Les Rencontres de Physique de la Vallée d'Aoste

CPV in the Charm System

Jernej F. Kamenik

Institut "Jožef Stefan"

Why CP Violation in Charm?

- CPV in charm provides a unique probe of New Physics (NP)
 - sensitive to NP in the up sector
 - SM charm physics is CP conserving to first approximation (2 generation dominance, no hard GIM breaking)
- · Common lore "any signal for CPV would be NP":
 - In the SM, CPV in mixing enters at O(V_{cb}V_{ub}/V_{cs}V_{us}) ~ 10⁻³
 - In the SM, direct CPV enters at $O([V_{cb}V_{ub}/V_{cs}V_{us}] \alpha_s/\pi) \sim 10^{-4}$ (in singly Cabibbo suppressed decays)

• CPV in Mixing $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$

$$m \equiv \frac{m_1 + m_2}{2}$$
, $\Gamma \equiv \frac{\Gamma_1 + \Gamma_2}{2}$, $x \equiv \frac{m_2 - m_1}{\Gamma}$, $y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$.

- Experimentally accessible mixing quantities:
 - x,y (CP conserving) Cannot be estimated accurately within SM NP contributions are predictable
 - flavor specific time-dependent CPV decay asymmetries [sensitive to q/p]

$$a_f(t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)},$$

• CPV in Mixing $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$

$$m \equiv \frac{m_1 + m_2}{2} ,$$

$$x \equiv \frac{m_2 - m_1}{\Gamma} ,$$

$$\Gamma \equiv \frac{\Gamma_1 + \Gamma_2}{2},$$
 $y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma}.$

• CPV in Mixing $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$

$$m \equiv \frac{m_1 + m_2}{2} ,$$

$$x \equiv \frac{m_2 - m_1}{\Gamma} ,$$

$$\Gamma \equiv \frac{\Gamma_1 + \Gamma_2}{2},$$
 $y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma}.$

CPV in Mixing

Isidori, Nir & Perez 1002.0900

	Bounds on Λ (TeV)		Bounds on c_{ij} ($\Lambda = 1 \text{ TeV}$)		
Operator	Re	Im	Re	Im	Observables
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	Δm_K ; ε_K
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^{5}	6.9×10^{-9}	2.6×10^{-11}	Δm_K ; ε_K
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	Δm_D ; $ q/p $, ϕ_D
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^{4}	5.7×10^{-8}	1.1×10^{-8}	Δm_D ; $\lceil q/p \rceil$, ϕ_D
$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{B_d \to \psi K}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^{3}	3.6×10^{3}	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{B_d \to \psi K}$
$(\bar{b}_L \gamma^\mu s_L)^2$	1.1×10^{2}	1.1×10^{2}	7.6×10^{-5}	7.6×10^{-5}	Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7×10^2	3.7×10^2	1.3×10^{-5}	1.3×10^{-5}	Δm_{B_s}

$$x, y \sim 1\%$$

$$|\phi| \lesssim 20^{\circ}$$

Imply significant constraints on CPV NP contributions, second only to kaon sector

CPV in decays (direct CPV)

Time-integrated CPV decay asymmetries to CP eigenstates

$$a_f \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to f)}.$$

• Focus on K+K- and $\pi^+\pi^-$ final states: $\Delta a_{CP} \equiv a_{K^+K^-} - a_{\pi^+\pi^-}$

$$\Delta a_{CP}^{\text{World}} = -(0.67 \pm 0.16)\%$$
 (~3.8 σ from 0)

including new CDF and LHCb results (see previous talks by Maurice and Di Canto)

presently most precise (direct) CPV observable in charm

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right],$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right],$$

$$\eta_{CP} = \pm 1$$

contribution to direct CPV asymmetries

$$a_f^{\text{dir}} = -\frac{2r_f \sin \delta_f \sin \phi_f}{1 + 2r_f \cos \delta_f \cos \phi_f + r_f^2}, \qquad f = K, \pi$$

