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Gravitation and Quantum Mechanics?
What is the gravitational interaction of
(nonrelativistic, laboratory) quantum matter?

1 How does quantum matter react to an external gravitational
field?
→ has an experimentally tested1

answer:

i h
·
ψ= −

 h2

2m ∆ψ+ m g z ψ

2 How does quantum matter source the gravitational field?
What is the gravitational field of a spatial superposition state?

1R. Colella, A. W. Overhauser, and S. A. Werner. Observation of Gravitationally Induced Quantum Interference. Phys.
Rev. Lett., 34:1472–1474, 1975
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We need “Quantum Gravity”
... whatever that means?

What theory consistently combines gravity and quantum fields?
→We don’t know (yet)

What is the low energy limit of this theory?
→We don’t know either. But we can guess!
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First guess
Gravity is not fundamentally different from matter fields
→ it can (and must) be quantised in a similar fashion

Perturbative quantisation, in analogy to matter fields

(e.g. quantum electrodynamics) gµν = ηµν + hµν

Questions:
1 The high energy limit must be different from known matter

fields (non-renormalisability)
→Why assume an analogy in the first place?

2 Interpretation: Matter fields are living on space-time.
→What is the gravitational field living on?
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Second guess

Space-time is fundamentally classical
(or more fundamentally, i. e. at least for low energies)

→ the metric tensor and curvature are classical, real valued objects

→ quantum matter fields live on this classical curved space-time

→ the dynamics of space-time satisfy Einstein’s field equations

Rµν −
1
2

gµν R =
8πG

c4 Tµν

Question:
What is Tµν, and how is it related to quantum matter fields?
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Semi-classical gravity

Rµν −
1
2

gµν R =
8πG

c4 〈Ψ|T̂µν|Ψ〉

Weak-field non-relativistic limit: ∆U = 4πG 〈Ψ|mψ̂†ψ̂|Ψ〉

1 Semi-classical gravity is the mean-field limit of
perturbatively quantised gravity:
⇒ The equation only makes sense for states of a large
number of particles

2 Semi-classical gravity is fundamental:
⇒ One obtains the Schrödinger-Newton equation2

2M. Bahrami, et al. The Schrödinger–Newton equation and its foundations. New J. Phys., 16:115007, 2014
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Schrödinger–Newton equation

for N particles3:

i h
·

ΨN (~r N ) =

[
−

N∑
i=1

 h2

2mi
∆~ri

+ VEM(~r N ) + UG[ΨN (~r N )]

]
ΨN (~r N )

VEM(~r N ) =

N∑
i=1

∑
j>i

qi qj

|~ri −~rj |

UG[ΨN (~r N )] = −G
N∑

i=1

N∑
j=1

mi mj

∫
|ΨN (~r ′N )|2

|~ri − ~r ′
j |

dV ′N

3L. Diósi. Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A, 105(4-5):199–202, 1984
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Centre-of-mass equation
Separation ansatz: (with ~r =

∑
mi~ri/M and ~ρi = ~ri −~r )

ΨN (~r N ) =
(mN

M

)3/2
ψ(~r )χ(~ρN−1)

Born-Oppenheimer-type approximation yields:

i h
·
ψ (t ,~r ) =

(
−

 h2

2m
∆ − G

∫
d3r ′|ψ(t ,~r ′)|2 Iρ(~r −~r ′)

)
ψ(t ,~r )

Iρ(~d ) =
∫

d3xd3y
ρ(~x )ρ(~y − ~d )

|~x − ~y |
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Wide wave-function limit
One-particle Schrödinger–Newton equation

i h
·
ψ (t ,~r ) =

(
−

 h2

2m
∆ − G m2

∫
|ψ(t ,~r ′)|

|~r −~r ′|
d3r ′

)
ψ(t ,~r )

0.5 1.0 1.5
r � Μm

50

100

150

Ρ � mm - 1

t = 40000 s

t = 20000 s

t = 0 s

0.0 0.5 1.0 1.5
r � Μm0

50

100

150

200

250

300

Ρ � mm - 1

t = 40000 s

t = 20000 s

t = 0 s

ρ = 4π r 2 |ψ|2 for masses of 7× 109 u and 1010 u

9 /23



Narrow wave-function limit

Expand around ~r −~r ′ = ~0:

i h
·
ψ= −

 h2

2m
∆ψ− G

(
Iρ(~0) +

I ′′ρ (~0)
2

(
r 2 − 2~r · 〈~r 〉+ 〈r 2〉

))
ψ

For a homogeneous sphere:

Iρ(d ) = −
m2

R
×

{
6
5 − 2

( d
2R

)2
+ 3

2

( d
2R

)3
− 1

5

( d
2R

)5
(d 6 2R)

R
d (d > 2R)
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Crystalline sphere
Atomic self-energy:

Iself(~d ) =
N
σ

m2

N2

(
6
5
−

d 2

2σ2

)
+ O

(
d 3

σ3

)
Mutual gravitational energy:

Imutual(~d ) =
N∑

i=1

N∑
j=1
j 6=i

(
(m/N)2

|~ri −~rj − ~d |

)

=

∫
d3x d3y

ρ(~x ) ρ(~y − ~d )
|~x − ~y |

+ O
(
N−5/3

)
=

m2

R

(
6
5
−

d 2

2R2

)
+ O

(
d 3

R3

)
+ O

(
N−5/3

)
.

