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Summary. — We present results of a recent joint analysis campaign by the BABAR

and Belle experiments. The approach combines in single physics analyses the 1.1
inverse attobarn collected at the Υ (4S) resonance by the BABAR and Belle ex-
periments at the asymmetric-energy B factories PEP-II at SLAC and KEKB at
KEK, respectively. A measurement of the CP violation parameters sin(2β) and

cos(2β) by a time-dependent Dalitz plot analysis of B0 → D(∗)h0 decays with
D → K0

Sπ
+π− decays is reported. The result is sin(2β) = 0.80± 0.14± 0.06± 0.03

and cos(2β) = 0.91±0.22±0.09±0.07, where the first error is statistical, the second
is the experimental systematic uncertainty, and the third is due to the uncertainty
of the Dalitz plot amplitude model. First evidence for cos(2β) > 0 at the level of
3.7 standard deviations is obtained. The angle β of the CKM Unitarity Triangle is
measured to be β = (22.5± 4.4± 1.2± 0.6)◦. The hypothesis of β = 0◦ is ruled out

at the level of 5.1 standard deviations, and CP violation is observed in B0 → D(∗)h0

decays. The trigonometric multifold solution of π
2
−β = (68.1± 0.7)◦ is excluded at

the level of 7.3 standard deviations, and an ambiguity in the determination of the
apex of the CKM Unitarity Triangle is resolved.

PACS 11.30 – Er.
PACS 12.15 – Hh.
PACS 13.25 – Hw.

1. – Introduction

In the standard model (SM) of electroweak interactions, the only source of CP vi-
olation is the single irreducible complex phase in the three-family Cabibbo-Kobayashi-
Maskawa (CKM) quark-mixing matrix [1, 2]. The first-generation asymmetric-energy
B factory experiments BABAR at SLAC (USA) and Belle at KEK (Japan) discovered
CP violation in the neutral and charged B meson systems [3, 4, 5, 6], and experimen-
tally confirmed the predictions of the Kobayashi-Maskawa theory [2] in many indepen-
dent measurements. The BABAR and Belle experiments precisely measured the sine of
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the weak CP -violating phase 2β, sin 2β, by time-dependent CP violation analyses of
b̄ → c̄cs̄ transitions [7, 8], where β is an angle of the Unitarity Triangle defined by
the CKM matrix elements Vij as arg [−VcdV ∗cb/VtdV ∗tb]. The current world average is
sin 2β = 0.691 ± 0.017 [9], and the corresponding uncertainty of the angle β is 0.7◦.
The determination of 2β from the measurements of sin 2β is associated with a two-fold
ambiguity, 2β and π − 2β. This ambiguity can be resolved by measuring the cosine of
the weak CP -violating phase 2β. However, the experimentally uncertainties on cos 2β
are sizable. The most precise single measurement of cos 2β has an uncertainty of approx-
imately ±0.36 [10]. No previous single measurement could establish the sign of cos 2β
which would resolve the trigonometric ambiguity without any further assumptions.

An elegant approach to measure cos 2β is provided by B0 → D(∗)h0 with D →
K0
Sπ

+π− decays, where h0 ∈ {π0, η, ω} denotes a light unflavored and neutral hadron.
The B0 → D(∗)h0 decay is mediated only by tree-level amplitudes, predominantly by
CKM-favored and color-suppressed b̄ → c̄ud̄ amplitudes. The D → K0

Sπ
+π− decay

proceeds via various resonant and non-resonant intermediate states contributing to the
three-body final state. Experimental knowledge of the variations of the relative strong
phases as a function of the three-body Dalitz plot phase space of the D0 → K0

Sπ
+π−

decay enables to extract cos(2β) in addition to sin(2β) from the time evolution of B0 →
D(∗)h0 decays [11].

In an e+e− → Υ (4S)→ B0B0 event, the time-dependent decay rate of B0 → D(∗)h0

decays depends on the D0 and D0 decay amplitudes AD0 ≡ A(M2
K0
Sπ
− ,M

2
K0
Sπ

+) and

AD0 ≡ A(M2
K0
Sπ

+ ,M
2
K0
Sπ
−) as a function of the position within the D0 → K0

Sπ
+π−

Dalitz plot phase space defined by the Lorentz-invariant variables M2
K0
Sπ
− ≡ (pK0

S
+pπ−)2

and M2
K0
Sπ

+ ≡ (pK0
S

+ pπ+)2, and on the CP -violating weak phase 2β. The decay rate is

is proportional to:

e
−|∆t|
τ
B0

2

[
|AD̄0 |2 + |AD0 |2

]
− q

(
|AD̄0 |2 − |AD0 |2

)
cos(∆md∆t)

+ 2qηh0 (−1)
L [

Im
(
AD0A∗D̄0

)
cos(2β)− Re

(
AD0A∗D̄0

)
sin(2β)

