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Näıve questions concerning gravity

1. What is/are Einstein’s equation/s?

2. How can it be used to answer physical questions?

3. What singularities are acceptable?

4. What does it really predict?

5. How does classical matter move?

6. How does quantum matter move?

7. How does quantum matter gravitate?

8. Can we tell a quantum from a classical gravitational field?

9. Can we produce direct evidence for gravitons?

10. Does (quantum-)gravity continue to relate to geometry in a natural way?
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Einstein’s Field Equation (EFE)

“Matter tells spacetime how to curve and spacetime tells matter how to
move.”

I Matter tells ...
Gµν [g] = κTµν [g, φ] (1a)

I Spacetime tells ... (integrability condition)

∇µ[g]Tµν [g, φ] = 0 (⇒ eq. of motion) (1b)

I Evolutionary form of EFE:

gαβ∂α∂βg
µν + (terms ∝ ∂αgαβ) = −2κ(g)Tµν (2)

I Geometric form of EFE. For all timelike n have:∑
planes⊥n

Sec = κT (n, n) (3)
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Localisation and radiation
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Initial-value problem for fields: controlling “junk radiation”
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Initial-value problem for matter: what and where is a “body”?

I In order to talk about “motion”
we need to define “position”.

I This is ambiguous in
SR-theories, though in a well
defined way (→ group theory).

I In GR-theories many additional
ambiguities enter.

I Example: Mathisson-Papapetrou equation (pole-dipole-approximation)

Dpα

ds
= 1

2
Rαβµνu

βSµν (4a)

DSαβ

ds
= (p ∧ u)αβ (4b)

I Need extra (suplementary-) condition, like Sαβuβ = 0 (Frenkel, Pirani)

or Sαβpβ = 0 (Tulczyjew, Dixon) to select centre-of-mass wordline with
respect to which uµ is tangent. Given any of them, have

uα = p̂α +
2SαβSµνRµνβγ p̂

γ

4M2 + SµνRµναβSαβ
(5)
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Einstein’s Equivalence Principle (EEP)

I Universality of Free Fall (UFF): “Test bodies” determine path structure
on spacetime (not necessarily of Riemannian type). UFF-violations are
parametrised by the Eötvös factor

η(A,B) := 2
|a(A)− a(B)|
|a(A) + a(B)|

(6)

I Local Lorentz Invariance (LLI): Local non-gravitational experiments
exhibit no preferred directions in spacetime, neither timelike nor spacelike.
Possible violations of LLI concern, e.g., variations in ∆c/c.

I Universality of Gravitational Redshift (UGR): “Standard clocks” are
universally affected by the gravitational field. UGR-violations are
parametrised by the α-factor

∆ν

ν
= (1 + α)

∆U

c2
(7)

⇒ Geometrisation of gravity and unification with inertial structure.
Gravity ceases to be a force!
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Levels of verification of EEP

I UFF: Torsion-balance experiments (“Eöt-Wash” 1994-2008)

η(Al, P t) = (−0.3±0.9)×10−12 , η(Be, T i) = (0.3±1.8)×10−13 (8)

Next expected improved level is 5 · 10−16 (MICROSCOPE 2016-18)

I LLI: Currently best MM-type experiments (Nagel et al. 2015)

∆c

c
< 10−17 (9)

I UGR: Absolute redshift with H-maser clocks in space (1976,
h = 10 000 Km) and relative redshifts using precision atomic
spectroscopy (2007) give

αabs < 2× 10−4 αrel < 4× 10−6 (10)

I In Feb. 2010 Müller et. al. claimed improvements by 104 (disputed).

