Study of CPV in b and charm systems at LHCb

Emilie Maurice. on behalf of LHCb collaboration

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

29 February 2012

Les Rencontres de Physique de la Vallée d'Aoste La Thuile

Introduction

CP violation in charm

Towards a measurement of the CKM angle γ

 B_s^0 mixing phase ϕ_s

Conclusions and prospects

PHENOMENOLOGY

Mixing

In Standard Model, neutral mesons mix with their antiparticles via box diagrams

CP violation

3 types of CP violation

- ▶ Mixing: rates of $H^0 \to \overline{H}^0$ and $\overline{H}^0 \to H^0$ differ, with $H^0 = D^0, B^0, B^0_s$
- ▶ Decay: amplitudes from a process and its conjugate differ
- ► Interference between mixing and decay

LHCB DETECTOR

LHCb: CP violation and rare decays study in b and charm sector

Single-arm forward spectrometer

- Excellent vertex resolution separation of primary and secondary vertices
- Precise tracking system IP resolution $\sim 15 \mu m$ (at high p_T), $\delta p/p \sim 0.5\%$
- Excellent particle identification
 π / K / p separation over large momentum range
- Calorimeters:
 π⁰, γ reconstruction, e identification
- ► High trigger efficiency (many BF < 10⁻⁵)

2011 data taking, $\sqrt{s} = 7 \text{ TeV}$

- ► Data taking efficiency: 91 %
- $ightharpoonup \sim 1 \, \text{fb}^{-1}$ of data recorded
- ▶ 99 % of data good for physics

LHCb-PAPER-2011-023 to appear to PRL, $\mathcal{L}=0.62 \mathrm{fb}^{-1}$

5/22

CP VIOLATION IN $D^0 \rightarrow h^+h^-$

- \triangleright D⁰ mixing is well established (no mixing excluded at 10.2 σ)
- ► CP violation expected to be very small in SM but significant hadronic uncertainties
- ► CP violation in D decays not yet seen

Introduction

Measure the difference of CP asymmetries

$$\Delta A_{CP} = A_{CP}(D^0 \to K^+K^-) - A_{CP}(D^0 \to \pi^+\pi^-)$$
with $A_{CP}(D^0 \to f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D^0} \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D^0} \to f)}$

- Initial flavor of D^0 tagged by slow pion : $D^{\star+} \to D^0 \pi_{\rm c}^+$
- Experimental asymmetry:

$$A_{raw}(f) = \underbrace{A_{CP}(f)}_{\text{Physics CP}} + \underbrace{A_D(f)}_{\text{Detection of } D} + \underbrace{A_D(\pi_S)}_{\text{Detection of } \pi_S} + \underbrace{A_P(D^{\star+})}_{\text{Production}}$$

CP VIOLATION IN $D^0 \rightarrow h^+h^-$

What we measure

Introduction

Raw asymmetries difference : $\Delta A_{CP} = A_{CP}(KK) - A_{CP}(\pi\pi) = A_{raw}(KK) - A_{raw}(\pi\pi)$

- ▶ Production and soft pion detection asymmetries cancel at 1st order
- ▶ No detection asymmetry for KK or $\pi\pi$ final states
- → Systematics suppressed at 1st order

Results: $\mathcal{L} = 0.62 \text{fb}^{-1}$. LHCb-PAPER-2011-023

Measurement of ΔA_{CP} :

- from fits to $\delta m = m(D^*) m(D^0) m(\pi^+)$
- ▶ in bins of : kinematics, magnet polarity, running periods
- ▶ measured asymmetries are consistent in all bins
- final ΔA_{CP} is a weighted average over 216 bins

First evidence of CP violation in charm sector (3.5σ) :

$$\Delta A_{CP} = (-0.82 \pm 0.21(\text{stat}) \pm 0.11(\text{syst}))\%$$

CP VIOLATION IN $D^0 \rightarrow h^+h^-$

Introduction

$$\Delta A_{CP} = \underbrace{(a_{CP}^{dir}(K^-K^+) - a_{CP}^{dir}(\pi^-\pi^+))}_{\text{direct CP asymmetry}} + \underbrace{\frac{\Delta \langle t \rangle}{\tau_{D0}} a_{CP}^{ind}}_{\text{indirect CP asymmetry}}$$

 $\frac{\Delta \langle t \rangle}{\tau_{p0}} = (9.8 \pm 0.9)\%$, with $\Delta \langle t \rangle$ difference of averages decay time for KK, $\pi\pi$ (experiment dependent)

