New CP Violation Results from Combined BABAR+Belle Measurements

Markus Röhrken
CERN

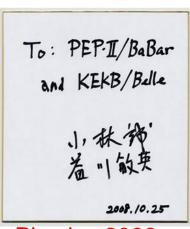
On behalf of the BABAR and Belle Collaborations

Les Rencontres de Physique de la Vallée d'Aoste 28th of February 2018

CKM Quark Mixing Matrix

The quark masses and mixing arise from Yukawa couplings of the fermion fields to the Higgs condensate:

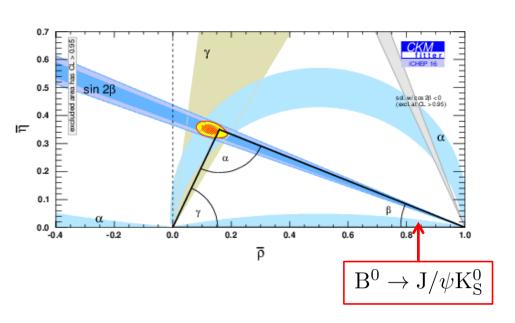
$$\mathcal{L}_Y = -Y_{ij}^d \bar{Q}_{Li} \phi d_{Rj} - Y_{ij}^u \bar{Q}_{Li} \epsilon \phi^* u_{Rj} + h.c.$$

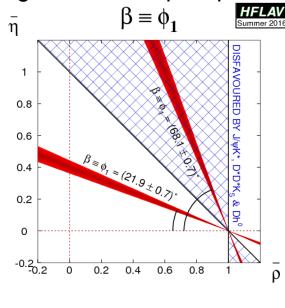

Kobayashi + Maskawa: cannot simultaneously align up- and down-type quarks, CKM matrix: 3 real parameters + 1 CP violating phase

$$\mathbf{V}_{\mathrm{CKM}} = \mathbf{V}_L^u \mathbf{V}_L^{d\dagger} = \left(egin{array}{ccc} \mathrm{V}_{\mathrm{ud}} & \mathrm{V}_{\mathrm{us}} & \mathrm{V}_{\mathrm{ub}} \ \mathrm{V}_{\mathrm{cd}} & \mathrm{V}_{\mathrm{cs}} & \mathrm{V}_{\mathrm{cb}} \ \mathrm{V}_{\mathrm{td}} & \mathrm{V}_{\mathrm{ts}} & \mathrm{V}_{\mathrm{tb}} \end{array}
ight) pprox \left(egin{array}{ccc} & -\mathrm{e}^{-\mathrm{i}\gamma} \ \mathrm{e}^{-\mathrm{i}\beta} \end{array}
ight)$$

B factories BABAR(US) and Belle (Japan):

- Discovery CP violation in the B meson system
- Exploring and constraining the quark flavor structure of the Standard Model
- Experimental confirmation of the Kobayashi-Maskawa theory

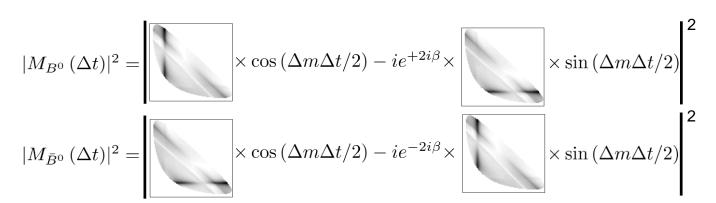




The Nobel Prize in Physics 2008

The Unitarity Triangle

• Unitarity requires $V_{td}V_{tb}^* + V_{cd}V_{cb}^* + V_{ud}V_{ub}^* = 0 \rightarrow$ Triangle in the complex plane