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right],$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right],$$

$$\eta_{CP} = \pm 1$$

contribution to direct CPV asymmetries

$$a_f^{\text{dir}} = -\frac{2r_f \sin \delta_f \sin \phi_f}{1 + 2r_f \cos \delta_f \cos \phi_f + r_f^2}, \qquad f = K, \pi$$

• relevant Hamiltonian in the SM, $\lambda_q \equiv V_{cq}^* V_{uq}$

"tree" operator contributions (O(1) Wilson coefficients)
$$\downarrow \qquad \qquad \downarrow \\ \mathcal{H}^{\mathrm{eff}}_{|\Delta c|=1} = \lambda_d \mathcal{H}^d_{|\Delta c|=1} + \lambda_s \mathcal{H}^s_{|\Delta c|=1} + \lambda_b \mathcal{H}^{\mathrm{peng}}_{|\Delta c|=1}$$

$$\mathcal{H}^{q}_{|\Delta c|=1} = \frac{G_F}{\sqrt{2}} \sum_{i=1,2} C_i^q Q_i^s + \text{H.c.},$$

$$Q_1^q = (\bar{u}q)_{V-A} (\bar{q}c)_{V-A},$$

$$Q_2^q = (\bar{u}_{\alpha}q_{\beta})_{V-A} (\bar{q}_{\beta}c_{\alpha})_{V-A},$$

"penguin" operator contributions (tiny Wilson coefficients at $m_c < \mu < m_b$)

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right],$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right],$$

$$\eta_{CP} = \pm 1$$

contribution to direct CPV asymmetries

$$a_f^{\text{dir}} = -\frac{2r_f \sin \delta_f \sin \phi_f}{1 + 2r_f \cos \delta_f \cos \phi_f + r_f^2}, \qquad f = K, \pi$$

• relevant Hamiltonian in the SM, $\lambda_q \equiv V_{cq}^* V_{uq}$

"tree" operator contributions (O(1) Wilson coefficients)
$$\downarrow \qquad \qquad \downarrow \\ \mathcal{H}^{\mathrm{eff}}_{|\Delta c|=1} = \lambda_d \mathcal{H}^d_{|\Delta c|=1} + \lambda_s \mathcal{H}^s_{|\Delta c|=1} + \lambda_b \mathcal{H}^{\mathrm{peng}}_{|\Delta c|=1}$$

$$\mathcal{H}^{q}_{|\Delta c|=1} = \frac{G_F}{\sqrt{2}} \sum_{i=1,2} C_i^q Q_i^s + \text{H.c.},$$

$$Q_1^q = (\bar{u}q)_{V-A} (\bar{q}c)_{V-A},$$

$$Q_2^q = (\bar{u}_{\alpha}q_{\beta})_{V-A} (\bar{q}_{\beta}c_{\alpha})_{V-A},$$

"penguin" operator contributions (tiny Wilson coefficients at $m_c < \mu < m_b$

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right],$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right],$$

$$\eta_{CP} = \pm 1$$

contribution to direct CPV asymmetries

$$a_f^{\text{dir}} = -\frac{2r_f \sin \delta_f \sin \phi_f}{1 + 2r_f \cos \delta_f \cos \phi_f + r_f^2}, \qquad f = K, \pi$$

ullet decay amplitudes in the SM, $\lambda_q \equiv V_{cq}^* V_{uq}$

"tree" operator contributions

$$A_K = \lambda_d A_K^d + \lambda_s A_K^s + \lambda_b A_K^b$$

$$A_{\pi} = \lambda_d A_{\pi}^d + \lambda_s A_{\pi}^s + \lambda_b A_{\pi}^b$$

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right],$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right],$$

$$\eta_{CP} = \pm 1$$

contribution to direct CPV asymmetries

$$a_f^{\text{dir}} = -\frac{2r_f \sin \delta_f \sin \phi_f}{1 + 2r_f \cos \delta_f \cos \phi_f + r_f^2}, \qquad f = K, \pi$$