HFAG combination: $a_{CP}^{ind} = (-0.019 \pm 0.232)\%$ $\Delta a_{cp}^{dir} = (-0.645 \pm 0.180)\%$

Consistency with NO CP violation: 0.128%

- Analyze more data (only 60% of 2011 is used)
- Look for direct CPV in other modes

- Search for indirect CPV
- Need more theory work

4 D > 4 A > 4 B > 4 B > 990

Towards a measurement of the CKM angle γ

LHCb-PAPER-2012-001

29 February 2012

Definition

Introduction

$$\gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) \implies \text{Interference between } b \to u \text{ and } b \to c \text{ transitions}$$

Indirect constraint: $\gamma = (67.1^{+4.6}_{-3.7})^{\circ}$ [CKMfitter]

Towards a measurement of γ at LHCb

Many milestones passed:

- ightharpoonup B
 ightarrow D(hh, hhhh)K: LHCb-CONF-2011-031, LHCb-CONF-2011-044
- ▶ $B \to DK^*$: Phys. Lett. B 706 (2011)32-39
- ▶ $B \rightarrow DK\pi\pi$: LHCb-PAPER-2011-040
- ▶ $B_c^0 \rightarrow D_c K^{\pm}$: LHCb-CONF-2011-057
- ▶ $B \rightarrow hh$: LHCb-CONF-2011-042

Presentation of the first LHCb paper with 1 fb⁻¹, [LHCb-PAPER-2012-001], for submission to PLB Direct CP violation in $B^{\pm} \rightarrow D K^{\pm}$ decays

CP VIOLATION IN $B^{\pm} \rightarrow Dh^{\pm}$ [LHCB-PAPER-2012-001]

 $B^{\pm} \to DK^{\pm}$ with D decays to:

- ► CP eigenstates (GLW): K^+K^- , $\pi^+\pi^-$ → large BR, but small interference Phys. Lett. B 265 17 (1991)
- non CP eigenstates (ADS): $K^-\pi^+$, $K^+\pi^ \rightarrow$ combinations of favoured \times suppressed decays lead to comparable amplitudes Phys. Rev. Lett. 78 (1997) 3257-3260 \Longrightarrow more sensitive to γ

CP asymmetries and partial widths compared to the favoured control mode: $B^- \to D^0 h^-$

$$\begin{split} R_{GLW} &= 1 + r_{\rm B}^2 + 2r_{\rm B}\cos\delta_{\rm B}\cos\gamma \\ A_{GLW} &= 2r_{\rm B}\sin\delta_{\rm B}\sin\gamma/R_{GLW} \end{split} \qquad \begin{split} R_{ADS} &= r_{\rm B}^2 + r_{\rm D}^2 + 2r_{\rm B}r_{\rm D}\cos(\delta_{\rm B} + \delta_{\rm D})\cos\gamma \\ A_{ADS} &= 2r_{\rm B}r_{\rm D}\sin(\delta_{\rm B} + \delta_{\rm D})\sin\gamma/R_{ADS} \end{split}$$

with the relative magnitude of suppressed amplitude r_B , weak phase γ , strong phase δ_B

ANALYSIS: $B^{\pm} \rightarrow Dh^{\pm}$ [LHCB-PAPER-2012-001]

- Reconstruction of every mass hypothesis combination : $B \to [hh']_D h''$, with $h, h', h'' = K, \pi$
- Extract ratios and asymmetries with a simultaneous fit
- Most systematic uncertainties cancel

CP violation in charm

Clear asymmetry in $B^{\pm} \rightarrow [KK]_D K^{\pm}$

No asymmetry in $B^{\pm} \rightarrow [KK]_D \pi^{\pm}$

Preliminary results:

$$R_{CP+} = \frac{\langle R_{K/\pi}^{KK}, R_{K/\pi}^{R\pi} \rangle}{R_{K/\pi}^{K\pi}} = 1.01 \pm 0.04 \pm 0.01$$

$$A_{CP+} = \langle A_{K}^{KK}, A_{K}^{\pi\pi} \rangle = 0.15 \pm 0.03 \pm 0.01$$
4.5 σ

Compatible results with B factories

CP VIOLATION IN $B^\pm o Dh^\pm$ [LHCB-PAPER-2012-001]

First observation of $B^{\pm} \rightarrow [\pi K]_D K^{\pm}$

$$\operatorname{Using} R_K^{\mp} = \frac{\Gamma(B^{\mp} \to [\pi^{\mp}K^{\pm}]_D K^{\mp})}{\Gamma(B^{\mp} \to [K^{\mp}\pi^{\pm}]_D K^{\mp})} \Longrightarrow R_{ADS(K)} = \frac{R_K^{-} + R_K^{+}}{2} \qquad A_{ADS(K)} = \frac{R_K^{-} - R_K^{+}}{R_K^{-} + R_K^{+}}$$