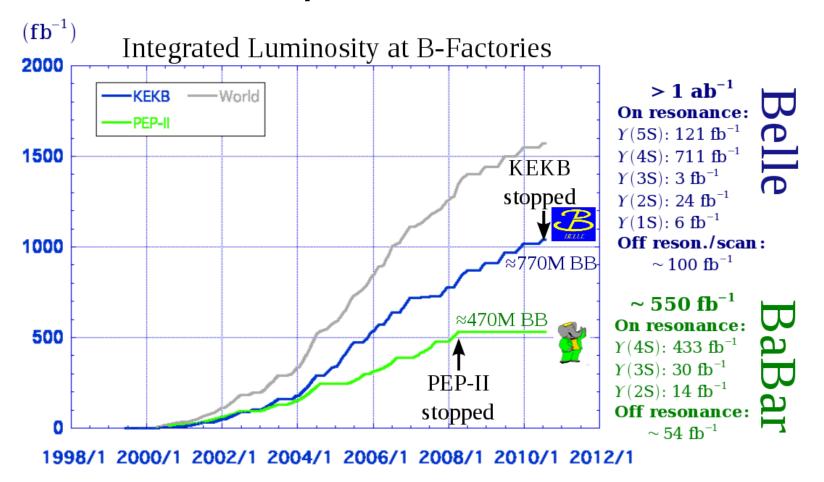

• The determination of the angle β of the Unitarity Triangle from $\sin(2\beta)$ [= $\sin(2\phi_1)$] measurements, for example, using $B^0 \to J/\psi K_S^0$, leads to a trigonometric ambiguity:

$$\beta$$
=21.9° or β =(π /2-21.9°)=68.1°

- \rightarrow The ambiguity can be resolved by measuring also $\cos(2\beta)$ in addition to $\sin(2\beta)$.
- cos(2β) is not well known. The current best single experimental uncertainty is ≈±0.36.

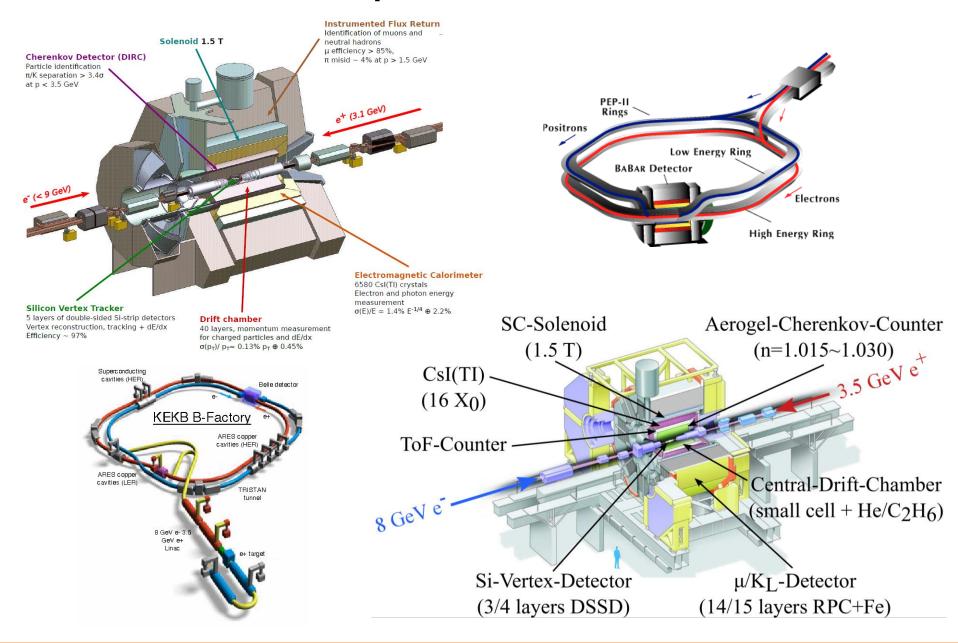
[PRD 94 (2016) 052004]

- $B^0 \to D^{(*)}h^0$ with $D^0 \to K_S^0\pi^+\pi^-$ decays enable to extract both sin(2 β) and cos(2 β).
- The approach is similar to the GGSZ method to extract γ from multi-body ${\rm B}^\pm\to {\rm DK}^\pm$
- Interference between D^0 and \bar{D}^0 , and variations over the Dalitz plot provide access to the CP-violating weak phase 2 β .
- Illustration of the B meson decay rate as function of the $D^0 \to K_S^0 \pi^+ \pi^-$ Dalitz plot:

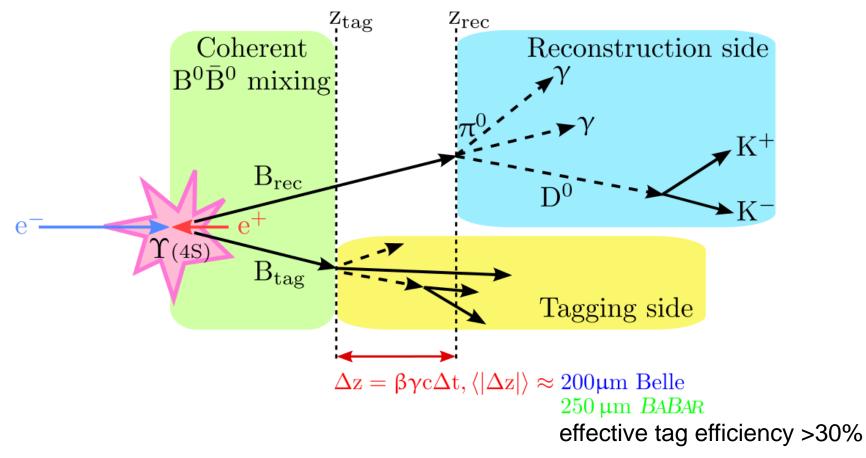


• If the $D^0 \to K_S^0 \pi^+ \pi^-$ Dalitz plot amplitude model is known, then both sin(2 β) and cos(2 β) can be extracted from the time evolution of the B decay.

