: \approx 1% (i. e. \approx 1 nm) (in wide wave-function limit)

Experimental accuracy of position detection: 20 nm

⁴R. Kaltenbaek, et al. Macroscopic quantum resonators (MAQRO): 2015 Update. arXiv:1503.02640 [quant-ph]

Trapped nanospheres

Harmonic oscillator with self-gravitation

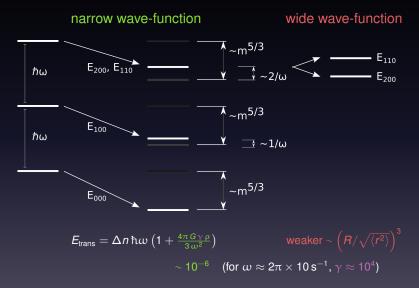
$$\dot{i}\hbar\dot{\psi} = -\frac{\hbar^2}{2m}\Delta\psi + \frac{m\omega^2 r^2}{2}\psi + V_g[\psi]\psi$$

 $V_{g}[\psi]$ leads to a state-dependent energy shift

$$\Delta \textit{\textit{E}} = \langle \psi^{(0)} | \textit{\textit{V}}_{g}[\psi] | \psi^{(0)} \rangle$$

 \Rightarrow changes the spectrum

Harmonic oscillator spectrum



Measuring the ionisation energy?

$$\Delta E = -\frac{G m^2}{R} \left(\frac{6}{5} - \frac{\gamma}{2 R^2} \left\langle (\vec{r} - \langle \vec{r} \rangle)^2 \right\rangle \right) \approx -\frac{6}{5} \frac{G m^2}{R}$$

- \bigcirc Much larger term, $\Delta E pprox \hbar \omega$ for $m pprox 10^{14}$ u
- Constant shift is not detectable in the spectrum
- For a wide wave-function: $\Delta E \rightarrow 0$
- Can we measure this term by kicking a state to the wide wave-function regime?
- $igodoldsymbol{
 m O}$ Requires energy resolution $\Delta E/E \lesssim 10^{-15}$

Narrow wave-function dynamics

$$i\hbar \dot{\psi} = \left(-\frac{\hbar^2}{2m}\Delta + \frac{m\,\omega^2\,x^2}{2} - \frac{G}{2}\,I_{\rho}^{\prime\prime}(0)\left(x^2 - 2\vec{x}\,\langle x \rangle + \langle x^2 \rangle\right)\right)\psi$$

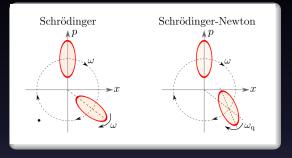
Can be solved with a general Gaussian ansatz:

$$\langle x \rangle_t = x_{\max} \sin \omega t \langle x^2 \rangle_t = \langle x \rangle_t^2 + \langle x^2 \rangle_0 \left[1 + \sin^2 \omega_{SN} t \left(\left(\frac{\langle x^2 \rangle_{\text{ground}}}{\langle x^2 \rangle_0} \right)^2 - 1 \right) \right]$$

 \Rightarrow no effect on frequency of $\langle x \rangle$, only $\langle x^2 \rangle$

$$\omega_{\rm SN} = \sqrt{\omega^2 + \gamma \, \frac{4\pi}{3} \, G \, \rho}$$

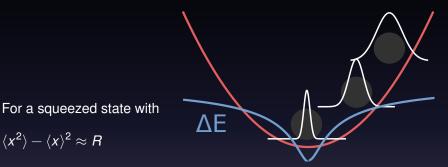
Measurable in opto-mechanics?



\Rightarrow Rotation in phase space⁵ with parameters

 $\Rightarrow \frac{1}{5} \approx \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{4\pi}{3} G \rho \approx 3 \times 10^{6} \text{ for } \omega \approx 2\pi \times 10 \text{ s}^{-1}$

Probing the wide regime



 \Rightarrow smaller masses possible

Deviation from harmonic potential \Rightarrow stronger effect?

Summary

- The Schrödinger–Newton equation follows from fundamentally semi-classical gravity
- Experimental tests would provide insight into the necessity of quantising the gravitational field
- Interferometric tests as well as tests with trapped massive quantum systems seem feasible in the not too far future

Open questions

 The Schrödinger–Newton equation explains localisation of macroscopic states, but not the stochastic collapse
 ⇒ Is there a natural way to explain the collapse as a consequence of self-gravitation?

 ● For the one-particle equation, probability density is radiated to infinity
 ⇒ Is this behaviour also present for many-particle systems?

 Experimental access to the wave-function via its gravitational potential opens the possibility of faster-than-light signalling by collapsing entangled states

 \Rightarrow Is there a collapse description that can prevent this?