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Gauge invariant Green’s functions along polygonal lines

Objective: Study quark Green’s function properties by means of a
gauge invariant formalism to improve predictivity.

Necessity of using gluon field path-ordered phase factors.

Green’s functions with paths along polygonal lines are of particular
interest, since they can be decomposed into a succession of straight
line segments. The latter have Lorentz invariant forms and the same is
true for the polygonal lines.

A phase factor with a single straight line segment going from x to y:

U(y, x) = Pe
−ig

∫ y

x

dzµAµ(z)
.
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For a rigid straight line segment a displacement of one end of the
segment generates also displacements of the interior points of the
segment with appropriate weights.

∂U(y, x)

∂yα
= −igAα(y)U(y, x)+ig(y−x)β

∫ 1

0

dλλU(1, λ)Fβα(λ)U(λ, 0),

∂U(y, x)

∂xα
= +igU(y, x)Aα(x)+ig(y−x)β

∫ 1

0

dλ (1−λ)U(1, λ)Fβα(λ)U(λ, 0).

Conventions to represent the contributions of the integrals:

δ̄U(y, x)

δ̄yα+
≡ ig(y − x)β

∫ 1

0

dλ λU(1, λ)Fβα(λ)U(λ, 0),

δ̄U(y, x)

δ̄xα−
≡ ig(y − x)β

∫ 1

0

dλ (1− λ)U(1, λ)Fβα(λ)U(λ, 0).

⇐⇒ Rigid path derivatives.
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Gauge invariant Green’s functions with polygonal lines can be
classified according to the number of segments they contain.

The gauge invariant two-point quark Green’s function with
a polygonal line with n segments and n− 1 junction points
y1, y2, . . .,yn−1 between the segments is defined as

S(n)(x, x
′
; yn−1, . . . , y1) = − 1

Nc

〈ψ(x
′
)U(x

′
, yn−1) . . . U(y1, x)ψ(x)〉,

where each U is along a straight line segment.

For one straight line, one has:

S(1)(x, x
′) ≡ S(x, x′) = −

1

Nc

〈ψ(x′)U(x′, x)ψ(x)〉.
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Pictorially:

S(x, x′) ≡ S(1)(x, x
′) = −

1
Nc

< ψ(x′)U(x′, x)ψ(x) >

x x′

S(3)(x, x
′; y2, y1) = −

1
Nc

< ψ(x′)U(x′, y2)U(y2, y1)U(y1, x)ψ(x) >

x x′

y1

y2

5



Wilson loop

Φ(C) =
1

Nc

trPe
−ig

∮

C

dxµAµ(x)
.

Vacuum expectation value:

W (C) = 〈Φ(C)〉.

Functional representation:

W (C) = eF (C).
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If the contour C is a polygon Cn with n sides and n successive
junction points x1, x2, . . . , xn, then we write:

W (xn, xn−1, . . . , x1) = Wn = eFn(xn, xn−1, . . . , x1) = eFn.

x2

x3
x4

x5

W5

W5(x5, x4, . . . , x1) = eF5(x5, . . . , x1)

x1
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Functional relations for Green’s functions

Use of equations of motion of quark fields and integrations yield
functional relations between the various Green’s functions with
polygonal lines.

S(n)(x, x
′
; yn−1, . . . , y1) = S(x, x

′
) e
Fn+1(x

′
, yn−1, . . . , y1, x)

+

(

δ̄S(x, yn)

δ̄yα+
n

+ S(x, yn)
δ̄

δ̄y
α−
n

)

γ
α
S(n+1)(yn, x

′
; yn−1, . . . , y1, x).

+ +
= +

x′ x x′ x′x

S S

x′

x x

+

y2 y2

y3 y3

W4

S(3) S S(4) S(4)

y1 y1

y1 y1

y2 y2
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Integrodifferential equation for the two-point function

S satisfies the following equation of motion:

(iγ.∂(x) −m)S(x, x′) = iδ4(x− x′) + iγµ
δ̄S(x, x′)

δ̄xµ−
.

The rigid path derivative δ̄S(x, x′)/δ̄xµ− is calculated using the
functional relations between Green’s functions. One establishes the
following integrodifferential equation for the Green’s function S(x, x′):

(iγ.∂(x)−m)S(x, x′) = iδ4(x−x′)+iγµ
{

K2µ(x
′, x, y1)S(2)(y1, x

′;x)

+
∞
∑

n=3

Knµ(x
′, x, y1, . . . , yn−1)S(n)(yn−1, x

′;x, y1, . . . , yn−2)
}

.
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The kernel Kn contains globally n derivatives of Wilson loops with a
(n+ 1)-sided polygonal contour and also the Green’s function S and
its derivative.

The Green’s functions S(n) themselves are related to the simplest
Green’s function S with functional relations.

The dominant parts of the kernel are expected to be those containing
the least number of derivatives of Wilson loops.

Thus the leading term is the second-order term (the first-order one
being zero for symmetry reasons).