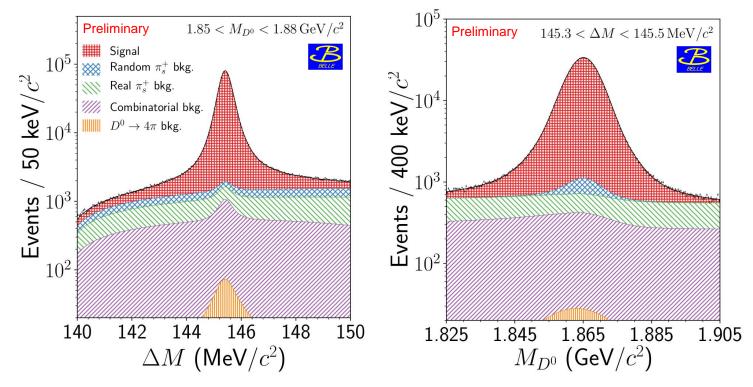
[A. Bondar, P. Krokovny, T. Gershon PLB **624** 1 (2005)]


 \rightarrow Perform time-dependent Dalitz analysis combining BABAR +Belle data to improve the sensitivity on cos(2 β).

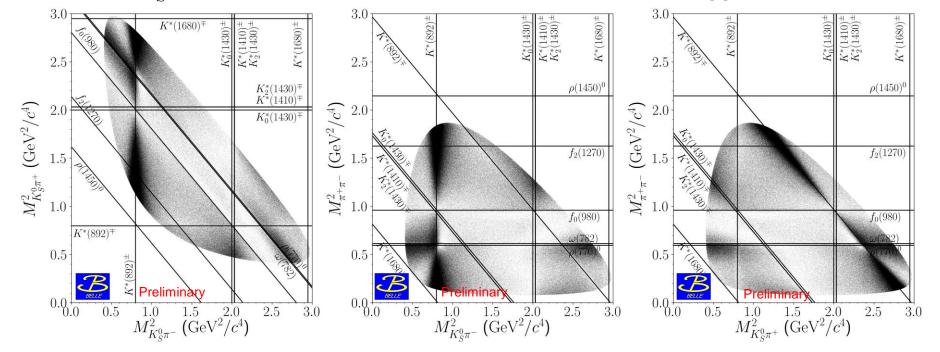
The BABAR and Belle Experiments


- Combined BABAR+Belle analyses to make full use of the about 1.1 ab⁻¹ or ≈1240×10⁶ BB collected on the Y(4S).
- In a first BABAR+Belle analysis, we previously demonstrated the feasibility and the advantage of the joint approach [PRL 115, 121604 (2015), presented at La Thuile 2016].

The BABAR and Belle Experiments


Principle of Time-dependent Measurements at $B\!A\!B\!A\!R$ and Belle

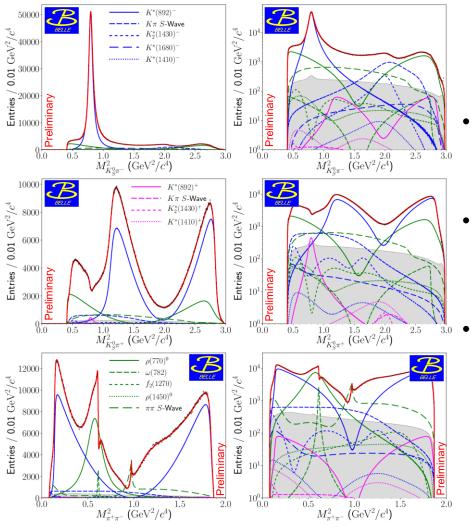
Threshold $B\bar{B}$ production on the $\Upsilon(4S)$:


Experimental effects due to finite vertex resolution and imperfect tagging are important.

- The $D^0 \to K_S^0 \pi^+ \pi^-$ Dalitz model is directly obtained from flavor-tagged $e^+ e^- \to c\bar{c}$ data.
- Reconstruct $D^{*+} \to D^0 \pi_S^+$ with $D^0 \to K_S^0 \pi^+ \pi^-$ decays.
- The charge of the low-momentum pion π_{S}^{+} tags the neutral D meson flavor.

