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Gravitation and Quantum Mechanics?

What is the gravitational interaction of
(nonrelativistic, laboratory) quantum matter?
@ How does quantum matter react to an external gravitational
field?
— has an experimentally tested’
answer:

ihti): —%Aw+mgz¢

@ How does quantum matter source the gravitational field?

{ R. Colella, A. W. Overhauser, and S. A. Werner. Observation of Gravitationally Induced Quantum Interference. Phys.
Rev. Lett.,, 34:1472—-1474, 1975
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We need “Quantum Gravity”
... Whatever that means?

What theory consistently combines gravity and quantum fields?
— We don’t know (yet)

What is the low energy limit of this theory?
— We don’t know either. But we can guess!
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First guess

Gravity is not fundamentally different from matter fields
— it can (and must) be quantised in a similar fashion

Perturbative quantisation, in analogy to matter fields
(e.g. quantum electrodynamics) ‘gw = Nuv + Ay

Questions:

@ The high energy limit must be different from known matter
fields (non-renormalisability)
— Why assume an analogy in the first place?

@ Interpretation: Matter fields are living on space-time.
— What is the gravitational field living on?
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Second guess

Space-time is fundamentally classical
(or more fundamentally, i.e. at least for low energies)

— the metric tensor and curvature are classical, real valued objects
— quantum matter fields live on this classical curved space-time
— the dynamics of space-time satisfy Einstein’s field equations

1 8n G
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Question:
What is T,,v, and how is it related to quantum matter fields?
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Semi-classical gravity

1 81 G o
Auwv =5 9w A= ot (WITuv W)

Weak-field non-relativistic limit: AU = 4G (W|mT|w)

@ Semi-classical gravity is the mean-field limit of
perturbatively quantised gravity:
= The equation only makes sense for states of a large
number of particles

@ Semi-classical gravity is fundamental:
= One obtains the Schrédinger-Newton equation?

2M. Bahrami, et al. The Schrédinger—-Newton equation and its foundations. New J. Phys., 16:115007, 2014
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Schrdédinger—Newton equation

for N particles®:
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3L. Diési. Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A, 105(4-5):199-202, 1984
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Centre-of-mass equation

Separation ansatz: (withr=) mir;,/Mand g, =1, —7)

nl?) = (T (7))

Born-Oppenheimer-type approximation yields:

P = hz 3,/ 212 2 2l =
i (t,7) = —mA—GJdrlw(t,rH lo(F—T") |W(t,T)

. X)p(y — d)
I,(d) = | &®xd® %
p( ) J y X — 7]
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Wide wave-function limit

One-particle Schrédinger—Newton equation

in (1, F) = <—hz A—Gm? J he(t, 7)l d3r’> W(t,F)

2m |F— 7|

p = 47t r? [? for masses of 7 x 10°u and 10°u
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Narrow wave-function limit

Expand around 7 — 7’ = 0:
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Crystalline sphere

Atomic self-energy:
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Three plus two different regimes

@ Subatomic wave-function, (r?) < o2

— quadratic potential with v ~ pnuc/p
@ Intermediate regime, (r?) ~ o2

@® Narrow wave-function, 02 < (r?) < R?
— quadratic potential with v ~ 1

@ Intermediate regime, (r?) ~ R?

® Wide wave-function, (r?) > R?
— one-particle equation
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Experimental Tests
of the
Schrodinger—Newton
Equation



Free spreading of wave packets
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Figure: Maximum r,(t) of the radial probability density 47t r2(r)[?
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Measurable in satellite experiments?

= Higher mass improves the time scale

With the extremal parameters from the MAQRO proposal*

Time for free spreading: 100s
Particle mass: 100y
Particle size: 120nm

Initial wave-function width: 100 nm
— intermediate regime!

= deviation from free wave-function: ~ 1% (i.e. ~ 1 nm)
(in wide wave-function limit)

Experimental accuracy of position detection: 20 nm

4R. Kaltenbaek, et al. Macroscopic quantum resonators (MAQRO): 2015 Update. arXiv:1503.02640 [quant-ph]
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Trapped nanospheres

Harmonic oscillator with self-gravitation

. h2 mw2r2
ih = — A
Mp=—o Ab+ 5

b+ Vbl

V[ leads to a state-dependent energy shift

AE = WOV, [yl ©)

= changes the spectrum
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Harmonic oscillator spectrum

narrow wave-function wide wave-function
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~10°% (forw ~2m x 108~ ', v ~ 10%)

17/23



Measuring the ionisation energy?
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@ Much larger term, AE ~ hw for m~ 10" u
@ Constant shift is not detectable in the spectrum
@ For a wide wave-function: AE — 0

@ Can we measure this term by kicking a state to the wide
wave-function regime?

@ Requires energy resolution AE/E <1079
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Narrow wave-function dynamics

. 2 2,2
ih = <—2hmA+ m“; X —%/3(0) (X2 — 2% (x) + <x2>)> ¥

Can be solved with a general Gaussian ansatz:

) (x?) g\’
1 + sin? wgyt <\ />92r\0u” ) 1
{(X<)o

= no effect on frequency of (x), only (x?)

4n
wsn = (/w2 +y - Gp

(X%t = (0)F + (x*)o
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Measurable in opto-mechanics?

Schrodinger-Newton

Schrodinger
D

= Rotation in phase space® with parameters
Silicium, density: p = 2.336g/cm3
Nucleus density: vy=8300 (atT~ 10K)
Required mass (for narrow wf.): ~10"u

= requires Q > w?/ (v % Gp) ~ 3 x 106 for w ~ 21 x 10s™

H. Yang, et al. Macroscopic Quantum Mechanics in a Classical Spacetime. Phys. Rev. Lett., 110:170401, 2013
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Probing the wide regime

For a squeezed state with

JA\=

(x*) — (x)? ~ R

= smaller masses possible

Deviation from harmonic potential = stronger effect?
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Summary

@ The Schrédinger—Newton equation follows from fundamentally
semi-classical gravity

@ Experimental tests would provide insight into the necessity of
quantising the gravitational field

@ Interferometric tests as well as tests with trapped massive
quantum systems seem feasible in the not too far future
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Open questions

@ The Schrédinger—Newton equation explains localisation of
macroscopic states, but not the stochastic collapse
= Is there a natural way to explain the collapse as a
consequence of self-gravitation?

@ For the one-particle equation, probability density is radiated to
infinity
= Is this behaviour also present for many-particle systems?

@ Experimental access to the wave-function via its gravitational
potential opens the possibility of faster-than-light signalling by
collapsing entangled states
= Is there a collapse description that can prevent this?
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