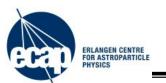
Search for Primordial Black Holes with e-ASTROGAM

Dmitry Malyshev Erlangen Center for Astroparticle Physics

together with Michele Doro, Javier Rico

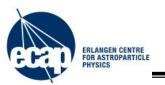

2nd e-ASTROGAM workshop October 13 – 14, München

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Motivation

- Primordial black holes are predicted in some big bang scenarios
- Probe much smaller spatial scales than CMB
 - Can be the only observational tool to put limits on some models at small scales
- Not yet totally excluded as a DM candidate
 - Mass is too large for e-ASTROGAM
- Can be used to explain early SMBH or intermediate mass BH observed in gravitational wave experiments
 - Also not relevant for e-ASTROGAM
- PBHs with initial mass $\sim 10^{15}\,\mathrm{g}$ have lifetime equal to the age of the Universe and temperature $\sim 10\,\mathrm{MeV}$
 - Relevant for e-ASTROGAM!

PBH properties


- Beckenstein (1973)
 - Information loss paradox
 - BHs have a "temperature" T ~ 1 / M
- Hawking (1975)
 - Black holes do emit radiation with thermal spectrum with temperature

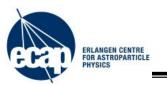
$$T = \frac{M_{\rm P}^2}{8\pi M}$$

Lifetime

$$au \sim M^3 \sim T^{-3}$$

- 10 MeV, 10¹⁵ g, lifetime of the Universe
- 10 GeV, 10¹² g, 30 years
- 10 TeV, 10⁹ g, 1 second

Searches for PBH bursts

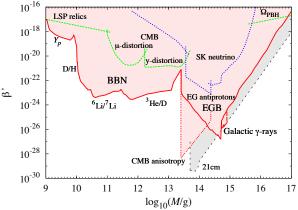


Hagedorn model

- Some theories claim that PBHs evaporate in a microsecond burst when the temperature reaches Hagedorn transition at ~ 160 MeV
- EGRET has put a limit of 5 x 10⁻² pc⁻³ yr⁻¹
- e-ASTROGAM can improve this limit

Standard model


- The rate of emission is rather slow until the temperature reaches ~ 1 TeV
- Lifetime is ~ 10 years for T ~ 10 GeV
- Typical limits with Cherenkov telescopes and Fermi LAT (in preparation) are ~ 10⁴ pc⁻³ yr⁻¹
- e-ASTROGAM will not improve the limit in the SM scenario



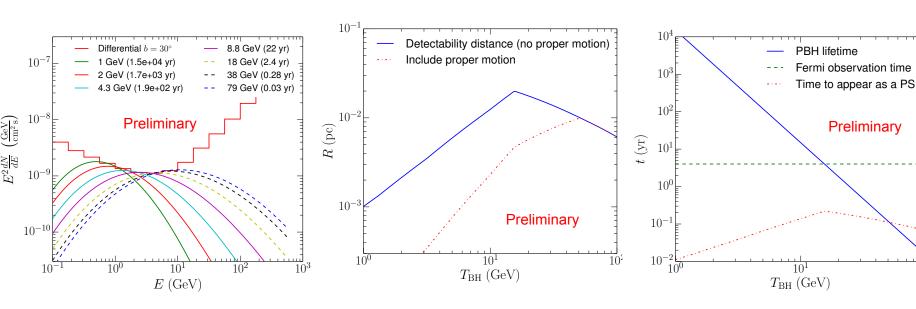
PBH contribution to diffuse emission

- EGB gives the most limiting constraints in the mass range 10¹⁴ – 10¹⁷ g
- For PBHs with lifetime ~ the age of the Universe the SED peaks around 200 MeV
- If one assumes a reasonable distribution of initial PBH masses and a concentration of PBHs in the Galaxy similar to DM, then the diffuse limit can be expressed as a local evaporation rate limit ~ 10⁻² pc⁻³ yr⁻¹, which is 6 orders of magnitude more constraining than the limit from direct searches of bursts (in SM scenario)
- e-ASTROGAM better resolution of EGB between 1 MeV and 1 GeV

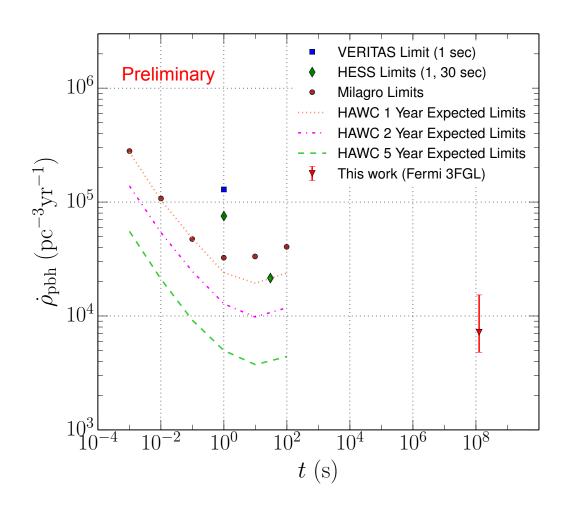


Carr et al, PRD 81, 104019 (2010)

Backup slides



Fermi LAT sensitivity to PBHs


- We use the differential Fermi LAT sensitivity to estimate the detectability radius and the characteristic lifetime of a PBH that can be detected by the LAT
 - The typical radii are less than ~ 0.01 pc
 - Temperature ~ 10 50 GeV
 - Lifetime ~ few months to few years

Fermi LAT limit