]
sin(∆md∆t) .(1)

The proper-time interval between the decays of the two B mesons is denoted by ∆t. The
quantities τB0 and ∆md are the neutral B meson lifetime and the mass difference between
the physical eigenstates of neutral B mesons, respectively. The variable q = +1 (−1)
represents the b-flavor content when the second B meson originating from the Υ (4S)
decay is tagged as a B0 (B0). The parameter ηh0 is the CP eigenvalue of the h0, and
L is the angular orbital momentum of the D(∗)h0 system. If the D0 and D̄0 decay
amplitudes AD0 and AD̄0 are known, then Eq. (1) enables to measure sin 2β and cos 2β
by a time-dependent Dalitz plot analysis of B0 → D(∗)h0 with D → K0

Sπ
+π− decays.

Previous time-dependent Dalitz plot analyses of B0 → D(∗)h0 with D → K0
Sπ

+π−

decays by the BABAR and Belle collaborations [10, 12, 13] could not establish CP viola-
tion, obtained results outside of the physical region [12], and used different Dalitz plot
amplitude models [10, 12, 13]. This complicates the combination of the individual results.

At the 32nd Les Rencontres de Physique de la Vallée d’Aoste, we presented new results
on sin(2β) and cos(2β) obtained by a time-dependent Dalitz plot analysis of B0 → D(∗)h0

with D → K0
Sπ

+π− decays. The analysis combines the final data sets of the BABAR and
Belle experiments in a single measurement. The combined approach enables for a unique
sensitivity to cos(2β) by effectively doubling the statistics available for the measurement,
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and by applying common assumptions and the same D0 → K0
Sπ

+π− decay amplitude
model in the analysis of the data collected by both experiments. The analysis consists
of two parts: first, the D0 → K0

Sπ
+π− decay amplitude model is derived by a Dalitz

plot amplitude analysis using a high-statistics e+e− → cc̄ data sample collected by Belle;
second, the D0 → K0

Sπ
+π− decay amplitude model is applied in a time-dependent Dalitz

plot analysis of B0 → D(∗)h0 with D → K0
Sπ

+π− decays reconstructed from BABAR and
Belle data to measure sin(2β) and cos(2β).

2. – Determination of the D0 → K0
S
π+π− decay amplitude model using Belle

e+e− → cc̄ data

A data set of 924 fb−1 recorded at or near the Υ (4S) and Υ (5S) resonances by Belle
is used to perform a Dalitz plot amplitude analysis and to extract the D0 → K0

Sπ
+π−

decay amplitude model. This data set contains a high-statistics sample of e+e− → cc̄
events and provides a D0 → K0

Sπ
+π− yield that is about three orders of magnitude

larger than in the combined BABAR+Belle measurement of the B meson decay described
in Sect. 3.

The D∗+ → D0π+
s with D0 → K0

Sπ
+π− decays are reconstructed, where the charge

of the low momentum (“slow”) pion π+
s allows to identify the production flavor of the

neutral D meson as D0 or D0. The signal and background yields are determined by a
two-dimensional unbinned maximum-likelihood (ML) fit of the D0 candidate mass, MD0 ,
and the D∗+ −D0 mass difference, ∆M . A total yield of 1 217 300± 2 000 signal events
is obtained. In the signal-enhanced region used to perform the Dalitz plot amplitude
analysis, the signal purity is 94%.

The D0 → K0
Sπ

+π− Dalitz plot amplitude model is constructed by combining the
isobar ansatz with the K-matrix formalism [14] for the ππ S-wave contributions and the
LASS parameterization [15] for the Kπ S-wave contributions. In this model, the decay
amplitude can be written as:

A(M2
K0
Sπ
− ,M

2
K0
Sπ

+) =
∑

r 6=(Kπ/ππ)L=0

are
iφrAr(M2

K0
Sπ
− ,M

2
K0
Sπ

+)

+F1(M2
π+π−) +AKπL=0

(M2
K0
Sπ
−) +AKπL=0

(M2
K0
Sπ

+),(2)

where the symbol F1 denotes the amplitude for the ππ S-wave contribution parame-
terized by the K-matrix approach in the P -vector approximation [16], and the symbol
AKπL=0

represents the LASS amplitude for the Kπ S-wave contribution. The vari-
ables ar and φr are the magnitude and phase of the r-th intermediate two-body res-
onant contribution to the three-body final state parameterized by the isobar ansatz.
The following intermediate quasi-two-body resonances are included: the Cabibbo-favored
K∗(892)−π+, K∗2 (1430)−π+, K∗(1680)−π+, K∗(1410)−π+ modes; the doubly Cabibbo-
suppressed K∗(892)+π−, K∗2 (1430)+π−, K∗(1410)+π− modes; and the CP eigenstates
K0
Sρ(770)0, K0