• decay amplitudes in the SM, $\lambda_q \equiv V_{cq}^* V_{uq}$, $\lambda_d + \lambda_s + \lambda_b = 0$

$$A_K = \lambda_s (A_K^s - A_K^d) + \lambda_b (A_K^b - A_K^d)$$
$$A_{\pi} = \lambda_d (A_{\pi}^d - A_{\pi}^s) + \lambda_b (A_{\pi}^b - A_{\pi}^s)$$

• D⁰(D⁰) decay amplitudes to CP eigenstate f

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right],$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right],$$

$$\eta_{CP} = \pm 1$$

contribution to direct CPV asymmetries

$$a_f^{\text{dir}} = -\frac{2r_f \sin \delta_f \sin \phi_f}{1 + 2r_f \cos \delta_f \cos \phi_f + r_f^2}, \qquad f = K, \pi$$

• decay amplitudes in the SM, $\lambda_q \equiv V_{cq}^* V_{uq}$, $\lambda_d + \lambda_s + \lambda_b = 0$

- SM expectations
 - $\bullet \text{ define ratios of weak amplitudes } \ R_K^{\rm SM} \equiv \frac{A_K^b A_K^d}{A_K^s A_K^d} \,, \quad R_\pi^{\rm SM} \equiv \frac{A_\pi^b A_\pi^s}{A_\pi^d A_\pi^s} \,.$

$$a_K^{\text{dir,SM}} \approx 2\xi \operatorname{Im}(R_K^{\text{SM}}), \quad a_{\pi}^{\text{dir,SM}} \approx -2\xi \operatorname{Im}(R_{\pi}^{\text{SM}})$$

$$\Delta a_{CP} \approx (0.13\%) \operatorname{Im}(\Delta R^{\text{SM}}),$$

$$\Delta R^{\rm SM} \equiv R_K^{\rm SM} + R_\pi^{\rm SM}$$

(in SU(3) limit
$$R_K^{\mathrm{SM}}=R_\pi^{\mathrm{SM}}$$
)

0(2-5) values of |RK, 11 needed

- SM expectations
 - $\bullet \text{ define ratios of weak amplitudes } \ R_K^{\rm SM} \equiv \frac{A_K^b A_K^d}{A_{\nu}^s A_{\nu}^d} \,, \quad R_{\pi}^{\rm SM} \equiv \frac{A_{\pi}^b A_{\pi}^s}{A_{\pi}^d A_{\pi}^s} \,.$
 - In the $m_c \gg \Lambda_{QCD}$ limit, computable perturbatively
 - $|A_K^d/A_K^s| \sim \alpha_s(m_c)/\pi \sim 0.1$ $|A^b| \leq |A^d|$

Grossman, Kagan & Nir hep-ph/0609178

> see also Cheng & Chiang 1201.0785

- · would expect | Rκ,π | << 1
- However: ξ suppressed amplitudes unconstrained by rate measurements - "ΔI=1/2 rule" type enhancement possible

- SM expectations
 - define ratios of weak amplitudes $R_K^{\rm SM} \equiv \frac{A_K^b A_K^d}{A_K^s A_K^d}\,, \quad R_\pi^{\rm SM} \equiv \frac{A_\pi^b A_\pi^s}{A_\pi^d A_\pi^s}\,.$
 - In the $m_c >> \Lambda_{QCD}$ limit, computable perturbatively
 - Estimate of (large) 1/mc non-perturbative corrections

Brod, Kagan & Zupan 1111.5000

 $\stackrel{\textstyle <}{\textstyle <}$ "Tree topologies" - no $A_K^d,\,A_\pi^s$ contributions