Long-term expectation for future space missions is to get to 10−10 level.
I In Sept. 2010 Chou et al. report measurability of gravitational redshift on

Earth for h = 33 cm using Al+-based optical clocks (∆t/t < 10−17).
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QM & Gravity: Tested so far

Colella Overhauser Werner, PRL 1975 Nesvizhevsky et al., Nature 2002

i~Ψ̇ = −
~2

2mi
∆Ψ+VgravΨ

Vgrav = mggz
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Homogeneous static gravitational field

I Time independent Schrödinger equation in linear potential V (z) = mggz
is equivalent to: (

d2

dζ2
− ζ
)
ψ = 0 , ζ := κz − ε (11)

where

κ :=

[
2mimg g

~2

] 1
3

, ε := E ·
[

2mi

m2
g g

2 ~2

] 1
3

(12)

ζ

Ai(ζ)

I Complement by hard (horizontal) wall V (z) =∞ for z ≤ 0 get energy
eigenstates from boundary condition ψ(z = 0) = 0, hence ε = −zn:

E(n) = −zn

[
m2
g

mi
·
g2~2

2

] 1
3

(13)
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Quantum gravimeters
and an alleged 104-improvement of UGR-tests

(Müller et al., Nature 2010)

Have (using k := ∆p/~)

∆φ = k T 2 · g(Cs) = k T 2 ·
m

(Cs)
g

m
(Cs)
i

· gEarth

= k T 2 ·
m

(Cs)
g

m
(Cs)
i

·
m

(Ref)
i

m
(Ref)
g

· g(Ref) = η
(
Cs,Ref

)
· kT 2 · g(Ref)

(14)

I Proportional to (1+Eötvös-factor) in UFF-violating theories.

Q Dependence on α in UGR-violating theories? Müller et al. argue for
∝ (1 + α) by interpretation of ∆φ as a mere redshift.
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The ”clocks-from-rocks” dispute

I A clock ticking at frequency ω suffers
gravitational phase-shift in
Kasevich-Chu situation of

∆φ = ∆ωT

= ω
∆U

c2
T

= ω
g∆h

c2
T

= ω
g∆p

mc2
T

2

=

(
ω

mc2/~

)
g T

2 ∆p

~

(15)

This equals (14) if

ω = mc
2
/~ (16)

I Objection!
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UFF in QM

I Consider a particle of mass m in spatially homogeneous force field ~F (t).
The classical trajectories solve

~̈ξ(t) = ~F (t)/m (17)

Let ξ(t) denote a solution with ~ξ(0) = ~0 and some initial velocity.
Its flow-map Φ : R4 → R4 defines a freely-falling frame:

Φ(t, ~x) =
(
t, ~x+ ξ(t)

)
(18)

I Proposition: ψ solves the forced Schrödinger equation

i~∂tψ =

(
−

~2

2mi
∆− ~F (t) · ~x

)
ψ (19)

iff
ψ =

(
exp(iα)ψ′

)
◦ Φ−1 (20)

where ψ′ solves the free Schrödinger equation and

α(t, ~x) =
mi

~

{
~̇ξ(t) ·

(
~x+ ~ξ(t)

)
−

1

2

∫ t

dt′‖~̇ξ(t′)‖2
}

(21)
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S & KG: Inertial motion

I Galilei symmetry is a suitable 1/c→ 0 limit (contraction) of Poincaré
symmetry. Likewise, the Schrödinger equation for ψ is a suitable 1/c→ 0
limit of the Klein-Gordon equation for φ if we set

φ(t, ~x) = exp
{
−imc2 t/~

}
ψ(t, ~x) (22)

I The Klein-Gordon field transforms as scalar

φ′(t′, ~x′) = φ(t, ~x) (23)

Hence (22) implies

ψ′(t′, ~x′) = exp
{
−imc2 (t− t′)/~

}
ψ(t, ~x) (24)

I Using

t =
t′ + ~x′ · ~v/c2√

1− v2/c2
= t′ + c−2

(
~x′ · ~v + t′v2/2

)
+O(1/c4) (25)

the 1/c→ 0 limit of Poincare symmetry by proper representations turns
into Galilei symmetry by non-trivial ray representations:

ψ′(t′, ~x′) = exp
{
−im(~x′ · ~v + t′v2/2)/~

}
ψ(t, ~x) (26)
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S & KG: Rigid accelerations

I In Minkowski space, rigid motions in x-direction and of arbitrary
acceleration of a body parametrised by ξ are given by family of timelike
lines τ 7→

(
ct(τ, ξ) , x(τ, ξ)

)
, where

ct(τ, ξ) = c

∫ τ

dτ ′ coshχ(τ ′) + ξ sinhχ(τ) (27a)

x(τ, ξ) = c

∫ τ

dτ ′ sinhχ(τ ′) + ξ coshχ(τ) (27b)

Here τ is eigentime of body element ξ = 0 and χ(τ) = tanh−1(v/c) is
rapidity of all body elements at τ .