Sω(782), K0
Sf2(1270), and K0

Sρ(1450)0.
The D0 → K0

Sπ
+π− Dalitz plot fit is performed for events in the signal-enhanced re-

gion of the flavor-tagged D0 sample with the signal probability density function (p.d.f.)
constructed from Eq. 2 with a correction to account for reconstruction efficiency vari-
ations in the Dalitz plot phase space due to experimental acceptance effects, and an
additional term to account for wrong flavor-tags of D mesons. The background is mod-
eled using distributions taken from the MD0 and ∆M sideband regions in data. Free
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parameters in the fit are the ar and φr relative to the K0
Sρ(770)0 mode, which is fixed

to ar = 1 and φr = 0. The masses and widths of the resonances are fixed to the
world averages [17] except those of the K∗(892)± which are floated in the fit to improve
the fit quality. The LASS parameters, and the complex couplings βα and production
vector fprod

1j of the K-matrix are measured in the fit. The remaining K-matrix param-
eters are fixed to the values of a global analysis of available ππ scattering data [18, 19].
The data distributions and projections of the D0 → K0

Sπ
+π− Dalitz plot fit are shown

Fig. 1. – The Dalitz plot data distributions reconstructed from Belle e+e− → cc̄ data (points
and points with error bars), and projections of the D0 → K0

Sπ
+π− Dalitz plot fit (red).

in Fig. 1. The fit quality is quantified by a two dimensional χ2 test. The result is
χ2/dof = 32667/(31321− 49) = 1.05 indicating a relatively good quality of the fit com-
pared to previous models of this decay [19, 20, 21, 22, 23]. The obtained D0 → K0

Sπ
+π−

decay amplitude model is used as input for the time-dependent Dalitz plot analysis of
B0 → D(∗)h0 with D → K0

Sπ
+π− decays combining BABAR and Belle data described

below.

3. – Time-dependent Dalitz plot analysis of B0 → D(∗)h0 with D → K0
S
π+π−

decays

The time-dependent Dalitz plot analysis of B0 → D(∗)h0 with D → K0
Sπ

+π− decays
is performed using data samples collected that contain (471±3)×106BB pairs recorded
with the BABAR detector and (772±11)×106BB pairs recorded with the Belle detector at
the Υ (4S) resonance. The light neutral h0 is reconstructed in the decay modes π0 → γγ,
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η → γγ and π+π−π0, and ω → π+π−π0. Neutral D mesons are reconstructed in the
decay mode D → K0

Sπ
+π−, and neutral D∗ mesons are reconstructed in the decay mode

D∗ → Dπ0. Neutral B mesons are reconstructed in the decay modes B0 → Dπ0, Dη,
Dω, D∗π0, and D∗η. The B0 → D(∗)h0 yields are determined by three-dimensional
unbinned ML fits to the distributions of the observables M ′bc, ∆E, and NN ′out. The
beam-energy-constrained mass M ′bc is defined as:

M ′bc =

√√√√√E∗2beam −


~p∗

D(∗)0 +
~p∗h0

√(
E∗beam − E∗D(∗)0

)2 −M2
h0

|~p∗h0 |




2

.(3)

The beam-energy-constrained mass provides an observable that is not correlated to the
the energy difference ∆E = E∗B − E∗beam, where the symbols marked with an aster-
isk denote observables evaluated in the e+e− center-of-mass frame. The observable
NN ′out is constructed from the output of a neural network multivariate classifier that
combines event shape information based on a combination of 16 modified Fox-Wolfram
moments [24, 25, 26] and that identifies the background that originates from e+e− → qq
(q ∈ {u, d, s, c}) continuum events. The fit model accounts for contributions from
B0 → D(∗)h0 signal decays, cross-feed from partially reconstructed B0 → D∗h0 decays,
background from partially reconstructed B+ → D(∗)0ρ+ decays, combinatorial back-
ground from BB decays, and background from e+e− → qq (q ∈ {u, d, s, c}) continuum
events. In total, the B0 → D(∗)h0 yields are 1129± 48 events for BABAR, and 1567± 56
events for Belle. The M ′bc, ∆E, and NN ′out data distributions and fit projections are
shown in Fig. 2.
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Fig. 2. – The M
′
bc, ∆E, and NN

′
out data distributions reconstructed from BABAR and Belle data

(points with error bars), and projections of the fits (solid and dotted lines). In plotting the

M ′bc, ∆E, and NN
′
out distributions, each of the other two observables are required to satisfy

M ′bc > 5.272 GeV/c2, |∆E| < 100 MeV, or 0 < NN
′
out < 8 to select signal-enhanced regions.