δ̄S(x, x′)

δ̄xµ−
≃ −

∫

d4y1
δ̄2F3(x

′, x, y1)

δ̄xµ−δ̄yα1+
1

eF3(x
′, x, y1) S(x, y1) γ

α1 S(y1, x
′).
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Four-point Green’s functions

Two quark fields ψ1 and ψ2 with masses m1 and m2, respectively.

Four-point function with one straight line between the quark and the
antiquark:

G(1)(x1, x2;x
′
2, x
′
1) = − 1

Nc

〈ψ2(x2)U(x2, x1)ψ1(x1)ψ1(x
′
1)U(x

′
1, x
′
2)ψ2(x

′
2)〉.

Four-point function with a polygonal line of n sides between the quark
and the antiquark:

G(n)(x1, x2; x
′
2, x
′
1; yn−1, . . . , y2, y1) = − 1

Nc

〈ψ2(x2)U(x2, yn−1)U(yn−1, yn−2)

× . . . U(y2, y1)U(y1, x1)ψ1(x1)ψ1(x
′
1)U(x

′
1, x
′
2)ψ2(x

′
2)〉.
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G(1) =

x′1

x′2

x2

x1

x′2

G(3) =

x1

y1

y2

x2

x′1
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Bound state wave functions

Bound state with total momentum P . Wave functions:

Φ(1)(P, x1, x2) =
−1
√
Nc

〈0|T ψ2(x2)U(x2, x1)ψ1(x1)|P 〉,

Φ(n)(P, x1, x2; yn−1, . . . , y2, y1) =
−1
√
Nc

〈0|Tψ2(x2)U(x2, yn−1)U(yn−1, yn−2)

× . . . U(y2, y1)U(y1, x1)ψ1(x1)|P 〉,

Functional relations are established between Φ(n), Φ(1) and Wilson
loops, similar to those of the Green’s functions.
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Wave equations

The four-point Green’s functions satisfy equations of motion:

(iγ.∂x1−m1)G(1)(x1, x2;x
′
1, x
′
2) = iδ

4
(x1−x′1)S2(2)(x

′
2, x2; x1)+iγ

µδG(1)

δx
µ−
1

∣

∣

∣

∣

x1x2

.

x1

x′2

= +

x2
x′2

iδ4(x1 − x′1)
x1x′1

x′1

x2
x′2

x2

×
(iγ.∂x1 −m1)

G(1)(x1, x2;x
′
1, x
′
2)(−iγ.

←
∂x2 −m2) = iδ

4
(x2−x′2)S1(2)(x1, x

′
1; x2)−i

δG(1)

δx
µ+
2

∣

∣

∣

∣

x2x1

γ
µ
.
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Taking large timelike separations between the sets of points (x1, x2)
and (x′1, x

′
2), one may select the bound states with appropriate

projection operators.

(iγ.∂x1 −m1)Φ(1)(P, x1, x2) = iγµ
δΦ(1)

δxµ−1

∣

∣

∣

x1x2

.

Φ(1)(P, x1, x2)(−iγ.
←
∂ x2 −m2) = −i

δΦ(1)

δxµ+2

∣

∣

∣

x2x1

γµ.

The action of the operators δ

δx
µ−
1

and δ

δx
µ+
2

can be expressed through their action

on Wilson loops by using the functional relations between the various wave functions

defined with polygonal lines. One ends up with wave equations involving as kernels

the Wilson loops with polygonal contours and their functional derivatives, the wave

functions Φ(n) and the two-point Green’s functions S1(n) and S2(n).
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(iγ.∂x1 −m1)Φ(1)(P, x1, x2) = iγµ
{

∞
∑

n=1

K1,nµ ∗ Φ(n)

}

.

Φ(1)(P, x1, x2)(−iγ.
←
∂ x2 −m2) = −i

{

∞
∑

n=1

K2,nν ∗ Φ(n)

}

γν.

These two bound state equations are independent but compatible
among themselves.

The leading term in the kernel is represented by the Wilson loop along
a triangular contour with two derivatives. Higher-order terms involve
Wilson loops along polygonal contours with an increasing number of
segments and derivatives.
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Chiral symmetry breaking

A criterion for spontaneous chiral symmetry breaking can be obtained, as the one

obtained by Baker, Johnson and Lee (1964) with the self-energy part of the fermion

Green’s function in QED.

Consider the equation of the gauge invariant two-point Green’s function S(1) and

extract from it the equation satisfied by the anticommutator {γ5, S(1)}, which selects

its scalar part.

Compare the latter equation in the limit of massless quarks (m1 = m2 = 0) to the

bound state equation satisfied by Φ(1). One finds that the two equations are identical

if P = 0.

This means that if the equation of S(1) contains a nontrivial (dynamical) solution for

its scalar part, then the latter is also a solution of the bound state equation with zero

total momentum, corresponding to a massless pseudoscalar bound state, which is

then the Goldstone boson of the spontaneous chiral symmetry breaking.
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