I The Minkowski metric in co-moving coordinates (τ, ξ) reads (g := cχ̇)

ds2 = c2 dt2 − d~x2 =

(
1 +

g(τ) ξ

c2

)
c2 dτ2 − d~ξ2 (28)

I Write down Klein-Gordon equation in co-moving coordinates{
2g +m2

}
φ =

{
(− det g)−1/2 ∂a

[
(− det g)1/2 gab∂b

]
+m2

}
φ = 0

(29)
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S & KG: Rigid accelerations

I In analogy to (22) write

φ(t, ~x) = exp
{
−imc2 τ/~

}
ψ(t, ~x) (30)

and take 1/c2 → 0 limit; get

i~∂τψ =

(
−

~2

2m

∂2

∂~ξ2
+mg(τ)ξ

)
ψ (31)

This corresponds to particle in homogeneous but time-dependent
gravitational field pointing in negative ξ-direction.

I Note that again φ transformed as scalar (compare (23))

φinert(t, ~x) = φacc(τ, ~ξ) (32)

but that again this is not true for ψ, where (compare (22))

φinert(t, ~x) = exp
{
−imc2 t/~

}
ψinert(t, ~x)

φacc(τ, ~ξ) = exp
{
−imc2 τ/~

}
ψacc(τ, ~ξ)

(33)

I Hence (compare (24))

ψacc(τ, ~ξ) = exp
{
−imc2 (t− τ)/~

}
ψinert(t, ~x) (34)
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Schrödinger-Newton equation

I Consider Einstein – Klein-Gordon system

Rab − 1
2
gabR = 8πG

c4
TKGab (φ) ,

(
2g +m2

)
φ = 0 (35)

I Make WKB-like ansatz

φ(~x, t) = exp

(
ic2

~
S(~x, t)

) ∞∑
n=0

(√
~
c

)n
an(~x, t) (36)

and perform 1/c expansion (D.G. & A. Großardt 2012).

I Obtain

i~∂tψ =

(
−

~2

2m
∆ +mV

)
ψ (37)

where
∆V = 4πG

(
ρ+m|ψ|2

)
(38)

I Ignoring self-coupling, this just generalises previous results and conforms
with expectations.
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Schrödinger-Newton equation

I Without external sources get “Schrödinger-Newton equation”
(Diosi 1984, Penrose 1998):

i~ ∂tψ(t, ~x) =

(
−

~2

2m
∆−Gm2

∫ |ψ(t, ~y)|2

‖~x− ~y‖
d3y

)
ψ(t, ~x) (39)

I It can be derived from the action

S[ψ,ψ∗] =

∫
dt

{
i~
2

∫
d3x
(
ψ∗(t, ~x)ψ̇(t, ~x)− ψ(t, ~x)ψ̇∗(t, ~x)

)
−

~2

2m

∫
d3x
(
~∇ψ(t, ~x)

)
·
(
~∇ψ∗(t, ~x)

)
+
Gm2

2

x
d3x d3y

|ψ(t, ~x)|2 |ψ(t, ~y)|2

‖~x− ~y‖

}
(40)

I More on SNE ⇒ talk by André Großardt.
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Conclusion

1. What is meant by “quantum tests of the equivalence principle”?

2. How do we systematically couple QM to GR?

3. Can we test vector- and tensor-couplings in the laboratory?

4. Can we test gravitational self-couplings in laboratory/space experiments?

5. Is quantum gravity necessary?

6. Is quantum gravity quantum geometry?

THANKS!
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