"Penguin contractions" - generate $A_K^d,\,A_\pi^s$

Obtain $\Delta a_{CP}^{\rm SM} \lesssim 0.4\%$ with O(1) error

- Assume SM does not saturate the experimental value
- Parametrize NP contributions in EFT normalized to the effective SM scale

$$\mathcal{H}_{|\Delta c|=1}^{\text{eff-NP}} = \frac{G_F}{\sqrt{2}} \sum_i C_i^{\text{NP}} Q_i$$

most general dim 6 Hamiltonian at μ<m_{W,t}

$$\begin{split} Q_{1}^{q} &= (\bar{u}q)_{V-A} \, (\bar{q}c)_{V-A} \\ Q_{2}^{q} &= (\bar{u}_{\alpha}q_{\beta})_{V-A} \, (\bar{q}_{\beta}c_{\alpha})_{V-A} \,, \\ Q_{5}^{q} &= (\bar{u}c)_{V-A} \, (\bar{q}q)_{V+A} \,, \\ Q_{6}^{q} &= (\bar{u}_{\alpha}c_{\beta})_{V-A} \, (\bar{q}_{\beta}q_{\alpha})_{V+A} \,, \\ Q_{7} &= -\frac{e}{8\pi^{2}} \, m_{c} \, \bar{u}\sigma_{\mu\nu} (1+\gamma_{5}) F^{\mu\nu} \, c \,, \\ Q_{8} &= -\frac{g_{s}}{8\pi^{2}} \, m_{c} \, \bar{u}\sigma_{\mu\nu} (1+\gamma_{5}) T^{a} G_{a}^{\mu\nu} c \,, \\ &+ \text{Ops. with V} \leftrightarrow \text{A} \\ &\quad \times 5 \, q \overline{q} \, \text{flavor structures} \end{split}$$

- Assume SM does not saturate the experimental value
- Parametrize NP contributions in EFT normalized to the effective SM scale

$$\Delta a_{CP} \approx (0.13\%) \operatorname{Im}(\Delta R^{\text{SM}}) + 9 \sum_{i} \operatorname{Im}(C_{i}^{\text{NP}}) \operatorname{Im}(\Delta R_{i}^{\text{NP}}) \quad R_{K,i}^{\text{NP}} \equiv \frac{G_{F} \langle Q_{i} \rangle}{\sqrt{2} (A_{K}^{s} - A_{K}^{d})}$$

• for
$$\operatorname{Im}(C_i^{\operatorname{NP}}) = \frac{v^2}{\Lambda^2}$$
 : $\frac{(10 \text{ TeV})^2}{\Lambda^2} = \frac{(0.61 \pm 0.17) - 0.12 \operatorname{Im}(\Delta R^{\operatorname{SM}})}{\operatorname{Im}(\Delta R^{\operatorname{NP}})}$

Are such contributions allowed by other flavor constraints?

Isidori, J.F.K, Ligeti & Perez 1111.5000

• In EFT can be estimated via "weak mixing" of operators

- Important constraints expected from $D-\overline{D}$ mixing and direct CPV in $K^0 \rightarrow \pi^+\pi^-$ (ϵ '/ ϵ)
- Quadratic NP contributions
 - either chirally suppressed...
 - ...or highly UV sensitive

- ullet SM quark flavor symmetry ${\cal G}_F=SU(3)_Q imes SU(3)_U imes SU(3)_D$
 - two sources of breaking: $\mathcal{A}_u \equiv (Y_u Y_u^\dagger)_{t\!/\!r}\,, \qquad \mathcal{A}_d \equiv (Y_d Y_d^\dagger)_{t\!/\!r}\,$

- ullet SM quark flavor symmetry $\ \mathcal{G}_F = SU(3)_Q imes SU(3)_U imes SU(3)_D$
 - two sources of breaking: $\mathcal{A}_u \equiv (Y_u Y_u^\dagger)_{t\!/\!r}\,, \qquad \mathcal{A}_d \equiv (Y_d Y_d^\dagger)_{t\!/\!r}$
 - ullet in the 2-gen limit single source of CPV: $J\equiv i[{\cal A}_u,\,{\cal A}_d]$ Gedalia, Mannelli & Perez 1002.0778, 1003.3869
 - invariant under SO(2) rotations between up-down mass bases