In total:

Iρ(~d ) ≈
m2

R3

(
6
5

R2 − γ
d 2

2

)
, γ = 1 +

ρnucl

ρ
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Three plus two different regimes

1 Subatomic wave-function, 〈r 2〉 � σ2

→ quadratic potential with γ ≈ ρnucl/ρ

2 Intermediate regime, 〈r 2〉 ≈ σ2

3 Narrow wave-function, σ2 � 〈r 2〉 � R2

→ quadratic potential with γ ≈ 1

4 Intermediate regime, 〈r 2〉 ≈ R2

5 Wide wave-function, 〈r 2〉 � R2

→ one-particle equation
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Experimental Tests
of the

Schrödinger–Newton
Equation



Free spreading of wave packets
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Figure: Maximum rp(t) of the radial probability density 4π r 2|ψ(r )|2
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Measurable in satellite experiments?
⇒ Higher mass improves the time scale

With the extremal parameters from the MAQRO proposal4

Time for free spreading: 100s
Particle mass: 1010 u
Particle size: 120nm
Initial wave-function width: 100nm
→ intermediate regime!

⇒ deviation from free wave-function: ≈ 1% (i. e. ≈ 1nm)
(in wide wave-function limit)

Experimental accuracy of position detection: 20nm

4R. Kaltenbaek, et al. Macroscopic quantum resonators (MAQRO): 2015 Update. arXiv:1503.02640 [quant-ph]
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Trapped nanospheres

Harmonic oscillator with self-gravitation

i h
·
ψ= −

 h2

2m
∆ψ+

mω2r 2

2
ψ+ Vg [ψ]ψ

Vg [ψ] leads to a state-dependent energy shift

∆E = 〈ψ(0)|Vg [ψ]|ψ
(0)〉

⇒ changes the spectrum
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Harmonic oscillator spectrum
narrow wave-function wide wave-function

Etrans = ∆n  hω
(
1 + 4πGγρ

3ω2

)
weaker ∼

(
R/
√
〈r 2〉

)3

∼ 10−6 (for ω ≈ 2π× 10 s−1, γ ≈ 104)
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Measuring the ionisation energy?

∆E = −
G m2

R

(
6
5
−

γ

2 R2

〈
(~r − 〈~r 〉)2

〉)
≈ −

6
5

G m2

R

1 Much larger term, ∆E ≈  hω for m ≈ 1014 u

2 Constant shift is not detectable in the spectrum

3 For a wide wave-function: ∆E → 0

4 Can we measure this term by kicking a state to the wide
wave-function regime?

5 Requires energy resolution ∆E/E . 10−15
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Narrow wave-function dynamics

i h
·
ψ=

(
−

 h2

2m
∆ +

mω2 x 2

2
−

G
2

I ′′ρ (0)
(
x 2 − 2~x 〈x 〉+ 〈x 2〉

))
ψ

Can be solved with a general Gaussian ansatz:

〈x 〉t = xmax sinωt

〈x 2〉t = 〈x 〉2t + 〈x 2〉0

[
1 + sin2ωSNt

((
〈x 2〉ground

〈x 2〉0

)2

− 1

)]

⇒ no effect on frequency of 〈x 〉, only 〈x 2〉

ωSN =

√
ω2 + γ

4π
3

G ρ
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Measurable in opto-mechanics?

⇒ Rotation in phase space5 with parameters

Silicium, density: ρ = 2.336g/cm3

Nucleus density: γ = 8 300 (at T ∼ 10K)
Required mass (for narrow wf.): ∼ 1014 u

⇒ requires Q & ω2/
(
γ 4π

3 G ρ
)
≈ 3× 106 for ω ≈ 2π× 10 s−1

5H. Yang, et al. Macroscopic Quantum Mechanics in a Classical Spacetime. Phys. Rev. Lett., 110:170401, 2013
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Probing the wide regime

For a squeezed state with

〈x 2〉− 〈x 〉2 ≈ R

⇒ smaller masses possible

Deviation from harmonic potential⇒ stronger effect?

ΔE
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Summary

1 The Schrödinger–Newton equation follows from fundamentally
semi-classical gravity

2 Experimental tests would provide insight into the necessity of
quantising the gravitational field

3 Interferometric tests as well as tests with trapped massive
quantum systems seem feasible in the not too far future
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Open questions
1 The Schrödinger–Newton equation explains localisation of

macroscopic states, but not the stochastic collapse
⇒ Is there a natural way to explain the collapse as a
consequence of self-gravitation?

2 For the one-particle equation, probability density is radiated to
infinity
⇒ Is this behaviour also present for many-particle systems?

3 Experimental access to the wave-function via its gravitational
potential opens the possibility of faster-than-light signalling by
collapsing entangled states
⇒ Is there a collapse description that can prevent this?
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