Preliminary results:

$$R_{ADS(K)} = 0.0152 \pm 0.0020 \pm 0.0004$$
 10σ
 $R_{ADS(\pi)} = 0.0041 \pm 0.0003 \pm 0.0001$

$$A_{ADS(K)} = -0.520 \pm 0.150 \pm 0.021$$
 4 σ
 $A_{ADS(\pi)} = 0.143 \pm 0.062 \pm 0.011$ 2.4 σ

→ Most precise measurements

4 D > 4 A > 4 B > 4 B > 900

13 / 22

CP VIOLATION IN $B^\pm o Dh^\pm$ [LHCB-PAPER-2012-001]

Conclusions

- ▶ R_{CP}, R_{ADS} and A_{CP}, A_{ADS} contain dependence on the weak phase γ → important contribution to a future extraction of this parameter
- ► Good agreement with B-factories results

Important milestones towards γ measurement

14 / 22

B_s^0 mixing phase ϕ_s

LHCb-PAPER-2011-021 accepted by PRL LHCb-PAPER-2011-031, PLB 707(2012)497-505 LHCb-CONF-2011-056 LHCb-PAPER-2011-028

Introduction

ϕ_s : interference between mixing and decar

Interference between the direct amplitude and the amplitude via B_s^0 - \overline{B}_s^0 oscillation gives rise to a CP violating phase $\phi_s = \Phi_M - 2\Phi_D$

Conclusions and prospects

Standard Model

$$\phi_{\rm s}^{SM} = -2\arg(-rac{V_{ts}V_{tb}^{\star}}{V_{cs}V_{tb}^{\star}}) + \delta_{penguins}^{SM}$$

Penguins are expected to be small:

with $\delta_{penguins}^{SM} = 0 \Longrightarrow \phi_s^{SM} = -(0.0363 \pm 0.0017) \text{ rad [CKMfitter]}$

If New Physics: ϕ_s can be larger!

EXPERIMENTAL CHALLENGES

► B_s system oscillates rapidly → Requires very good proper-time resolution $B_r^0 \rightarrow J/\psi \phi$: $\sigma_t = 50 \text{fs}$

- Flavour tagging required: [LHCb-PAPER-2011-028, submitted to Eur. Phys. J. C] $B_c^0 \to J/\psi \phi$ OS tagging power: $(1.91 \pm 0.23)\%$
- ▶ Proof of principle: Δm_s measurement LHCb-CONF-2011-050 Analysis $B_s^0 \to D_s^- \pi^+$, $\mathcal{L} = 370 \,\mathrm{pb}^{-1}$ of 2011 data **Preliminary** $\Delta m_s = 17.725 \pm 0.041(stat) \pm 0.026(syst) \text{ ps}^{-1}$ → Most precise measurement

- ► P→VV decay: mixture of CP odd and CP even states → need angular analysis to disentangle statistically the 3 polarization amplitudes: A_0, A_{\parallel} (CP even), A_{\perp} (CP-odd)
- KK S-wave component: add a CP odd polarization A_S

 J/ψ rest frame

FIT PROJECTIONS, LHCB-PAPER-2011-021

$\mathcal{L} = 370 \mathrm{pb}^{-1}$: $8276 \pm 94 \, \mathrm{B_s^0} \rightarrow \mathrm{J/}\psi\phi$ signal events

Results

Introduction

Most precise measurements:

 $\Gamma_s = 0.656 \pm 0.009 \text{ (stat)} \pm 0.008 \text{ (syst) ps}^{-1}$ $\phi_s = 0.15 \pm 0.18 \text{ (stat)} \pm 0.07 \text{ (syst) rad}$ $\Delta \Gamma_s = 0.123 \pm 0.029 \text{ (stat)} \pm 0.011 \text{ (syst) ps}^{-1}$

First direct evidence of non-zero $\Delta\Gamma_s$

2 solutions, 1 in agreement with SM prediction

→ Current uncertainties still leave room for New Physics

ϕ_s : SOLVING THE AMBIGUITY, LHCB-PAPER-2011-028

Introduction

Invariance of the differential decay rate:

$$(\phi_{s}, \Delta \Gamma_{s}, \delta_{\parallel} - \delta_{0}, \delta_{\perp} - \delta_{0}, \delta_{s} - \delta_{0}) \leftrightarrow (\pi - \phi_{s}, -\Delta \Gamma_{s}, \delta_{0} - \delta_{\parallel}, \delta_{0} - \delta_{\perp}, \delta_{0} - \delta_{s})$$