- ullet SM quark flavor symmetry $\ \mathcal{G}_F = SU(3)_Q imes SU(3)_U imes SU(3)_D$
 - two sources of breaking: $\mathcal{A}_u \equiv (Y_u Y_u^\dagger)_{t\!/\!r}\,, \qquad \mathcal{A}_d \equiv (Y_d Y_d^\dagger)_{t\!/\!r}$
 - ullet in the 2-gen limit single source of CPV: $J\equiv i[{\cal A}_u,\,{\cal A}_d]$ Gedalia, Mannelli & Perez 1002.0778, 1003.3869
 - invariant under SO(2) rotations between up-down mass bases
- SU(2)_Q breaking NP $\,{\cal O}_L = \left[(X_L)^{ij} \, \overline{Q}_i \gamma^\mu Q_j \right] L_\mu$

$$\operatorname{Im}(X_L^u)_{12} = \operatorname{Im}(X_L^d)_{12} \propto \operatorname{Tr}(X_L \cdot J) .$$

- ullet SM quark flavor symmetry $\ \mathcal{G}_F = SU(3)_Q imes SU(3)_U imes SU(3)_D$
 - two sources of breaking: $\mathcal{A}_u \equiv (Y_u Y_u^\dagger)_{tr}$, $\mathcal{A}_d \equiv (Y_d Y_d^\dagger)_{tr}$
 - SM 3-gen case characterized by SU(3)/SU(2) breaking pattern by Y_{b,t} Kagan et al., 0903.1794
 - 3-gen X_L can be decomposed under SU(2), constrained separately (barring cancelations)
 - SM breaking of residual SU(2)_Q suppressed by m_c/m_t , m_s/m_b , θ_{13} , θ_{23} (charm and kaon sectors dominated by 2-gen physics)

- ullet SM quark flavor symmetry $\ \mathcal{G}_F = SU(3)_Q imes SU(3)_U imes SU(3)_D$
 - two sources of breaking: $\mathcal{A}_u \equiv (Y_u Y_u^\dagger)_{tr}$, $\mathcal{A}_d \equiv (Y_d Y_d^\dagger)_{tr}$
 - Implication: direct correspondence between Δa_{CP} and ε'/ε
 (no weak loop suppression)
 - constraint on SU(3)Q breaking NP: $\Delta a_{CP}^{\rm NP}\lesssim 4\times 10^{-4}$ Gedalia, J.F.K, Ligeti & Perez 1202.5038
 - Similarly for rare semileptonic decays:

$$\operatorname{Br}(K_L \to \pi^0 e^+ e^-) < 2.8 \times 10^{-10}$$
 (mostly CPV process)

$$a_e^D \equiv \frac{{\rm Br}(D^+ \to \pi^+ e^+ e^-) - {\rm Br}(D^- \to \pi^- e^+ e^-)}{{\rm Br}(D^+ \to \pi^+ e^+ e^-) + {\rm Br}(D^- \to \pi^- e^+ e^-)} \\ \lesssim 0.02 \quad \text{for SU(3)}_{\rm Q} \text{ breaking NP}$$

Isidori, J.F.K, Ligeti & Perez 1111.5000

In EFT can be estimated via "weak mixing" of operators

- Important constraints expected from $D-\overline{D}$ mixing and direct CPV in $K^0 \rightarrow \pi^+\pi^-$ (ϵ '/ ϵ)
 - LL 4q operators: excluded
 - LR 4q operators: ajar potentially visible effects in D-D and/or ε'/ε
 - RR 4q operators: unconstrained in EFT UV sensitive contributions?