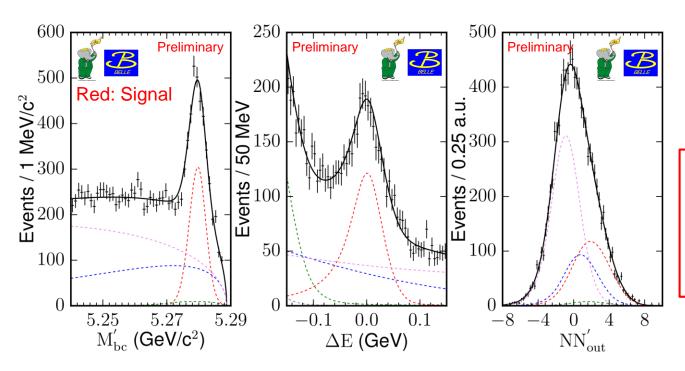
- The yield is (1,217,300 ± 2,000) ${\rm D^0} \to {\rm K_S^0} \pi^+ \pi^-$ decays.
- The purity is 94% in the signal region.

• The $D^0 \to K_S^0 \pi^+ \pi^-$ Dalitz plot data distributions from the flavor-tagged $e^+ e^- \to c\bar{c}$ data:



• The $D^0 \to K_S^0 \pi^+ \pi^-$ Dalitz plot is parameterized by the following model:

$$\mathcal{A}_{D^0}(m_+^2, m_-^2) = \sum_{r \neq (K\pi/\pi\pi)_{L=0}} a_r e^{i\phi_r} \mathcal{A}_r(m_+^2, m_-^2) + \mathcal{A}_{K\pi_{L=0}}(s) + F_1(s)$$
 | Sobar model for L≠0 | LASS | K-matrix


The model parameters are estimated by a fit to the Dalitz plot distributions above.

Projections of the $D^0 \to K_S^0 \pi^+ \pi^-$ Dalitz plot fit:

- The Dalitz plot model accounts for 14 intermediate two-body resonances.
 - The K-matrix and LASS parameterizations are used to model the $\pi\pi$ and $K\pi$ S-waves.
 - The $\mathrm{D^0} \to \mathrm{K_S^0} \pi^+ \pi^-$ decay amplitude model extracted from $\mathrm{e^+e^-} \to \mathrm{c\bar{c}}$ data is used to extract $\sin(2\beta)$ and $\cos(2\beta)$ from the $\mathrm{B^0}$ decay combining BABAR +Belle data.

- Reconstruct $B^0 \to D^{(*)}h^0$ with h^0 in $\pi^0 \to \gamma\gamma$, $\eta \to \gamma\gamma, \pi^+\pi^-\pi^0$ and $\omega \to \pi^+\pi^-\pi^0$ $D \to K^0_S\pi^+\pi^-$ and $D^{*0} \to D\pi^0$.
- In total, 5 B⁰ decay modes are reconstructed.
- $e^+e^- \rightarrow q\bar{q} \ (q \in \{u,d,s,c\})$ continuum background is identified by neural networks.
- Coherent analysis strategy, apply almost same selection on BABAR and Belle data.
- Extract signal by 3D fit of beam-constr. mass $M_{bc}^{'}$, energy-difference ΔE and $NN_{out}^{'}$.

$B\!A\!B\!A\!R$: 1129 ± 48 signal events

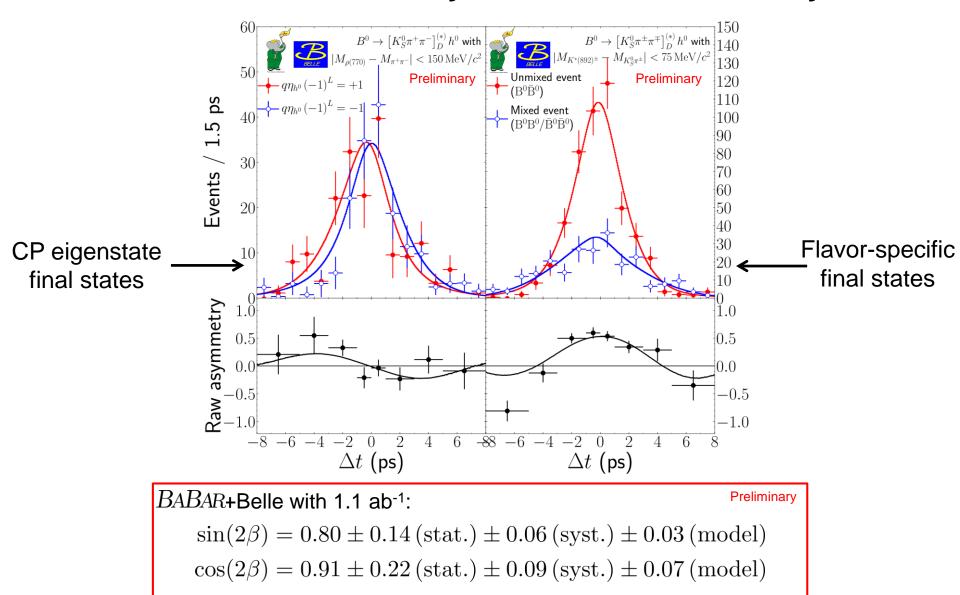
Belle:

 1567 ± 56 signal events

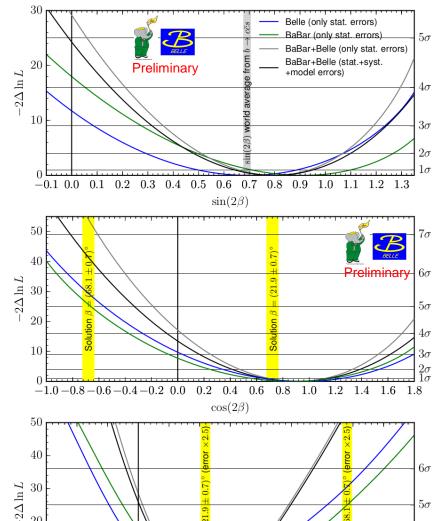
Perform measurement by maximizing the combined log-likelihood function:

$$\ln \mathcal{L} = \sum_i \ln \mathcal{P}_i^{ extit{BABAR}} + \sum_j \ln \mathcal{P}_j^{ extit{Belle}}$$

Physics PDFs are convoluted with specific resolution functions:


$$\mathcal{P}^{\mathrm{Exp.}} = \sum_{k} f_{k} \int \left[P_{k} \left(\Delta t' \right) R_{k} \left(\Delta t - \Delta t' \right) \right] d \left(\Delta t' \right)$$

- Apply BABAR and Belle specific resolution models and flavor tagging algorithms.
- Apply common signal model:


$$P_{\text{sig}}(\Delta t) \propto \left[|\mathcal{A}_{\bar{D}^0}|^2 + |\mathcal{A}_{D^0}|^2 \right]$$

$$\mp \left(|\mathcal{A}_{\bar{D}^0}|^2 - |\mathcal{A}_{D^0}|^2 \right) \cos(\Delta m \Delta t)$$

$$\pm 2\eta_{h^0} \left(-1 \right)^L \left[\text{Im} \left(\mathcal{A}_{D^0} \mathcal{A}_{\bar{D}^0}^* \right) \cos(2\beta) - \text{Re} \left(\mathcal{A}_{D^0} \mathcal{A}_{\bar{D}^0}^* \right) \sin(2\beta) \right] \sin(\Delta m \Delta t)$$

 $\beta = (22.5 \pm 4.4 \, (\text{stat.}) \pm 1.2 \, (\text{syst.}) \pm 0.6 \, (\text{model}))^{\circ}$

20 3σ 20 30 10 50 60 90 β (degrees)

- First evidence for $cos(2\beta) > 0$ (3.7 σ)
- Direct exclusion of the 2nd solution

$$\pi/2 - \beta = (68.1 \pm 0.7)^{\circ}$$

of the CKM Unitarity Triangle (7.3σ)

- → Reduction of the trigonometric ambiguity of the CKM Unitarity Triangle
- Exclusion of $\beta = 0^{\circ}$ (5.1 σ)
 - → Observation of CP violation in $B^0 \to D^{(*)}h^0$ decays

Summary

- The BABAR and Belle experiments recently started performing measurements combining the about 1.1 ab⁻¹ collected on the Y(4S), which allows for an unprecedented sensitivity in time-dependent CP violation measurements.
- Results of the new analysis presented:
 - First evidence for $\cos(2\beta) > 0$ at h the level of 3.7 σ
 - Exclusion of the 2nd solution of the CKM Unitarity Triangle

$$\pi/2 - \beta = (68.1 \pm 0.7)^{\circ}$$
 at 7.3 σ

■ Good agreement with $\sin(2\beta)$ from $b \to c \bar c s$ and an observation of CP violation at 5.1 σ