

Constrained superfields in SUSY and SUGRA

Fotis Farakos

Padova U. & INFN

GGI 2016

Why constrained superfields?

→ Non-linear realization of broken supersymmetry.

→ Consistency with superspace methods.

 \rightarrow Offer a "hint" to the UV theory.

The goldstino sector

Nilpotent goldstino superfield

Rocek '78, Lindstrom, Rocek '79, Casalbuoni, De Curtis, Dominici, Feruglio, Gatto '89, Komargodski, Seiberg '09

We can break SUSY with a chiral superfield

$$X = A + \sqrt{2}\Theta G + \Theta^2 F.$$

- ▶ SUSY broken: $\delta G_{\alpha} = -f \epsilon_{\alpha} + \cdots$
- ▶ In the formal limit $m_A \to \infty$ the scalar decouples.
- This is described by imposing the superspace constraint

$$X^2=0\to A=\frac{G^2}{2F}.$$

Polonyi model and constrained superfields

The same setup works in supergravity

$$\mathcal{L} = \int \text{d}^2\Theta \, 2\mathcal{E} \, \left[\frac{3}{8} (\overline{\mathcal{D}}^2 - 8\mathcal{R}) e^{-K/3} + \text{W} \right] + \text{c.c.}$$

with $K = X\overline{X}$ and $W = fX + W_0$.

▶ In the G = 0 gauge the component form is

$$\begin{split} e^{-1}\mathcal{L} &= -\frac{1}{2}R + \frac{1}{2}\epsilon^{klmn}(\overline{\psi}_{k}\overline{\sigma}_{l}\mathcal{D}_{m}\psi_{n} - \psi_{k}\sigma_{l}\mathcal{D}_{m}\psi_{n}) \\ &- \overline{W_{0}}\,\overline{\psi}_{a}\overline{\sigma}^{ab}\overline{\psi}_{b} - W_{0}\,\psi_{a}\sigma^{ab}\psi_{b} - |f|^{2} + 3|W_{0}|^{2}. \end{split}$$

Dudas, Ferrara, Kehagias, Sagnotti '15, Bergshoeff, Freedman, Kallosh, Van Proeyen '15, Hasegawa and Yamada '15, Antoniadis, Markou '15, Dall'Agata, FF '15 Removing matter component fields

Constrained chiral superfields

Remove complex scalar

For a chiral superfield Y, remove the scalar component y by imposing

$$XY = 0 \rightarrow y = \frac{G\chi^{y}}{F} - \frac{G^{2}}{2F^{2}}F^{y}.$$

Brignole, Feruglio, Zwirner '97, Komargodski, Seiberg '09

▶ Naturally describes light fermions. Cribiori, Dall'Agata, FF '16

Keep only real scalar

For a chiral superfield A

$$XA = X\bar{A} \rightarrow A| = \phi + \text{fermions}$$

Komargodski, Seiberg '09

Naturally describes inflaton.

Removing any selected component field

Dall'Agata, Dudas, FF '16

For a generic superfield

$$Q = q + \theta \chi^q + \cdots$$

We propose the constraint

$$X\bar{X}Q=0.$$

This removes only the lowest component

$$q=\frac{G\chi^{\mathbf{q}}}{\sqrt{2}F}+\cdots$$

- ✓ Use to eliminate more components ($|X|^2DQ = 0$ for χ^q).
- √ Reproduces all known constraints.

Applications to supergravity cosmology

Inflation in supergravity

Inflation can be implemented by a single scalar field

$$e^{-1}\mathcal{L} = -\frac{1}{2}R - \frac{1}{2}\partial\phi\partial\phi - V(\phi)$$

with rather flat potential.

Usual issues

- Strongly stabilize other scalars.
- Build the potential.

SUGRA models with X and A

Kahn, Roberts, Thaler '15, Ferrara, Kallosh, Thaler '15, Carrasco, Kallosh, Linde '15, Dall'Agata, FF '15

A simple example is

$$K = X\bar{X} - \frac{1}{4}(A - \bar{A})^2$$
, $W = g(A) + X f(A)$

with
$$\overline{f(z)} = f(\overline{z})$$
 and $\overline{g(z)} = g(\overline{z})$.

▶ In the G = 0 gauge, the full Lagrangian is

$$egin{aligned} \mathrm{e}^{-1}\mathcal{L} &= -rac{1}{2}R + \epsilon^{klmn}\overline{\psi}_{k}\overline{\sigma}_{l}\mathcal{D}_{m}\psi_{n} - g(\phi)\left(\overline{\psi}_{a}\overline{\sigma}^{ab}\overline{\psi}_{b} + \psi_{a}\sigma^{ab}\psi_{b}
ight) \ &- rac{1}{2}\partial\phi\partial\phi - \left(f(\phi)^{2} - 3g(\phi)^{2}
ight). \end{aligned}$$

- Model building becomes extremely easy, but there is almost no predictive power.
- Supersymmetry must be broken in the vacuum.

Bousso-Polchinski mechanism in SUGRA

FF, Kehagias, Racco, Riotto '16

- Nilpotent three-form superfields → scanning of SUSY breaking scale.
- ► Three-form supergravity → scanning of gravitino mass!
- Small cosmological constant and large gravitino mass

$$\Lambda = \sum_{i} (f^{i})^{2} - 3(m_{3/2})^{2}.$$

Summary - Outlook

- We have discussed the constrained superfields formalism both in SUSY and SUGRA.
- We have presented applications in supergravity cosmology.
- More applications?

Thank you!