Implications for (enter favorite NP model name)

Before LHCb result,

DCPV in charm not on top of NP theorists expectations

Implications for (enter favorite NP model name)

Before LHCb result,

DCPV in charm not on top of NP theorists expectations

In last 2.5 months, situation has improved considerably

Implications for <u>SUSY Models</u>

Left-right up-type squark mixing contributions

$$\left|\Delta a_{CP}^{\mathrm{SUSY}}\right| \approx 0.6\% \left(\frac{\left|\mathrm{Im}\left(\delta_{12}^{u}\right)_{LR}\right|}{10^{-3}}\right) \left(\frac{\mathrm{TeV}}{\tilde{m}}\right)$$

contributions to ΔF=2 helicity suppressed

• requires large trilinear (A) terms, non-trivial flavor in UV

$$\operatorname{Im} (\delta_{12}^u)_{LR} \approx \frac{\operatorname{Im}(A) \ \theta_{12} \ m_c}{\tilde{m}} \approx \left(\frac{\operatorname{Im}(A)}{3}\right) \left(\frac{\theta_{12}}{0.3}\right) \left(\frac{\operatorname{TeV}}{\tilde{m}}\right) 0.5 \times 10^{-3}$$

Implications for Warped Extra-Dim. Models

Anarchic flavor with bulk Higgs

$$\left|\Delta a_{CP}^{\rm chromo}\right|_{\rm RS} \simeq 0.6\% \times \left(\frac{Y_5}{6}\right)^2 \left(\frac{3\,{\rm TeV}}{m_{\rm KK}}\right)^2$$

- requires very large 5D Yukawas
 - helps to avoid D-D mixing constraints

Gedalia et al., 0906.1879 $G_{\rm KK} \propto \frac{1}{Y_5}$

• implies low UV cut-off $\frac{1}{2} \lesssim Y_5 \lesssim \frac{4\pi}{\sqrt{N_{KK}}}$

Delaunay, J.F.K., Perez & Randall 1203.XXXX

Agashe, Azatov & Zhu, 0810.1016 Csaki et al., 0907.0474

• Can be mapped to 4D partial compositness models

Implications for 4th Generation

3-gen CKM non-unitarity and b' penguins

Feldmann, Nandi & Soni 1202.3795

$$\Delta a_{CP} \propto 4 \operatorname{Im} \left[\frac{\lambda_{b'}}{\lambda_d - \lambda_s} \right] \simeq \frac{2 \sin \theta_{14} \sin \theta_{24} \sin(\delta_{14} - \delta_{24})}{\sin \theta_{12}}$$

• No parametric enhancement allowed due to existing $\Delta F=2$ CPV bounds

Nandi & Soni, 1011.6091 Buras et al., 1002.2126

- Effects comparable to SM still allowed
- Similar conclusions for generic mixing with vector-like quarks

Grossman, Kagan & Nir hep-ph/0609178

Implications for Experiment

- NP explanations of Δa_{CP} via chromo-magnetic dipole operators
 - generically predict EM dipoles rare radiative charm decays

$$D^0 \rightarrow X \gamma$$

$$D^0 \rightarrow Xe^+e^-$$

Delaunay, J.F.K., Perez & Randall 1203.XXXX

unfortunately typically orders below SM LD contributions

correlations with EDM's, rare top & down-type quark processes

very model dependent

Giudice, Isidori & Paradisi, 1201.6204 Hochberg & Nir, 1112.5268 Altmannshofer et al., 1202.2866

Implications for Experiment

- Possibility to disentangle SD (NP) vs. LD (SM) contributions to Δa_{CP} ?
 - Individual asymmetries in U-spin limit: $a_{CP}^K \simeq -a_{CP}^\pi$
 - Chromo-magnetic dipole operators preserve U-spin
 - - $a_{CP}^K \simeq -a_{CP}^\pi$ not necessarily expected, neither in SM nor if due to NP
- rates and DCPV in related modes, with same SD transitions Bhattacharya, Gronau & Rosner 1201.2351

$$D^{+} \to \phi \pi^{+}, D_{s} \to \phi K^{+}, D^{+} \to \bar{K}^{*0} \pi^{+}, D^{0} \to K^{*\pm} K^{\mp}, D^{0} \to \rho^{\pm} \pi^{\mp}$$
 First interesting hints? Belle, PRL 108, 071801 (2012)
$$D^{0} \to \pi^{0} \pi^{0}, D_{s} \to \pi^{+} K^{0}, D_{s} \to \pi^{0} K^{+}, \dots$$