Ambiguity is solved by studying the interferences between S-wave and P-wave: following similar method as BaBar $\cos 2\beta$ measurement (Phys. Rev. D 71 (2007) 032005)

- ▶ P-wave strong phases: δ_0 , δ_{\parallel} , δ_{\perp} → P-wave phase increases rapidly as a function of m_{KK} going through ϕ resonance
- S-wave strong phase: $\delta_S \to S$ -wave phase δ_S varies slowly as a function of m_{KK}

 $\delta_S - \delta_\perp$:

- extracted from a simultaneous fit in 4 bins of m_{KK}
- expected to decrease as a function of m_{KK} → Solution 1 is correct.

The chosen solution is the one compatible with SM

MEASUREMENT IN $B_s^0 \rightarrow J/\psi f_0$, LHCB-PAPER-2011-031

Introduction

- ▶ 2008: Prediction of S-wave interference in $B_s^0 \rightarrow J/\psi \phi$ decay (arXiv:0812.2832) \rightarrow S-wave could manifest as $f_0(980)$, CP odd eigenstate
- ► Feb. 2011: 1st observation of $B_s^0 \to J/\psi f_0$ decays at LHCb, then Belle, CDF, D0

$$R_{f_0/\phi} = \frac{\Gamma(B_s^0 \to J/\psi f_0)}{\Gamma(B_s^0 \to J/\psi \phi)} = 0.252_{-0.032-0.033}^{+0.046+0.027}$$
, (Phys. Lett. B698:115-122, 2011)

- $ightharpoonup f_0$ is a spin-0 resonance \rightarrow no angular analysis
- $\mathcal{L} = 378 \,\mathrm{pb}^{-1} (2010 + 2011 \,\mathrm{data}),$ 1428 ± 47 signal $B_s^0 \rightarrow J/\psi f_0$ events
- ► Constraining $\Delta\Gamma_s$ and Γ_s to $B_s^0 \rightarrow J/\psi \phi$ values

$$\phi_{\rm s} = -0.44 \pm 0.44 \, ({\rm stat}) \pm 0.02 \, ({\rm syst}) \, {\rm rad}$$

29 February 2012

ϕ_s : Combination of $B_s^0 \to J/\psi \phi$ and $B_s^0 \to J/\psi f_0$

Combination of the 2 ϕ_s measurement [LHCb-CONF-2011-056

Simultaneous fit with common ϕ_s , Γ_s , $\Delta\Gamma_s$, Δm_s :

$$\phi_{\rm s} = 0.03 \pm 0.16 ({\rm stat}) \pm 0.07 ({\rm syst}) {\rm rad}$$

Main systematics come from:

Introduction

- Decay angle acceptance
- CP in mixing and decay
- ► Background modelling

CDF update (Lake Louise), $\mathcal{L} = 9.6 \text{pb}^{-1}$:

 $\phi_{\rm S} \in [-\pi,\,-2.52] \cup [-0.60,\,0.12] \cup [3.02,\,\pi]$ at 68% CL

$\phi_{\rm s}$ prospect

- ► Use the whole 2011 statistics (1 fb⁻¹) \Longrightarrow Expected $\sigma_{\phi_s} \sim 0.10$ rad for $B_s^0 \to J/\psi \phi$ only
- ► Add tagging information: Same Side kaon
- ► Add new channels as $B_s^0 \to J/\psi \pi \pi$
- ► Control penguin pollution with $B_s^0 \rightarrow J/\psi K^{*0}$ [arXiv:0810-4248]

CONCLUSIONS AND PROSPECTS

Conclusions

Introduction

2011 has been an excellent year for LHCb

Selected CPV results:

- ► CP violation in charm: First evidence of CPV at 3.5 σ with ΔA_{CP} measurement in $D \to KK$, $D \to \pi\pi$
- Towards a measurement of the CKM angle γ Important milestones with the measurements of R_{CP}, A_{CP}, R_{ADS}, A_{ADS}
- Measurement of the B_s^0 mixing phase: ϕ_s Most precise measurement :

 $\Delta\Gamma_{\rm s} = 0.123 \pm 0.029 \text{ (stat)} \pm 0.011 \text{ (syst) ps}^{-1}$

 $\phi_s = 0.03 \pm 0.16 \text{ (stat)} \pm 0.07 \text{ (syst) rad}$

→ Compatible with Standard Model but still room for New Physics

Prospects

Use the full 2011 statistics

Much more results are in the pipeline for 2012!