The time-dependent Dalitz plot measurement of the CP violation parameters follows
the technique established in the previous combined BABAR+Belle CP violation measure-

ment of B0 → D
(∗)
CPh

0 decays [27]. The measurement is performed by maximizing the
log-likelihood function:

(4) lnL =
∑

i

lnPBABAR

i +
∑

j

lnPBelle
j ,
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where the symbol P represents p.d.f.s that describe the proper-time interval distribu-
tions. The indices i and j denote the events reconstructed from BABAR and Belle data,
respectively. The signal p.d.f.s are constructed from Eq. 1 convolved with experiment
specific resolution functions to account for the finite vertex resolution [7, 28] and in-
cluding the effect of incorrect flavor assignments [7, 29]. The p.d.f.s for the proper time
interval distributions of the combinatorial background from BB decays and background
from e+e− → qq (q ∈ {u, d, s, c}) continuum events account for background from non-
prompt and prompt decays convolved with effective resolution functions. The cross-feed
from partially reconstructed B0 → D∗h0 decays is modeled by the signal p.d.f. account-
ing for the different parameters of the cross-feed contribution, and the background from
partially reconstructed B+ → D(∗)0ρ+ decays is parameterized by an exponential p.d.f.
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Fig. 3. – The flavor-tagged proper-time interval distributions (data points with error bars)

and the corresponding asymmetries for B0 → D(∗)h0 candidates associated high-quality flavor
tags. The plots in the left column show events in regions of the D0 → K0

Sπ
+π− phase space

predominantly populated by CP eigenstates, and the plots in the right column show events in
regions predominantly populated by quasi-flavor-specific decays. In the plots, the background
has been subtracted using the sPlot technique [30].

The parameters τB0 , τB+ and ∆md are fixed to the world averages [17], and the Dalitz
plot amplitude model parameters are fixed to the results of the D0 → K0

Sπ
+π− Dalitz

plot fit described above. In the fit, the free parameters are sin(2β) and cos(2β). The
result of the measurement is:

sin(2β) = 0.80± 0.14 (stat.)± 0.06 (syst.)± 0.03 (model)

cos(2β) = 0.91± 0.22 (stat.)± 0.09 (syst.)± 0.07 (model) .(5)
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The linear correlation between sin(2β) and cos(2β) is ρ = 5.1%. The experimental flavor-
tagged proper-time interval data distributions and projections of the fit for different
regions of the D0 → K0

Sπ
+π− Dalitz plot phase space are shown in Fig. 3. The result of

the direct measurement of the angle β is:

β = (22.5± 4.4 (stat.)± 1.2 (syst.)± 0.6 (model))
◦
.(6)

The experimental systematic uncertainties on the CP violation parameters are estimated
using established methods, described in Refs. [7, 8, 27]. The leading experimental sys-
tematic uncertainties originate from the applied ∆t resolution functions, the decay vertex
reconstruction, and a possible fit bias. The uncertainty due to the Dalitz plot amplitude
model is estimated by repeating the D0 → K0

Sπ
+π− Dalitz plot amplitude analysis with

alternative assumptions and variations of the D0 → K0
Sπ

+π− decay amplitude model,
and performing the time-dependent Dalitz plot analysis of B0 → D(∗)h0 decays using the
alternative models as input. The uncertainties due to the Dalitz plot amplitude model
are small compared to the statistical uncertainties and the experimental systematic un-
certainties.

The significance of the results is evaluated by a likelihood-ratio approach. Including
the experimental systematic uncertainties and the Dalitz plot amplitude model uncer-
tainties, the measured value of sin(2β) agrees within 0.7 standard deviations with the
world average of sin 2β = 0.691±0.017 [9]. The hypothesis cos(2β) ≤ 0 is excluded with a
significance of 3.7 standard deviations, and the first evidence for cos(2β) > 0 is obtained.
The measurement excludes the hypothesis β = 0◦ with a significance of 5.1 standard
deviations, and an observation of CP violation in B0 → D(∗)h0 is reported. The result
agrees well with the preferred solution of the Unitarity Triangle, (21.9 ± 0.7)◦ [9], and
excludes the second solution of π

2 − β = (68.1± 0.7)◦ with a significance of 7.3 standard
deviations. Therefore, the measurement resolves an ambiguity in the determination of
the apex of the CKM Unitarity Triangle.

4. – Summary

In summary, we report a time-dependent Dalitz plot analysis of B0 → D(∗)h0 decays
with D0 → K0

Sπ
+π− decays. The analysis is performed using using the final BABAR

and Belle data samples, totaling more than 1 ab−1 collected at the Υ (4S) resonance.
The measurement provides first evidence for cos(2β) > 0, and observes CP violation in
B0 → D(∗)h0 decays. The result directly excludes the trigonometric multifold solution
of π

2 − β of the CKM Unitarity Triangle without further assumptions.
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